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The challenges of ignorance

Etienne Barnard

Human Language Technologies Research Group
Meraka Institute, CSIR, Pretoria, South Africa

ebarnardecsir.co.za

Abstract

We have previously argued that the infamous “No Free Lunch”
theorem for supervised learning is a paradoxical result of a mis-
leading choice of prior probabilities. Here, we provide more
analysis of the dangers of uniform densities as ignorance mod-
els, and point out the need for a framework that allows for prior
probabilities to be constructed in a more principled fashion,
Such a framework is proposed for the task of supervised learn-
ing, based on the trend of the Bayes error as a function of the
number of features employed. Experimental measurements on
a number of standard classification tasks confirm the represen-
tational utility of the proposed approach.

1. The No Free Lunch theorem in Pattern
Recognition

The *“No Free Lunch” (NFL) theorem for supervised learning
[1, 2] is one of the most controversial results in all of paitern
recognition. Taken at face value, the NFL theorem implies that
learning can only succeed if the learning algorithm happens to
make the correct assumption about the problem being solved.
That is, “unless one can establish priori, before seeing any of
the data d, that the [function] fthat generated dis one of the ones
for which one’s favourite algorithm performs better than other
algorithms, one has no assurances that that algorithm performs
any better than the algorithm of purely random guessing.” [3]
Or, o quote a popular text on pattern recognition [4]: “there
are no context- or problem-independent reasons to favor one
learning or classification method over another.”

Now, to the regular user of pattemn-recognition algorithms,
these statements are quite unexpected: we certainly tend to pre-
fer, say, support vector machines over naive Bayesian classi-
fiers, and both of those algorithms over random guessing! This
conflict between theory and practice has prompted a number
of responses [5, 6, 7, 8], including a recent analysis [9] which
characterises the NFL theorem as a logical paradox - that is,
as a counter-intuitive result thal is correctly proved from ap-
parently incontestable assumptions. In particular, that paper
demonstrates that the uniform prior used in the proof of the
theorem has a number of unpalatable consequences besides the
NFL theorem. However, [9] does not propose alternative prior
distributions that can be used in place of the uniform prior; such
distributions would be very useful for a number of theoretical
and practical reasons (e.g, the abstract comparison of different
learning algorithms or the generation of “representative” data
sets). In the current paper, we investigate some of the properties
of such a “generic” prior for pattern recognition, and demon-
strate a descriptive framework that may be useful in that regard.

A number of researchers have attempted to provide de-
scriptions of the systematic regularities that appear in pattern-
recognition problems. De Villiers and Barnard [10] as well

as Van Der Walt and Barmnard [11] required a systematic way
to generate “typical” pattern-recognition problems, and pro-
posed meta-density functions from which parameters of Gaus-
sian mixtures could be drawn for this purpose. Brazdil, Guma
and Henery [12] and Ho and Basu [13] introduced several mea-
sures that can be used to characterise classification problems,
primarily to understand performance of different classification
algorithms. Below, we add to this collection of characterisations
by focusing on characteristics that are shown to be important
from an analysis of the NFL theorem.

Our main aim is to propose an expression of the generic
prior in terms of the classification power inherent in succes-
sively more encompassing subspaces of feature space. In or-
der to motivate this proposal, we briefly introduce the Extended
Bayesian Framework (EBF), which makes it possible to speak
about these concepts with precision (Section 2), and review the
factors that indicate the unacceptability of the uniform prior
used to prove the NFL theorem. In Section 3, these insights
are used as basis for the development of a theoretical tool that
can be used to describe pattern-recognition problems at an ap-
propriate level of abstraction. Section 4 then applies this tool
to a number of standard pattern-recognition benchmarks, and in
Section 5 we relate these conceptual and practical results to the
overall goal of establishing a suitable functional prior,

2. NFL: statement and perspectives

The EBF as defined in [2] extends convenlional probability the-
ory by treating the hypothesis that is output by a learning al-
gorithm as a random variable . In addition to the probabilistic
relationships between the training data d and the function f that
represents the inpur-output relationships, one is led to also con-
sider such relationships between A and d, and the generalisation
error is expressed precisely by conditioning the off-training set
error on all three these variables (A, f and d). To make practi-
cal progress, one generally assumes that the distributions of the
hypothesised and underlying functions (4 and [/, respectively)
are independent given the data d; this allows the expected er-
ror rate given a training set to be expressed as a non-Euclidean
inner product between the distributions of these functions, con-
ditioned on the data. NFL then follows straightforwardly by
choosing a particular (uniform) prior for the functions f. (The
original papers on NFL also contain an alternative perspective
to NFL which does not rely on the adoption of this prior - see
[2]. We retumn Lo this issue in Section 5 below.)

The manner in which the EBF leads to NFL can be grasped
straightforwardly by considering a deterministic two-class clas-
sification task defined over n, binary variables ;. There are 2"
combinations of these variables, and therefore 22" determinis-
tic functions that can be defined by making all possible assign-
ments of classes to these combinations. Wolpert suggests that



each of these functions should be given the same prior proba-
bility in the absence of further information.

In this context, an inductive learning algorithm is a func-
tion that takes a subset of k training samples (that is, combina-
tions of variables along with their classification) and produces
hypotheses for the classification of the remaining 2™ — k vari-
able combinations. Now consider the behaviour of two different
learning algorithms ¢ and e, and the prediction that they make
for an unseen (test) sample z. For each possible target func-
tion in which ¢; outperforms c,, there is a corresponding target
function for which the converse is true. Hence, since all target
functions have the same prior probability, the expected values
for the accuracies of the two classification algorithms are ex-
actly equal. Since this is true for any z, one is led to conclude
that any two such learning algorithms are equivalent if one does
not make additional assumptions about the distribution of the
target functions, which is the NFL theorem,

In [9] it is shown that the “uninformative” prior at the basis
of this proof is not as innocuous as it seems. In fact, the uniform
prior is shown to represent an extreme lack of determination:
any amount of training data is expected to produce a negligi-
ble amount of information about the input-output function to be
learnt. That is, under this assumplion, any accurate prediction
of off-training set data is extremely unlikely (with probability
decreasing exponentially in the size of the test set). It is also
shown that this behaviour results from the extreme symmetry
that the uniform prior imposes on all variables, and on all val-
ues of those variables. Any group of variables can be permuted
with any other group of variables on an arbitrary training or test
sample without affecting any likelihoods, and the value of any
binary variable can similarly be inverted arbitrarily - thus en-
tirely destroying the concept of identity for any variable.

In real pattern-recognition tasks, on the other hand, vari-
ables have distinct characteristics which are responsible for the
properties of feature spaces that we take for granted. For ex-
ample, different classes have distinct class-conditional densities
as a function over the different variables; these variables corre-
late with one another 10 a grealer or lesser extent, and are also
in various degrees able to separate the various classes from one
another. Each of these characteristics implies systematic reg-
ularities in any real pattern-recognition problem, whereas the
uniform functional density assigns equal weight to regular and
to highly irregular functions.

We are therefore lead to believe that the uniform prior does
not serve well as an expression of ignorance, and it is interesting
to note that this same observation has been made in a number
of different contexts,

e In one version of De Mere’s paradox, the famous gam-
bler is said to argue that three dice should with equal
likelihoods sum to either 11 or 12, since both sums re-
sult from 6 different combinations of single-die values
[14]. However, empirical observation had shown him
that a sum of 11 was in fact notably more frequent. Pas-
cal pointed out that this assumption of uniformity over
combinations is fallacious it is, in fact, permutations that
need to be assigned equal likelihoods, thus explaining
the empirical observations. (Note, also, that De Mere
was not tempted to simply assign equal likelihoods to
all sum values though that could also be motivated as a
“uniform assumption™!)

e Betrand’s paradox asks us to compare the length of a ran-
domly chosen chord of a circle with the length of a side
of an equilateral triangle inscribed in the circle [15]. One

way to answer this question is to assume that a random
chord is obtained by choosing two points on the circum-
ference of the circle with uniform probabilities, whereas
another is to assume that the chord is chosen to intersect
its orthogenal radius with uniform probability along its
length, These options are easily shown to answer our
question with values 1/3 and 1/2, respeclively yet both
model ignorance with uniform distributions. In fact, Be-
trand shows yet another reasonable construction which
leads to an answer of 1/4.

These examples demonstrate that the assignment of equal prob-
abilities to all outcomes is not in general a valid way to model
ignorance in a probabilistic fashion, In fact, it is not even a
well-defined prescription, since a uniform distribution gener-
ally becomes non-uniform under a non-linear transformation of
variables, In each case, the derivation of a suitable prior re-
quires that the actual processes from which the measurements
are derived be understood in sufficient detail for plausible as-
sumptions to be made. We now tum to a proposal for such an
analysis in pattern recognition.

3. Determination curves

From the discussion above, it is clear that a realistic functional
prior should reflect the fact that feature variables are not arbi-
trary collections of numbers. One way to do so would be to
express the prior in terms of geometric smoothness measures
in feature space: functions with unrealistically low smooth-
ness could then be given appropriately small prior probabili-
ties. However, any specific set of smoothness measures chosen
amounts to a parametric assumption about the data dis tribution,
which we wish to avoid in this general setting. Therefore, we
choose to focus on the input-output relationship between fea-
tures and classes, rather than the geometry of feature space it-
self.

In particular, we ask how effective various subsets are in
distinguishing the different classes from one another realis-
tic pattern-recognition feature sets invariably have the property
that small subsets of features have limited discriminatory power,
with increasingly large sets leading to improved classification
up to some limit (corresponding to the Bayes error of that over-
all feature set). The determination curve of a classification prob-
lem in a given D-dimensional feature space, then, is a sequence
of error rates as a function of d < D: for each d, it equals the
lowest Bayes error rate for any d-dimensional subspace of the
full feature space.

The determination curve has a number of properties that re-
veal important characteristics of the classification task under in-
vestigation: its initial value (for d = 1) reflects the discrimina-
tive power of the single most informalive feature, and its slope is
ameasure of the incremental benefit of features added to the set
of active features. In principle, this descriptor also has a num-
ber of problem-independent characteristics: it is not affected by
a reparametrisation of the feature space, and is monotonically
non-increasing. (Since each subspace for dy < dy is included in
the subspace for ds, the Bayes error rate cannot increase when d
increases.) For a practical estimator of the Bayes error, neither
of these statements may be strictly true, but they will remain as
tendencies for reasonable estimators, as we see below.

For our current purposes, we do not consider how the curve
changes with the size of the training set, though that is obviously
also a rich source of information.



4. Experimental determination curves

In order to investigate the behaviour of determination curves
on practical problems, we have computed approximate curves
for a number of standard problems from the UC] database [16].
These problems are summarised in Table 1. Two approxima-
tions were required to ensure computational feasibility:

® As an approximation of the Bayes error rate, we con-
sistently use the 1-nearest neighbour error estimate ob-
tained with leave-one-out cross validation.

o To avoid the combinalorial explosion that would result
if all d-dimensional subspaces of D dimensional space
were evaluated, we perform sequential forward selec-
tion: we first select the single feature with the lowest
Bayes error rate, and then successively add the feature
that results in the lowest (estimated) error rate to the set
of selected features.

Although both approximations are known to over-estimate the
Bayes error rate systematically, they are sufficiently accurate to
allow us to deduce general trends.

Table I: Summary of classification problems used in experimen-
tal investigation

Problem Number of | Number of | Number of
L samples dimensions classes
Iris 150 4 3
Vowel-context 990 13 15
Yeast 800 8 10
Wdbc 569 30 2

The determination curve for the widely-used iris data set is
shown al the top of Fig. 1. This is a typical trend for an “easy”
problem: the asymptotic error rate is close to zero, and only a
small number of features (two, in this case) are required to attain
that level of performance, For the vowel-context set in Fig. 1,
the asymplotic error rate is even lower; however, the number of
features required to reach that level of performance is somewhat
larger. The other two problems are substantially harder, with
asymptolic error rates of approximately 20% and 45% for the
Yyeast and wdbc data sets, respectively. However, they differ in
the sense that each additional feature (except the last) adds to the
accuracy of yeast, whereas wdbe reaches asymptotic accuracy
with fewer than half of all the features.

These trends are indicative of what we expect for classifi-
cation problems: a smooth curve that descends from the best
single-feature Bayes error to the asymptotic Bayes rate, and
then either stays at that value, or gradually increases if the clas-
sifier is not able to treat additional features appropriately. Such
regularities capture what we mean by a “feature” or "variable”
in pattern recognition namely, that it (to a greater or lesser de-
gree) provides information relevant to the classification task.
Therefore, the determination curves provide a way to charac-
terise the expected behaviour of a classification task in realis-
tic terms, in contrast to the uniform functional prior described
above. We therefore propose that this is a sensible basis for the
construction of functional priors, with the prior probability of
a given hypothesis function being determined by the likelihood
of the corresponding determination curve.
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5. Summary and outlook

We have motivated an analytic tool that can serve as an alter-
native basis for the construction of prior probabilities in the
Extended Bayes Framework (or similar environments, where
one wishes to assign likelihoods to entire classification prob-
lems). Although this tool is not intuitively straightforward, is
does manage to describe some important regularities of classi-
fication problems without the need for an explicit geometrical
parametrisation,

As mentioned in Section 2, the original derivation of NFL
treated the uniform prior P(f) as a tool for calculating expec-
tation values that reflect the intuition of ignorance [1]. That
research also suggests that this intuition could be captured in
other ways for example, by uniformly averaging over choices
for P(f). Although we suspect that arguments similar to those
offered here will apply to that perspective as well, it is impor-
tant to note that our discussion has been focused on the specific
assumption for P(f).

For practical applications, one would need to parametrise
the determination curve, and assign a probability density func-
tion over the space of allowed parameters. This process is sim-
plified by the smoothness and monotonicity of this curve: one
may even be templed to assign a uniform density over an ac-
ceptable range of its curvature, initial values and asymptotic
values. However, as pointed out in Section 2, care should be
exercised when ignorance is modelled with uniform distribu-
tions! A more detailed generic model of data generation pro-
cesses would probably be required to make these choices in a
principled way.

By expressing our problem characteristics in terms of
Bayes error rates, we were able Lo avoid choosing a particular
parametrisation of feature space, This is usefil for theoretical
analysis, but prevents us from using this tool directly to compare
classifiers with one another. It would therefore be practically
important to investigate the relationship between this descrip-
tion and descriptors that are more directly tied to the geomelry
of feature space.
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