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ABSTRACT

Although the complexity of prosody is widely recognised, the lack of widely-accepted descriptive standards for prosodic
phenomena has meant that prosodic systems for most of the languages of the world have, at best, been described in
impressionistic rule-based terms. For the languages of Southern Africa, the deficiencies in our modelling capabilities are
acute. Little work of a quantitative nature has been published for the languages of the Nguni family (such as isiZulu and
isiXhosa), and there are significant contradictions and imprecisions in the literature on this topic, which partially stems
from the lack of quantitative, measurement-driven analysis.
This paper therefore embarks on a programme aimed at understanding the relationship between linguistic and physical
variables of a prosodic nature in this family of languages. Firstly we undertake a set of experiments to select an appropriate
pitch tracking algorithm for the the Nguni family of languages. We then use this pitch tracking algorithm to extract
relevant data from speech recordings to build intonation corpora for isiZulu and isiXhosa. Using the extracted data in the
intonation corpus, we show that it is possible to develop fairly accurate intonation models using a neural network classifier
for isiZulu and isiXhosa.

KEYWORDS: prosody, Nguni languages, fundamental frequency, intensity, intonation corpus, intonation mod-
elling, pitch tracking, autocorrelation, classification, tone

1 INTRODUCTION

Prosody is a paradoxical aspect of human language.
It is universally used yet highly variable across
languages. Every language possesses prosody and
many of the linguistic and paralinguistic functions of
prosody systems seem to be shared by languages of
widely different origins [1]. Despite the universal char-
acter of prosody, the specific features of a particular
speaker’s prosody system depend strongly on the lan-
guage, the dialect, and even the style, the mood and
the attitude of the speaker.

In the literature, a variety of different meanings
have been associated with the term ‘intonation’. We
use the term in its broad sense, to refer to the melodic

pattern of an utterance, either occurring at word level
(lexical intonation) or over larger sections of an utter-
ance (supralexical or syntactic intonation). This ‘pat-
tern’ represents the non-phonetic content of speech,
and includes perceptual characteristics such as tone,
stress and rhythm. A basic distinction is made be-
tween the perceptual attributes of sound, especially
a speech sound, and the measurable physical proper-
ties that characterise it. These perceptual or abstract
characteristics correspond to physical measurements
such as fundamental frequency, intensity and dura-
tion in an often complex manner. Prosody is achieved

Email: Natasha Govender ngovender@csir.co.za,
Etienne Barnard ebarnard@csir.co.za, Marelie Davel
mdavel@csir.co.za

by varying the levels of pitch, intensity and duration
in the voice. An overview of intonation as observed in
a variety of languages is provided in [1].

The intuitive notion that tone is solely expressed
in the fundamental frequency of an utterance, and
stress in intensity or duration, does not hold up under
closer inspection [2]. The interaction between lexical
and non-lexical contributions to the prosody of an ut-
terance further complicates the relationship between
measurable and linguistic variables.

Attempting to create an prosody model for any
language is a complex task. This difficulty is ex-
acerbated by the fact that there is little agreement
about appropriate descriptive frameworks for mod-
elling . The lack of widely-accepted descriptive stan-
dards for prosodic phenomena which can be used to
describe all languages, has meant that prosodic sys-
tems for most of the languages of the world have,
at best, been described in impressionistic rule-based
terms. This situation has become particularly no-
ticeable with the development of increasingly capable
text-to-speech (TTS) systems [3]. Such systems re-
quire detailed prosodic models to sound natural, and
the development of these detailed models poses a sig-
nificant challenge to the descriptive systems employed
for prosodic quantities.

In this regard, the status of the Southern African
languages in the Bantu family is quite interesting. On
the one hand, intonation in these languages has at-
tracted much attention because of its historical role
in the elucidation of autosegmental phonology [4] and
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its intricate tonal structure. On the other hand, little
work of a quantitative nature has been published, and
as Roux [5] points out, there are significant contradic-
tions and imprecisions in the literature on this topic,
which partially stems from the lack of quantitative,
measurement-driven analysis.

This leaves those who wish to develop technology
for Bantu languages in a difficult situation. Whereas
there is ample theoretical evidence that prosodic fac-
tors should receive significant attention in these lan-
guages, there is little by way of concrete models to
guide one in this process. For these Southern African
languages, the deficiencies in our modelling capabili-
ties are acute.

We have therefore embarked on a programme
aimed at understanding the relationship between lin-
guistic and physical variables of a prosodic nature in
this family of languages. We then use the informa-
tion/knowledge gathered to build intonation models
for isiZulu (isiZulu is the largest family in the Nguni
subfamily of the Bantu family of languages; it is also
the most common first language of citizens of South
Africa) and isiXhosa. isiZulu and isiXhosa are consid-
ered to be tonal languages i.e. a language in which
pitch variations are used to indicate differences in
meaning between words otherwise similar in sound.

In Section 2 below, we review some basic facts
about the fundamental frequency of a speech signal,
and then describe a set of experiments that was under-
taken to select an appropriate pitch tracking algorithm
for extracting fundamental frequency(F0) from isiZulu
utterances. In Section 3 we describe the methodology
used for developing a general-purpose intonation cor-
pus and the various methods implemented to extract
relevant features such as fundamental frequency, in-
tensity and duration from the spoken utterances of
these languages. In Section 4, in order to understand
how the ‘expected’ intonation relates to the actual
measured characteristics, we develop a neural network
classifier to predict the tone for the isiZulu and isiX-
hosa utterances. In Section 5 we discuss our final con-
clusions from our experiments.

2 PITCH TRACKING ALGORITHMS

A number of pitch tracking algorithms have been de-
veloped; however, to our knowledge, these algorithms
have not been evaluated formally on a Nguni language
such as isiZulu. Although the expectation is that pitch
extraction algorithms will not differ greatly between
different languages, it is worthwhile to verify this as-
sumption. In order to decide on an appropriate algo-
rithm for further analysis, and to test the assumption
that isiZulu utterances are served well by that algo-
rithm, a number of analyses have been performed with
two state-of-the-art algorithms namely the Praat pitch
tracker [6] and Yin [7].

In Section 2.1 we explain some basic facts about
the fundamental frequency of a speech signal. In Sec-
tion 2.2 we define the methodology undertaken to se-
lect an appropriate algorithm for extracting funda-

mental frequency from isiZulu utterances. We also
describe the various databases and algorithms used in
the experiments. In Section 2.3 we display the results
obtained from the experiments, and in Section 2.4 we
summarise our conclusions from these experiments.

2.1 Fundamental Frequency

The fundamental frequency (F0) of a periodic signal
is the inverse of it’s period, which in turn is defined as
the smallest positive member of the set of time shifts
that leave the signal invariant [8]. Speech waveforms
are never absolutely periodic, so that approximate in-
variance has to be used in defining the fundamental
frequency of a speech waveform. With an appropriate
approximation, F0 correlates well with the subjective
experience of pitch. It is therefore common practice
to use the terms F0 and pitch interchangeably, and in
the remainder of this paper we will do the same.

2.2 Methodology

Yin [7] and the Praat [6] pitch tracker are two widely
used algorithms for F0 extraction. These algorithms
(Yin and the Praat tracker) are briefly described be-
low.

• Yin is an implementation of the method devel-
oped by De Cheveigne [7]; it combines autocorre-
lation and Average Magnitude Difference Func-
tion (AMDF) methods [9] with a set of modifi-
cations and post-processes that reduce common
errors of those algorithms.

• The Praat pitch tracker performs an acoustic
periodicity detection on the basis of an accu-
rate autocorrelation method, as described by
Boersma [10]. This method tends to be more ac-
curate, noise-resistant, and robust, than methods
based on cepstra or combs, or the original auto-
correlation methods. In order to estimate a sig-
nal’s short term autocorrelation function on the
basis of a windowed signal, this method divides
the autocorrelation function of the windowed sig-
nal by the autocorrelation function of the win-
dow. It is available with the Praat toolkit [11].

In order to compare these algorithms, F0 was
extracted from a number of spoken utterances in
three different languages, namely English, French and
isiZulu. In the French and English databases, each
(acoustic) utterance is accompanied by a laryngograph
trace. The laryngograph measures the electrical resis-
tance between electrodes on either side of the throat,
and therefore provides a fairly accurate measurement
of the fundamental frequency that was actually pro-
duced by the speaker. Hence, F0 as determined from
the laryngograph data is used as ground truth when
comparing the algorithms on the French and English
databases.

Both Yin and the Praat algorithm are character-
ized by a number of tunable parameters. In order
to make a fair comparison, the values recommended
by the algorithm developers were used for all the pa-
rameters, except where the same parameter occurred
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in both algorithms: these were set to reasonable and
equal values. In particular, the minimum allowable
pitch frequency was set to 30 Hertz, the maximum to
2000 Hertz, and a window size of 0.02s was used.

Since the laryngograph data is itself a temporal
waveform, F0 has to be extracted from the laryn-
gograph before it can be used as baseline. Fortu-
nately, both algorithms produced very similar results
(as would be expected from the highly periodic nature
of laryngograph data in voiced speech) and thus either
could be used as the basis for the experiments. The
pitch values extracted by Yin for all the laryngograph
databases was consequently used as the basis for our
comparisons.

Pitch extraction algorithms can fail in a number of
ways. They can fail to detect periodicity when voicing
is present, or assign pitch values to unvoiced regions of
speech. In voiced speech, gross errors occur when the
algorithm computes a completely wrong estimate of
pitch (for example, pitch halving or pitch doubling),
and fine errors reflect on the detailed computation of
the pitch period. In order to understand these various
classes of errors, we calculated a number of measures
for each of the files in our corpus:

1. The number of gross errors for each file was cal-
culated. This was defined as the number of
times that the value obtained from the laryngo-
graph differed from the corresponding value for
the acoustic file by more than a set threshold.
We used a threshold of 50 Hertz.

2. We also computed the number of false positive de-
tections of pitch (when the laryngograph did not
indicate voicing, but a pitch value was extracted
from the acoustic waveform) and, conversely, the
number of false negative detections.

3. The mean square error was calculated only across
those pitch periods where both the laryngograph
data and the acoustic data indicated the presence
of voicing, and where no gross error occurred.

Since no laryngograph data was available for the
isiZulu database, we computed the number of gross
differences between the two methods (rather than the
number of gross errors), and also computed the mean
squared difference between the answers produced by
the two algorithms. Finally, a manual process was
used to decide which of the two algorithms was in er-
ror when gross differences occurred. That is, a random
selection of files was made and each file was manually
inspected at the points where the fundamental fre-
quency extracted by the two algorithms differed by
more than the threshold value. At these points, the
period (and hence the pitch) was calculated manually
to decide which of the algorithms is in error.

Four databases were used in this study. These
comprise a total of 1.16 hours of speech. The first
three included a laryngograph waveform recorded to-
gether with the speech.

• DB1: Two male speakers of English produced a
total 0.2 hours of speech [12].

• DB2: One male pronounced 150 English sen-
tences for a total of 0.17 hours of speech. The

database is available with the laryngograph data
from [13].

• DB3: Two male and two female speakers each
pronounced between 42 and 55 French sentences
for a total of 0.46 hours of speech [14].

• DB4: An adult male whose first language is
isiZulu produced the isiZulu voice recordings. He
pronounced 150 sentences with a total of 0.33
hours of speech.

2.3 Results

We next present results on the suitability of the vari-
ous pitch tracking algorithms for our purposes. Since
we did not have laryngograph baseline values for DB3
and DB4, most of the results in this subsection are for
DB1 and DB2 only.

2.3.1 Gross Errors

The average number of gross errors1 per utterance
was measured for the English and French databases,
across all files, as well as the number of gross errors
manually measured for each utterance in the isiZulu
database are reported in Table 1. Across all three
languages, the Praat algorithm tends to make fewer
gross errors (possibly because of the more sophisti-
cated post-processing done by Praat as part of its
tracking algorithm). Alternatively, these differences
may be a consequence of the relatively conservative
voicing detection algorithm used by Praat (see below).

Table 1: Mean number of gross errors per utterance for

Praat and Yin across all databases, as computed from a

comparison with laryngograph data(English or French) or

manual inspection(isiZulu)

Database Praat Yin

English DB1 3.868 12.181
English DB2 0.227 10.267

French 49.674 65.873
isiZulu 0.8 1.3

2.3.2 Errors in the detection of voicing

Tables 2 and 3 contain the average number of false
positive and false negative detections of voicing, re-
spectively, for the various databases. These results
indicate that the two algorithms have different thresh-
olds for voicing detection - Praat makes fewer positive
errors, at the cost of additional missed detections.

2.3.3 Mean Square Error

Table 4 contains the mean square errors obtained for
the English and French databases, expressed as a per-
centage of the measured F0 values. Both algorithms
are highly accurate, with the Praat algorithm consis-
tently more accurate than Yin. (The values reported

1Note that the number of errors is not comparable across
databases, as this number is correlated with utterance length
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Table 2: The average number of false positive voicing de-

tections per utterance

Database Praat Yin

English DB1 0.0533 26.68
English DB2 0.2828 34.101

French 17.699 65.650

Table 3: The average number of false negative voicing de-

tections per utterance

Database Praat Yin

English DB1 75.393 10.919
English DB2 38.727 4.147

French 63.843 15.789

in Table 4 are very close to those obtained in [7]; the
small observed differences are most likely the result
of differences in our experimental protocols.) As with
the gross errors, the relative superiority of Praat may
either be the result of intrinsic algorithmic factors, or
the more conservative voicing detection used in Praat.

Table 4: The average mean squared error of both algo-

rithms when compared with laryngograph measurements

Database % Mean Squared Error
Praat Yin

English DB1 0.193 1.819
English DB2 0.081 1.884

French 0.387 1.076

The mean squared difference between the val-
ues obtained with the two algorithms on the isiZulu
database (for which we did not have a laryngograph-
derived baseline) was 0.115%. This difference is some-
what smaller than would be expected from the values
in Table 4, but broadly in line with those values.

2.4 Conclusion

Both Yin and the Praat pitch tracker perform very
well on the databases studied here; however, the
Praat algorithm performs somewhat better than Yin
in terms of gross and fine error. The main negative as-
pect of the Praat algorithm is that it is more prone to
missing frames in which voicing was actually present.
This disadvantage may weigh heavily in applications
such as speech recognition, but is relatively unimpor-
tant for our purposes of analyzing the relationship be-
tween F0 and tone. Praat will therefore be used in the
rest of our work. Also, the numerical results reported
above, as well as our subjective inspection of the com-
puted values, confirm that the performance on isiZulu
data is very comparable to that on the other two lan-
guages. This gives us confidence that the algorithm
will perform well on our isiZulu data.

In the next section we discuss how the selected
pitch tracker was used in the development of the into-
nation corpus.

3 DEVELOPING INTONATION CORPORA

FOR ISIXHOSA AND ISIZULU

Attempting to create an intonation model for any lan-
guage is a complex task. For South African languages
this task is further complicated by the lack of into-
nation resources available. While intonation corpora
exist for more researched languages such as French
and English, there are no such corpora available for
South African languages.

In Section 3.1 we describe the methodology used
for developing a general-purpose intonation corpus. In
Section 3.2 we describe the corpora developed and the
various kinds of information that can be extracted.
In Section 3.3 we report on some of the global mea-
surements related to F0 that were extracted from our
corpus; the more localised measurements, which are
the main focus of this research, are described in sub-
sequent sections.

3.1 Methodology

Our aim was to develop an annotated intonation cor-
pus that will support further statistical research in
intonation modelling. Corpus development was not
guided by specific linguistic hypotheses (although the
testing of such hypotheses is certainly supported by
these corpora, as we describe in the rest of this pa-
per), but rather was aimed at collecting natural read
speech from a number of speakers, and annotating this
data in ways that are meaningful from a pattern recog-
nition perspective. The methodology used for build-
ing such corpora for two Nguni languages (isiZulu and
isiXhosa) is described in detail below, illustrating the
process from initially building the corpus of sentences,
generating the voice recordings and tone markings, to
extracting the fundamental frequency (F0), intensity
and duration values.

3.1.1 Collection of Text Corpora

The first step consisted of the selection of an appropri-
ate text corpus for recording purposes. Initially a large
collection of text sentences was obtained from various
isiXhosa and isiZulu websites. In total 2300 isiXhosa
and 1700 isiZulu sentences were collected. These sen-
tences were then verified as logically and grammati-
cally correct by first language speakers of the respec-
tive languages.

From this larger corpus, we aimed to select those
sentences that would provide the most value in terms
of varying tone levels. Based on the assumption that
a large variation in graphemic bigrams would result in
a large variation of intonation phenomena, a subset of
sentences was selected that provided large graphemic
variability. This was done using a text optimiser that
applies a greedy search algorithm, which selects each
successive sentence as the sentence which adds the
greatest set of additional bigrams to the pool of cov-
ered bigrams. The algorithm was initialised based on
graphemic bigram frequencies occurring in the larger
text corpus, as illustrated in Table 5.
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isiXhosa bigram frequencies

d 12
j 6
r 1

h-i 84
m-i 57
y 91
p 16

Table 5: Examples of bigram frequency counts

For isiXhosa 53 of the original 2300 sentences were
selected. For isiZulu 153 of the original 1700 sentences
were selected for recording.

3.1.2 Recording of Sentences

The sentences selected by the text optimiser were
recorded by one first language isiXhosa male and one
female speaker and the isiZulu sentences by one first
language isiZulu male and one female speaker, in a
quiet office environment. All recordings were obtained
at a recording rate of 16Khz, using the open source
Audacity toolkit on a laptop computer, and a close-
talking microphone.

3.1.3 Marking of Sentences

Tones can be understood as labels for perceptu-
ally salient levels or movements of F0 on syllables.
Pitch levels and movements on accented and phrase-
boundary syllables can exhibit a bewildering diversity,
based on the speaker’s characteristics, the nature of
the speech event, and the utterance itself. For mod-
elling purposes, it is useful to have an inventory of ba-
sic, abstract pitch types that could in principle serve
as the base inventory for expression of linguistically
significant contrast.

In order to understand how the ‘expected’ into-
nation relates to the actual measured characteristics,
the syllabic intonation was marked as either High (H)
or Low (L) depending on how utterances were ex-
pected to be pronounced in the context of the sen-
tence, without using the voice recordings as guide.
These markings were performed by a first language
isiXhosa speaker for the isiXhosa sentences and a first
language isiZulu speaker for the isiZulu sentences.
Note that different speakers were used than during
the recordings, i.e. these markings were independent
of the recorded audio data.

For each sentence the boundaries of every sylla-
ble were marked and transcribed using Praat [6]. An
example of the syllable markings for a portion of an
isiZulu sentence in Praat is illustrated in Figure 1.

3.1.4 Extraction of Intonation Measurements

• Fundamental Frequency

In Section 2.3 it was shown that Praat’s imple-
mentation of a pitch tracking algorithm produced
the best results for the studied languages [15].
Thus, this algorithm was selected to extract the

Figure 1: A portion of a signal extracted for an isiZulu

sentence and the pitch contour

pitch values from the isiXhosa and isiZulu voice
recordings.

The most fundamental distinction between sound
types in speech is the voiced/unvoiced distinction.
Voiced sounds including vowels, have in their time
and frequency structure a roughly regular pattern
that unvoiced sounds, such as constants like s,
lack.

The fundamental frequency (F0) values were ex-
tracted at the syllable boundaries, i.e. they were
extracted at the start and end of each syllable
in the sentence. However, the fact that unvoiced
segments often occur at the beginning of a sylla-
ble meant that a large percentage of the values
extracted for both isiXhosa and isiZulu were not
defined in this way, and hence a large number of
the pitch values extracted were undefined.

In order to rectify this problem, two different ap-
proaches were implemented and the more accu-
rate of these was selected. The two approaches
implemented were:

– MOMEL (MOdelisation de MELodie) [16] was
used to obtain a smoothed contour of the F0
values. MOMEL is an algorithm for the au-
tomatic modelling of fundamental frequency
curves, factoring them into a macroprosodic
and a microprosodic component. The macro-
prosodic component is modelled as a quadratic
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Figure 2: A graph showing the difference in the pitch val-

ues obtained between Praat and MOMEL

spline function i.e a continuous smooth se-
quence of segments of parabolas defined by a se-
quence of target points corresponding to points
where the first derivative of the curve is nil.

The F0 for each recording was extracted at ev-
ery 10 milliseconds, and MOMEL used to gen-
erate an interpolated F0 contour. The bound-
ary times (i.e the starting time and ending
time) for each syllable were then compared to
the output and the corresponding F0 value ex-
tracted. This process is illustrated in Figure 2.
Figure 2 displays the waveform, the spectro-
gram and the phone boundaries respectively.
Within each phone boundary, the perceived
tone of the phone appears as either high (H)
or low (L), along with the actual phone. Note
how the ‘undefined’ values provided by Praat
(zero values in the figure) have been removed
in the MOMEL contour.

– The second approach, referred to as the Non-
Zero method, extracts the first non-zero pitch
value and the last non-zero pitch value for each
syllable in a sentence. The first non-zero pitch
value extracted is then used as the starting
pitch and the last non-zero pitch value ex-
tracted as the ending pitch for that particular
syllable. This is illustrated in Figure 3. In this
figure, 1 denotes the point of the last non-zero
pitch for syllable ne and 2 the point of the first

Figure 3: A portion of an isiZulu signal depicting the

points at which the pitch values would be extracted using

the non-zero method

non-zero pitch to be extracted for the next syl-
lable e. A more sophisticated smoothing strat-
egy could be employed here, but to limit the set
of variables under consideration we have not in-
vestigtated this option

From our experiments the Non-Zero method was
proven to obtain more accurate results.

• Intensity

The intensity was calculated at each of the syl-
lable boundaries, as the average squared value of
the signal within a 5 millisecond window.

• Duration

To calculate duration of each syllable, the starting
and ending times of the syllable were obtained
from the hand labels, and subtracted.

3.2 Results

At this point the information contained in the intona-
tion corpus includes:

• the actual voice recordings, grouped per speaker,

• the orthographic transcription per voice record-
ing,

• syllabification markings,

• the expected High/Low markings for each sylla-
ble,

• the pitch values extracted using the Non-Zero
method

• the extracted intensity values, and

• the extracted duration values.
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Table 6 illustrates a typical example of the pitch
values obtained using the Non-Zero method for an
isiZulu sentence. The intensity and duration values
extracted would be the same for both algorithms.

Segment H/L start F0 end F0 Intensity sec

i H 158.24 167.84 86.23 0.13
si L 167.84 129.21 86.44 0.31
mo L 129.21 132.95 84.93 0.30
so L 143.82 131.37 82.21 0.23
ku L 131.37 136.04 81.41 0.90

Table 6: An example of an annotated isiZulu data item

3.3 Observations

In Section4 we discuss the development of prosodic
models using the developed corpora. In the remain-
der of this section we list some global measurements
observed from the extracted data.

3.3.1 Declination in F0

In many of the languages of the world, F0 has a consis-
tent tendency to decline within a phrase [1]. However,
the extent of this declination varies significantly be-
tween different languages, for different speaking styles,
and possibly also depends on factors such as the gen-
der and age of the speaker.

We investigated the magnitude of this effect for
our languages and speakers, by computing the aver-
age values across all utterances (in increments of 25
milliseconds), as a function of the duration from the
beginning of the utterances. These averages are shown
in Figure 4 for the two isiZulu speakers, and in Figure
5 for the two isiXhosa speakers.

We see that similar declinations occur in both lan-
guages, and that these declinations do not seem to
differ systematically by speaker gender.

3.3.2 Pitch variability and speaker gender

The fact that F0 is generally higher for females than
males is a simple consequence of anatomical tenden-
cies; however, there are also gender differences in the
production of prosody that are cultural in origin. Our
subjective experience is that the extent of pitch vari-
ation is such a difference in the Nguni (and related)
languages – specifically, we hypothesise that female
speakers tend to produce wider variability in F0 than
males.

In order to test this hypothesis, we define the
pitch variance of a spoken utterance as the variance of
the F0 values (as interpolated by MOMEL) observed
when the utterance is sampled at 250 millisecond in-
crements. The results are shown in Table 7: for our
limited set of isiZulu speakers, the hypothesis is indeed
confirmed, but for the limited set of isiXhosa speakers
the same hypothesis does not hold.
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Figure 4: Mean pitch as a function of the time since the

start of an utterance, for isiZulu

Language Male Male Female Female
mean variance mean variance

isiZulu 117.10 21.60 203.80 33.70
isiXhosa 122.90 38.30 197.00 36.00

Table 7: Average pitch variance values for male and female

speakers

3.4 Conclusion

We have motivated the need for intonation corpora
in order to model spoken languages, and described a
general approach to the development of such corpora.
For the case of isiZulu and isiXhosa, we have devel-
oped limited corpora, consisting of one male speaker
and one female speaker in each language. By applying
standard tools from the field of pattern recognition –
preprocessing, feature extraction, computation of sta-
tistical tendencies – it is possible to learn much from
such corpora.

Our corpora are intended as a resource for var-
ious tasks, such as the development of models that
relate tone to F0 (which is important for applications
in speech recognition and speech synthesis). We have
investigated a number of global characteristics of F0
that can be inferred from these corpora. In partic-
ular, we have seen that similar rates of pitch decli-
nation are observed in both isiZulu and isiXhosa for
both genders. Also, female pitch values tend to be
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Figure 5: Mean pitch as a function of the time since the

start of an utterance, for isiXhosa

more variable than those of males in one language but
not the other. In the next section we utilise the newly
developed corpora to investigate prosody from a com-
putational perspective.

4 COMPUTATIONAL MODELS OF

PROSODY

Thus far we have collected a corpus of speech by one
native male speaker and one native female speaker
in each of the Nguni languages isiZulu and isiXhosa.
In order to understand how the ‘expected’ intona-
tion relates to the actual measured characteristics, we
have developed statistical methods to build intonation
models for isiZulu and isiXhosa. We choose to build
a neural network classifier for our intonation model.

4.1 Introduction

Our goal was to train an automatic classifier to assign
either an ‘H’ or an ‘L’ to a segment, based on the tone
assigned to the preceding segment and the measured
F0 and intensity values of both the current and the
preceding segments.

Data input into a classifier is required to be sepa-
rable for the classifier to be able to learn and classify
effectively. To determine if the pitch and intensity val-
ues extracted conformed to this expectation, scatter

Original State Next State Designation

High High HH
Low HL

Low High LH
Low LL

Table 8: Segment Tone Combinations
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Figure 6: HL consecutive segments plotted against HH con-

secutive segments using only the difference between consec-

utive pitch values for isiXhosa

plots were produced for the various segment combina-
tions which are described in Table 8.

The average pitch value of each segment was used.
For each combination above, the differences between
consecutive pitch values were calculated and plotted.
Figure 6 displays the results of a ‘HH’ combination
plotted against a ‘HL’ combination and Figure 7 dis-
plays the results of a ‘LL’ combination plotted against
a ‘LH’ combination for the isiXhosa corpus using only
pitch values. Using all possible ‘H’ and ‘L’ combina-
tions would have produced interesting results but was
beyond the scope and purpose of this investigation.

From the graph, we can deduce that there is a rea-
sonable degree of separability between the two combi-
nations based on pitch alone.

Scatter plots were also produced for each segment
combination using the difference between consecutive
pitch values and consecutive intensity values. The
intensity value used for each syllable, was the high-
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Figure 7: LL consecutive segments plotted against LH con-

secutive segments using only the difference between consec-

utive pitch values for isiXhosa

est intensity value extracted for that syllable. Figure
8 displays the results of a ‘HL’ combination plotted
against a ‘HH’ combination and Figure 9 displays the
results of a ‘LL’ combination plotted against a ‘LH’
combination for the isiXhosa corpus using both pitch
and intensity values.

We can conclude from Figure 8 and Figure 9 that
pitch values combined with the intensity values are
also reasonably separable and should work well as in-
put to a classifier.

In Section 4.2 we describe the classifier used in the
experiments. In Section 4.3 we describe the method-
ology implemented to build the intonation model and
the results obtained from the classifier.

4.2 Neural network classifier

A neural network classifier was selected to build our
intonation model. Neural networks have found appli-
cation in a wide variety of problems. These range from
function representation to pattern recognition, which
is what we consider here.

A neural network consists of units (neurons), ar-
ranged in layers, which convert an input vector into
some output. Each unit takes an input, applies a (pos-
sibly nonlinear) function to it and then passes the out-
put on to the next layer. Generally the networks are
defined to be feed-forward: a unit feeds its output to
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Figure 8: HL consecutive segments plotted against HH con-

secutive segments using the pitch and intensity values ex-

tracted for isiXhosa

all the units on the next layer, but there is no feed-
back to the previous layer. Weightings are applied to
the signals passing from one unit to another, and it is
these weightings which are tuned in the training phase
to adapt a neural network to the particular problem
at hand.

Neural networks learn by example. The neural
network gathers representative data, and then invokes
training algorithms to automatically learn the struc-
ture of the data which is essential to building our
model.

4.3 Methodology

For each language, we trained two types of classifiers,
depending on whether the previous state had been an
‘H’ or an ‘L’. These classifiers were trained on training
data as shown in Table 9, and evaluated on a separate
set of test utterances (though from the same pair of
speakers as the training data, since our goal was not
to construct a speaker-independent tone-assignment
algorithm).

The features extracted for each segment as input
into the classifier are:

• starting pitch

• ending pitch

• average pitch
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Figure 9: LL consecutive segments plotted against LH

consecutive segments using the pitch and intensity values

extarcted for isiXhosa

isiZulu

Training Testing

Utterances 100 50
Syllables 2243 808

isiXhosa

Training Testing

Utterances 28 15
Syllables 957 308

Table 9: The number of utterances and syllables used for

the training and testing of the classifiers.

• difference between the starting and ending pitches
values

• starting intensity

• ending intensity

• highest intensity value (within a segment)

• difference between the starting and ending inten-
sity values

Initially we experimented with the number of hid-
den neurons for the neural network to determine which
produced optimal results for our type of input. For the
isiZulu database 16 hidden neurons produced the most
accurate results for both sets of data (pitch and inten-
sity) and for the isiXhosa database 10 hidden neurons
were found to produce the most accurate results.

These values were then used as parameters in our
classifier. With so many features extracted, it was im-
portant to determine which feature/s contributed the
most to improving the accuracy of the classifier. For
the initial experiment, each feature was individually
trained and tested using the classifier. The features
were then ranked according to their accuracy.

The results for the isiZulu and isiXhosa databases
are displayed in Table 10 and Table 11 respectively.
The ‘High’ and ‘Low’ columns indicates the accuracy
of the two types of classifiers trained, depending on
whether the previous state had been an ‘H’ or an ‘L’.
There were a larger number of ‘HL’ segment combina-
tions than ‘HH’ segment combinations (approximately
three times as many). To prevent any bias in the clas-
sification, we boosted the number of ’HH‘ segment
combinations to test if the classifier was learning or
simply guessing. In the latter case the results would
not be better than chance which is 50%.

isiZulu

Feature % High %Low

difference in intensity 70.53 70.96
difference in pitch 68.03 70.96
average pitch 63.01 70.96
ending pitch 57.99 68.71
ending intensity 57.99 68.30
starting intensity 57.99 68.10
starting pitch 56.40 67.89
highest intensity 56.40 58.90

Table 10: Classifier results for each individual feature for

the isiZulu database

isiXhosa

Feature %High %Low

ending pitch 85.25 83.00
starting intensity 83.61 83.00
starting pitch 83.60 83.23
difference in pitch 83.60 82.40
ending intensity 82.47 82.19
average pitch 81.97 81.78
difference intensity 73.49 80.23
highest intensity 70.49 74.03

Table 11: Classifier results for each individual feature for

the isiXhosa database

Individually each feature does produce good re-
sults using the classifier. We then combined the first
two features for each database to train and test on
the classifier to determine if the combination would
produce better results. Thereafter we added each fea-
ture on the list to the previous combination and so
forth, finally using all eight features. The results are
displayed for isiZulu in Table 12 and for isiXhosa in
Table 13.

As shown in Table 14, we compared the classifica-
tion accuracies achievable with the F0-derived features
to those of the amplitude derived features.



38 Reviewed Article — SACJ, No. 38., 2007

isiZulu

Combination %High %Low

(1) difference in pitch + intensity 71.47 74.23
(2) (1) + average pitch 73.35 75.87
(3) (2) + end pitch 73.67 77.3
(4) (3) + end intensity 75.24 77.71
(5) (4) + start intensity 75.64 77.71
(6) (5) + start pitch 75.64 78.21
(7) All features 77.74 78.32

Table 12: Classifier results for combination of features for

the isiZulu database

isiXhosa

Combination %High %Low

(1) end pitch + start intensity 85.25 84.62
(2) (1) + start pitch 85.25 86.23
(3) (2) + difference in pitch 85.7 86.23
(4) (3) + end intensity 85.7 86.23
(5) (4) + average pitch 85.7 86.62
(6) (5) + difference in intensity 81.97 86.23
(7) All features 86.89 86.32

Table 13: Classifier results for combination of features for

the isiXhosa database

We were able to construct reasonably accurate
classifiers for all four subproblems (i.e. those de-
signed for ‘H’ and ‘L’ preceding states, respectively, in
both languages), despite the fact that the transcribers
had produced their predictions without access to any
acoustic data. This suggests that such surface-form
tone assignments can be made with a fair amount of
reliability.

4.4 Conclusion

From the intonation model built we can deduce that
the F0-based features and the amplitude-based fea-
tures produce comparable accuracy. This lends in-
dependent support to the hypothesis advanced in [5]
regarding the substantial role of amplitude/intensity
in the perception of tone – based on our analysis, am-
plitude may even be somewhat more important than
F0 in this determination. Both F0 and amplitude pro-
duce good results and a combination of the two fea-
tures produces only a slight improvement on the in-
dividual results. One can therefore conclude that the
speakers tend to encode the same tonal information in
both physical aspects, in a consistent manner.

A variety of factors may be responsible for the
relatively better results obtained for isiXhosa in com-
parison with isiZulu, ranging from more significant di-
alectal differences between transcribers and speakers
in isiZulu, through personal idiosyncrasies, to inher-
ent languages differences. More data would be needed
to distinguish among these possibilities.

The neural network classifier, which uses eight
extracted features, produces good prediction results.
The classification model is also robust and can easily
learn from the training data but the eight features also

isiZulu
% High %Low

Pitch 67.71 74.44
Intensity 71.47 74.03

isiXhosa
%High %Low

Pitch 83.61 87.45
Intensity 85.25 83.40

Table 14: Accuracy obtained when classifying the tone of

a syllable based on features derived from F0, intensity, for

preceding High and Low tones, respectively.

need to be extracted. We have demonstrated that it
is possible to build a fairly good intonation model for
these languages using a classifier.

5 CONCLUSION

5.1 Contribution

The final aim of this paper was to build a model for
the relationship between tone and measurables such
as pitch and amplitude, for isiZulu and isiXhosa as
representatives of the Nguni languages. For this to
be achieved, there were a number of other experi-
ments that initially needed to be completed. Firstly,
we had to select an an appropriate pitch tracking al-
gorithm for these languages, which to our knowledge
was not done before. The selected algorithm needed
to cater for the unique characteristics of these lan-
guages. Praat’s pitch tracking algorithm which uses
a modified version of the autocorrelation method pro-
duced the best results in our experiments for these
languages.

Secondly, we had to develop an intonation corpus
for isiZulu and isiXhosa. Praat’s pitch tracking algo-
rithm was then used to extract relevant features from
the spoken utterances of isiZulu and isiXhosa. These
features included fundamental frequency, amplitude
and duration, which were used to build intonation cor-
pora for these languages.

Thirdly, we wanted to obtain a better understand-
ing of the relationship between abstract tone and
physical measurables. From our experiments we con-
cluded that pitch and intensity play comparable roles
in the prediction of tone for a segment. A combination
of both features does provide a slight improvement in
the prediction results for both approaches. The neural
network classifier produced fairly good prediction re-
sults for both languages, showing that a certain degree
of non-linearity appears in the relationship between
these quantities and tone.

5.2 Further application and future work

We would like to incorporate the intonation model
built by the neural network classifier into a text to
speech system and speech recognition system for both
languages. We can then investigate if including this
model into such systems makes a distinguishable dif-
ference to the quality of the system. We would also
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like to continue with our investigations in various ways
which include:

• using larger speaker groups

• analysing different dialects within these two lan-
guages

• using other languages in the Bantu family

Finally, we have found that pitch and amplitude
play comparable roles in determining abstract tone; it
would be interesting to investigate whether duration
is also involved in this relationship.
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