
Creating Three-Dimensional Thermal Maps
Mathew Price

Cogency cc
Cape Town

Email: mathew@cogency.co.za

Jeremy Green
CSIR

Centre for Mining Innovation
Johannesburg

Email: jgreen@csir.co.za

John Dickens
CSIR

Centre for Mining Innovation
Johannesburg

Email: jdickens@csir.co.za

Abstract—A method for generating 3D maps of mines with
thermal imaging texture from a robotic platform is presented.
The objective is to use these models to generate risk maps that
can be used to assess mine safety. Analysis will take place offline,
but the data collection platform will be autonomous.

Our registration method is based on aligning 3D descrip-
tors that are extracted from range images and uses ICP for
refinement. The descriptors encode the distribution of radial
distances in the vicinity of keypoints, and enable alignment of
non-sequential scans that are visibly different. Thermal texture
is added to the registered point cloud using a once-off calibration
between the 3D and thermal cameras.

Two alternate visualisation schemes are discussed, and results
are shown for a real mine stope.

I. INTRODUCTION

The CSIR is pursuing the development of an Underground
Autonomous Mine Safety Platform (UAMSP) [1] that will
provide insight into aspects of mine safety. In particular, the
vehicle will collect thermal and electronic sounding data that
can be used to assess hanging wall stability [2], thereby
indicating the risk of potential rock falls — a significant cause
of injury and death in mines.

One of the challenges involves building a 3D map of the
mine stope and overlaying thermal measurements in order to
generate a risk map. A framework for registering 3D and
thermal data in order to accomplish this task is presented.

A. Background

Previous studies in South African hard rock mines [3], [4],
[5] have identified a correlation between loose rock and its
surface temperature gradient. Blasting often results in the for-
mation of cracks that separate portions of rock which interrupts
the heat flow and causes preferential cooling in a localised
area. The effect can be detected by long-wave infrared cameras
(thermal imaging) and used to identify candidate areas that are
unsafe. Electronic sounding, which requires contact with the
surface, can then target these candidate areas to provide more
detailed analyses.

The fact that thermal differences can be caused by a number
of phenomena, such as surface angle and material composition,
motivated a multi-sensor approach. The incorporation of both
3D and thermal imaging cameras enables thermal risk maps to
correctly account for surface geometry and provides a mecha-
nism for mapping the environment. (An important component
for assisting robot navigation and facilitating visualisation.)

B. Approach

Our process for generating a thermal map is as follows:
Given a sequence of range images (where pixels encode
depth), each scan (image) is registered to a common reference
frame. Once aligned, the points are projected into the corre-
sponding thermal images, thereby associating a temperature
measurement with each 3D point. Finally, the map is textured
with the temperatures and rendered for visualisation.

Registration is tackled in two steps: 3D descriptors are used
to establish an initial solution, and ICP (iterative closest point)
[6] is used for refinement. In addition, we follow a similar
approach to [7] where keyframes are used to limit model
complexity. Using descriptors allows detection and alignment
of arbitrary partially matching scans even when there is a
substantial difference in relative camera pose. This method
lends itself well to other issues such as loop-closure since
constraints can be established when portions of the map are
revisited.

The projective mapping between the 3D and thermal cam-
eras is determined using a calibration step that is applied once-
off. This is possible because the cameras are rigidly mounted
together.

C. Data Acquisition

The availability of low-cost 3D cameras, such as the Mi-
crosoft Kinect, has generated a lot of recent interest, because
the acquisition of 3D data is now more accessible to the aver-
age user. The Kinect, which is designed for real-time human
motion capture for games, comprises a colour camera and an
infrared camera-projector pair that is able to produce calibrated
range data. In our experiments, we have used the Kinect depth
camera to acquire a number of 3D underground scans, and
found that it works well in the unlit mining environment.
Our test rig (Figure 1) also includes a SR4000 time-of-flight
(TOF) camera and a FLIR A300 thermal imaging camera. (The
inclusion of two 3D cameras is experimental, and ultimately
only one will be retained.)

II. SCAN REGISTRATION

Estimating the relative alignment between scans (essentially,
the camera’s ego-motion) is a crucial component for mapping.
Imagine that each scan is a piece of a 3D puzzle. To create the
map we need to orient each piece (3D rotation) and place it
(3D translation) so that it correctly connects with neighbouring
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Fig. 1. Capture Setup: Microsoft Kinect (top); Mesa SR4000 (left); FLIR
A300 (right).

pieces. It is not difficult to see that misaligning just one piece
will result in an inaccurate map. Moreover, if we base the
poses of new pieces on the current map, one previous misalign-
ment will cause a number of subsequent errors. Therefore, in
order to create an accurate map we need: a method to choose
the pose for each scan (alignment); and a way to ensure that
the collective set of poses is globally consistent. The latter
is often referred to as SLAM (Simultaneous Localisation and
Mapping), and is an active area of research.

A. ICP Alignment

An efficient way of aligning two point sets is to use iterative
closest point (ICP) [6]. The vanilla method is based on a
two-step procedure in which points are first associated with
their nearest neighbours in the opposite set, and a Euclidean
transform is computed that minimises the error between the
pairs. The procedure is repeated until the transformation
converges, but this is only guaranteed in the noiseless case.

In the case of robot mapping, an additional issue is the
motion of the scanner which produces partially matching
scans. To cope, a distance threshold is used to omit pairings
with large separation, so that only common structure drives the
alignment. However, the trade-off is that ICP will only succeed
when the relative difference between scans is small. Thus, a
standard approach is to use ICP to align successive scans that
are temporally close. (I.e. It is assumed that the robot moves
slow enough such that consecutive scans are similar.)

An ICP-only approach has the advantage of speed (with the
use of various optimisations [8]), but suffers from a degenerate
global solution due to the build up of accumulated errors.
Another problem is that it is difficult to flag bad alignments,
since it is possible to obtain a low error for partially matching
scans even when the transformation is incorrect. This makes
the process sensitive to outliers. For this reason, we use a
hybrid approach where an initial transformation is computed
with 3D descriptors, and ICP is used for refinement.

B. Visual SLAM

Since our data currently comprises range and thermal im-
ages, it is not possible to use odometry and inertial measure-
ments to compensate for ICP errors. Therefore, an alternative
method for ensuring robust registration was sought.

Using invariant feature methods [9] is a popular SLAM
technique for robots equipped with colour cameras. Efficient
methods such as SIFT [10] and SURF [11] enable robust
detection and matching of interest points in images. By
targeting point-like features, these keypoints can be detected
across substantial differences in viewing angle, and use the
local pixel neighbourhood to create a fingerprint for matching.
More recently, this technique has been extended to use both
colour and depth cameras [7]. This enables 3D localisation of
the visual features and less constraints on the pose estimation
process.

While visible-light features are not ideal for mines, due to
illumination issues, we have had success in registering thermal
images with SURF. However, the existence of sufficient ther-
mal features is very unpredictable, leading to the conclusion
that this can only be used as an assistive measure.

C. 3D Descriptors

An alternative to blindly aligning point clouds with ICP
is to find characteristic structures in the 3D data, and use
this to establish a canonical reference frame. This is what 3D
descriptors are designed to do, and there are many uses: object
recognition, 3D content retrieval, and alignment, to name a
few. Unsurprisingly, there are many commonalities with 2D
invariant feature methods.

Good descriptors should be: fast to compute; easy to com-
pare; invariant under rotation and scale; and should provide
good discrimination. (Achieving fast computation is often
difficult for 3D methods.) For 3D data, scale invariance is
implicit since most 3D devices are calibrated.

Two popular examples of 3D descriptors are 3D Shape
Contexts [12] and Spin Images [13]. Both of these methods
are based on generating rotation invariant histograms around
interest points that can be easily compared. 3D Shape Contexts
use a spherical neighbourhood with logarithmic bin spacing
in the radial direction, which allows descriptors to have a
large sphere of influence while ensuring that closer features
are given more weight. Spin Images are similar, but use a
linear cylindrical coordinate frame. However, the methods are
computationally intensive and rotational invariance is achieved
by aligning the local reference frame to the surface normal,
which results in the descriptor being very sensitive to small
changes in the estimated normal. Since these methods are often
applied to high-resolution scans or synthetic data this is not
problematic. This is not the case for noisy scanners, such as
the Kinect or SR4000 time-of-flight camera, used here.

Aligning the descriptor’s reference frame to the local surface
normal removes 2 degrees of freedom (i.e. planar alignment
with unknown azimuth). Since it is difficult to uniquely specify
the remaining rotation about the normal (with respect to the
descriptor), a standard tactic is to do a 1D search to determine
the best correspondence during matching. We dislike this for
computational reasons, but are especially wary of the reliance
on the local surface normal which has proved to be noisy in
our data. This seems to be more problematic for the time-
of-flight camera data than for the Kinect, but both systems
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perform badly near sharp edges.
While the aforementioned methods are good descriptors,

they do not specify a method for generating interest points.
This is important since the penalty of higher computation
needs to be mitigated by computing less features — at least
when applied to online scan registration. Applying SIFT or
SURF directly to range images does not work since pixels
encode relative distances to the camera centre which changes
depending on where the camera is located. Therefore, some
reformulation is necessary. In [14], Lo and Siebert use the
shape index (the ratio of principal curvatures) to locate key-
points in scale-space. For descriptors, they use a histogram
of local surface shapes, e.g. saddle, trough, ridge, dome. A
more direct extension to 2D SIFT is presented by Gibbins
[15] where he computes the 3D Hessian and uses a variation
of Spin Images as descriptors.

Once again, both these extensions are heavily dependent on
surface curvature. (We are especially sceptical of the second
approach where results were only conducted on simulated
data.) Furthermore, since 2D SURF already pushes processing
requirements, we felt it unlikely that the 3D extensions are
suited for online usage. Since we only require the ability to
match scans that are likely to differ by small amount, we opted
for a simpler descriptor.

III. REGISTRATION METHOD

Drawing on insight from [7] and [16], our registration
method uses 3D descriptors to establish an initial alignment
between scans, after which ICP is used to refine the solution.
Other ideas that were adopted include: downsampling the
Kinect range images by 8 (Interestingly, this still provides
enough detail for ICP.); and using keyframing to reduce the
complexity of the model.

Our variation of keyframing differs slightly from suggested
approaches in that we also use it as a means to limit ac-
cumulated error. (This is because not all our data sets com-
prise closed loops.) New keyframes are initialised whenever
the number of descriptor matches falls below a threshold.
Otherwise, descriptors are used to establish a transform to
the last keyframe and then ICP is applied for optimisation.
This approach, illustrated in Figure 2, also allows us to skip
frames to increase processing speed, since the full sequence
of range images is often not required. The set of keyframes
thus provides a light-weight representation.

The following is a breakdown of the registration procedure:
1) Assign first scan as keyframe Fk and set initial keyframe

pose to Mk = I
2) Apply descriptor alignment (DA) between Fi and Fk to

obtain relative pose Mi

3) If DA succeeds:
a) Use Mi as starting point for ICP and obtain refined

pose Micp (relative to initial pose)
b) Store global pose MkMicpMi for Fi

4) Else:
a) Use above method to register Fi to Fi−1 and set

as new keyframe

Fig. 2. Keyframing: Sequential frames are matched against the last keyframe.
New keyframes are initialised when the number of descriptor matches falls
below a threshold. The sequence of keyframes forms an efficient, light-weight
representation of the model.

b) Terminate on end of sequence or failure to create
a new keyframe

(where Mx represents a 4x4 rigid body transform, and global
poses are specified in the reference frame of the first
keyframe.)

Descriptor alignment is based on a novel 3D descriptor,
namely the distance signature (dSig), which is described
shortly.

A. Keypoint Selection

Prior to generating descriptors, we must first choose suitable
keypoints.

Methods such as SURF and SIFT construct a scale-space
using the input images and choose points that can be con-
sistently detected. We found that this process is relatively
time consuming (OpenCV SURF takes around 1 second on
a 640x480 image), since full resolution images are required
for best subpixel localisation. Even then, scanner noise causes
poor repeatability of keypoints. Similar issues are encountered
with the 3D extension methods discussed earlier, but we
continue to explore options.

For now, we leverage the richness of the 3D descriptors
and adopt a uniform sampling strategy. Uniform sampling
effectively ignores the localisation problem, but suffers from
reduced precision since keypoints do not consistently target
features at a subpixel level. This also affects repeatability since
there are no guarantees that the same features are sampled
in subsequent frames. However, the reduced processing time
makes up for this by enabling a dense field of descriptors to
be captured, ensuring that most of the scene is characterised.
Our current naive implementation takes approximately 70ms
to extract 1500 features from a downsampled frame.

B. The Distance Signature (dSig)

A signature [17] is an efficient representation of a dis-
tribution in which bins are selected in order to give more
descriptive weight to denser parts of the distribution. This
reduces quantisation error that plagues histogram methods, and
provides good descriptive power. In the 1D case, a signature
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can be thought of as a histogram with bins of equal count
instead of equal width. It can be easily computed by dividing
a sorted list of data among a number of bins and computing
the mean of each bin. The result is a sampled version of the
cumulative distribution function which has a useful property:
The area between two 1D signatures (i.e. the L1 norm) is
equivalent to the Earth Mover’s Distance (EMD). EMD has
been shown to provide good performance as a similarity
measure, and has been used extensively in applications such
as image-based retrieval [17].

Consequentially, our descriptors are signatures that encode
the distribution of distances within a specified radius of
a keypoint. This offers: fast computation, invariance under
rotation, and resistance against sensor noise. However, the lack
of angular information does reduce descriptive power.

For efficiency, our implementation operates directly on the
downsampled range images. A processing window is selected
around each keypoint where the width of the window (in
pixels) is selected so that its 3D width corresponds with the
radius of interest:

w2D =
f

d
w3D, (1)

where f is the effective focal length, d is the depth from the
camera, and w is the width of the window. This provides a fast
means of obtaining candidate neighbours within the sphere-of-
influence directly from the image. Distances within the radial
threshold are used to construct the signature, as illustrated in
Figure 3. Generally, more bins results in a higher descriptor

Fig. 3. Generating Distance Signatures. Top-left: Range image with uniform
sampling grid and search window for one of the keypoints. Top-right:
Signatures generated for each keypoint. Bottom: Illustration of how the 2D
search window corresponds to the keypoint’s sphere-of-interest. A radius of
80cm is used.

resolution. Currently, we use signatures with 64 bins.

C. Pose Estimation

Given a set of dSig features for two range images, we
use RANSAC (Random Sample Consensus) to determine their
relative pose. First, matching features are collected using the
EMD between signatures. A greedy approach is employed
whereby matches are assigned on a lowest-EMD basis.

Sets of 3 matching keypoints are repeatedly sampled and a
Euclidean transform that aligns them is computed. The can-
didate solution is used to transform the remaining keypoints
and the number of inliers (matching keypoints that are within
a specified tolerance) is counted. The solution that results in
the maximum number of inliers is selected. We do not include
a final optimisation step, but instead apply ICP on the original
downsampled point clouds to refine the RANSAC pose. This
compensates for the poor keypoint localisation.

An example of estimating the pose between two non-
sequential range images (separated by 16 degrees) is shown in
Figure 4. RANSAC is applied to both sets of signatures and

Fig. 4. Pose alignment using dSig and RANSAC. Top images: Non-sequential
range images with a relative viewing angle of 16 degrees. Green markers
show RANSAC inliers. Bottom-left: Synthetic range image generated from the
registered model (i.e. 3D points from both images). Bottom-right: 3D view of
registered model and showing camera poses.

inliers (25) are shown in green. The lower image shows the
quality of alignment by synthesising a range image using the
combined model, while the 3D plot shows the aligned point
clouds.

IV. THERMAL TEXTURE

The main difficulty in associating thermal data with the
3D model is determining the relative transform between the
cameras. This is straightforward for stereo colour cameras, but
3D and thermal cameras do not share a common spectrum.
Therefore, our approach involves tracking a known object
whose structure can be found in range images, but also has
a thermal signature. Our calibration object consists of a ball
mounted on a stick, which can be easily segmented using circle
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detection. Rubbing the ball (or dipping it in heated water)
is sufficient to make the ball visible to the thermal imaging
camera.

Once a calibration has been determined, points from the 3D
model are projected into each thermal image and their temper-
atures are computed using bilinear interpolation. To ensure that
occluded surfaces are correctly textured, we enforce visibility
checking by only retaining temperatures that correspond to the
thermal image where the camera is closest.

V. VISUALISATION

Visualisation is an important output of the system because
offline analysis will be conducted. We use two methods
depending on the application.

A. Viewpoint Mesh
For instances where the area of interest is limited and higher

detail is required we use viewpoint mesh projection. This
involves projecting the registered model to a planar view and
rendering a synthetic range image. Pixel connectivity in the
artificial view is used to specify a triangular mesh. The use
of a projected view means that meshes can only be generated
for a specified view of the model. A more general model can
be generated using surfels.

B. Surfels
A problem with manifold meshes is that adjustments are

complicated. This is because the connectivity must be manip-
ulated while ensuring that the topology is not compromised.
(E.g. faces should not intersect.) Point clouds, on the other
hand, are much easier to update, but are difficult to visualise
since everything becomes jumbled (due to the interference of
background points).

Surfels [18], or surface elements, offer a compromise by
combining properties from both representations. The idea
is to represent the model as a point cloud, but with extra
attributes for each point: surface normal, radius, and colour.
This produces a sparse representation that can be rendered
in a mesh-like manner without the hassle of interconnectivity
— essentially, polygon-soup. Adopting strategies from [19]
and [7], we use circular surfels. For efficiency, each circle
is approximated by a hexagon that is constructed from four
triangles as shown in Figure 5.

Fig. 5. Left: A single circular surfel composed of 4 triangles. Right: A
hemisphere represented by surfels derived from points and normals.

Surfels are ideal for building incremental models since
each scan can be applied in an iterative manner. The model
is adapted using a three step formula: surfel update, surfel
addition, and surfel removal. For brevity we refer the interested
reader to the cited papers for further details.

VI. RESULTS

We have applied our method to a number of real data sets of
both indoor and underground environments. (Videos of some
results are available on YouTube [20].) Qualitative assessment
is used since ground truth is not available and gross errors
can be easily identified. However, it is planned to use recently
acquired laser-scanner data for validation in future.

Figure 6 shows thermal map outputs using viewpoint projec-
tion for a data set captured inside a mine stope at the Bafokeng
Rasimone Platinum Mine (BRPM). The data was captured
approximately 12 hours after blasting at a depth of 250 metres.
The test rig is mounted on a tripod and manipulated by hand,

Fig. 6. Thermal map of a mine stope. Top: Depth map of rendered view;
Middle: Combined thermal texture for model (radiometric scale); Bottom:
Textured 3D mesh. Registration uses downsampled points, but the output is
generated using the full resolution range data.

resulting in a pan-tilt motion. After registration, the subset
of keyframes is used to generate a combined model and the
thermal texture is computed. In the figure, the top image
shows a depth map (synthesised from the registered model)
corresponding to the virtual view; the merged 2D thermal
image is shown in the middle; and the viewpoint mesh of the
thermal map is shown at the bottom. Misalignments are caused
by registration error and timestamp differences between the 3D
and thermal images. The latter is because the FLIR A300 is
a 3Hz camera (which is more cost-effective) and the nearest
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Kinect frame (30Hz) is used when computing the texture. This
currently makes it difficult to use the thermal images to refine
the registration solution, but this is being investigated.

For comparison, Figure 7 shows the thermal map generated
using surfels. While the mesh version is better for detail,
the surfel model is light-weight and better for incremental
modelling of large areas.

Fig. 7. Thermal map rendered using surfels. Top: Surfels are coloured by
depth to the origin; Bottom: Surfels are coloured using thermal measurements
(radiometric).

VII. CONCLUSION

A processing framework has been presented for generating
3D thermal maps of mines using range and thermal images.

Our method uses a novel 3D descriptor, the distance signa-
ture, to align scans and ICP is used for refinement. In addition,
keyframing is used to slow the accumulation of incremental
errors and construct a light-weight model.

Results have been shown where a 3D map with thermal
texture is generated for a real mine stope. Small variances
in pose estimates that reduce model precision do occur, and
timestamp differences between the cameras also contributes
to alignment error. However, for the most part reasonable
registration is achieved using only the range images.

Future research will explore further optimisations and inte-
gration with secondary sensors such as inertial measurement
devices.
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