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Abstract-Eshelby’s energy-momentum tensor is used to provide an analytical expression for the driving 
force for rafting in the elastic regime in a superalloy with a high volume fraction of 7’. The structure is 
modelled as a simple cubic array of y’ cubes separated by thin sheets of ;‘. During rafting, the y’ particles 
are constrained to remain tetragonal prisms. For tension along a cube axis, the driving force is 
proportional to the product of the tension 6, the fractional difference 6 of lattice parameters of 7’ and 
y and the fractional difference n2 of their elastic constants c,, ~ c,?. As in the calculation of Pineau for 
an isolated spheroid, needles are formed when this product a6m is positive. Two- and three-dimensional 
systems behave similarly. The initial plastic strain in 7 is anelastic and in principle reversible. When the 
plastic strain exceeds m6, platelets perpendicular to the stress axis are formed if the product rr6 is negative. 
Copyright T: 1996 Actu Metallurgica Inc. 

R&urn&On utilise le tenseur knergie-impulsion d’Eshelby pour obtenir une expression analytique de la 
force motrice du phenomtne de formation de radeaux (rafting) dans le rbgime tlastique d’un superalliage 
a grand contenu volum&rique de y’. La structure se modtle en ordre simple cubique de cubes de 7’ stparts 
par de minces lamelles de y. Les particules de y’ sent contraintes B rester des prismes tetragonaux pendant 
le processus de diformation de radeaux. Sous tension au long d’un axe cubique, la force motrice est 
proportionelle au produit de la tension rr, la difference fractionnaire 6 des paramitres de reseau de ;” et I 7 et la difference fractlonnalre m de leur constants klastiques ~II - ~12. Comme dans les calculs de Pineau 
pour un sphkroi’de isol& il se forme des aiguilles quand ce produit CJ& est positif. Les systemes g deux 
dimensions et B trois dimensions se comportent pareillement. La d&formation plastique initiale en ;’ est 
anblastique et en principe rtversible. Quand la d&formation plastique surpasse m6. des plaques 
perpendiculaires $ l’axe de I’effort se forment quand le produit a6 est negatif. 

Zusammenfassung-Der Energie-Impuls Tensor von Eshelby wird fiir die Darstellung eines anlytischen 
Ausdrucks der treibenden Kraft fiir die Floss-Strukturbildung im elastischen Bereich in einer 
Superlegierung mit hohem Volumenanteil von :I’ verwendet. Die Struktur ist also eine einfache kubische 
Anordnung von ; ‘-Wiirfeln, welche durch diinne Schichten von Y-Phase voneinander getrennt sind, 
modelliert. Wiihrend der Floss-Strukturbildung miissen die ‘;’ Teilchen tetragonale Prismen bleiben. Fiir 
die Spannung entlang der kubischen Achse ist die treibende Kraft proportional zum Produkt der 
Spannung 0. dem relativen Untershied 6 der Gitterparameter von ; ’ and ;:, und der fraktionalen Differenz 
m lhrer elastlschen Konstanten (‘11 - (‘12. Wie in der Berechnung von Pineau fiir einen isolierten Spheroi’d, 
formen sich Nadeln falls dieses Produk positiv ist. Zwei- und dreidimensionale Systeme verhalten sich 
iihnlich. Die anftingliche plastische Dehnung in y ist anelastisch und in Prinzip umkehrbar. Falls die 
plastische Dehnung m6 iiberschreitet und das produkt 06 negativ ist, formen sich Plattchen senkrecht zur 
Spannungsachse. 

1. INTRODUCTION 

To a very good approximation, a modern superalloy 
is composed of cubical particles of an alloy having the 
ordered Liz structure, conventionally labelled 7’, 
which lie with lattice coherence in a matrix of an alloy 
of similar composition having the disordered 
face-centred cubic structure, conventionally labelled 
;‘. The particles, again to a very good approximation, 
form a simple cubic array with its axes parallel to the 
axes of the underlying cubic crystal structures. 

tPresent address: Department of Physics and Astronomy, 
Columbia University, New York, NY, U.S.A. 

If a typical alloy is stressed by tension along the 
[OOI] axis at a high temperature, it undergoes plastic 
deformation by the motion of dislocations. This 
process of creep causes the sample to elongate along 
[OOI] and to contract along [OOl] and [OIO]. At the 
same time, a process called rafting may be observed 
[l-3]. Each cubical particle shortens along [OOI] and 
expands along [loo] and [OIO]. When the deformation 
of the particles reaches about 15%, particles adjacent 
along [loo] or [OlO] may meet and weld together, 
producing an extended raft-shaped particle of 7’. If 
the stress applied along [OOI] is a compression rather 
than a tension, the individual particles deform so that 
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their short axes he along [loo] or [OlO], or they may particle. This rounding is not pronounced in 
form needles directed along [OOl] [3, 41. In other micrographs of the y’ particles in most superalloys, so 
alloys, the effects of tension and compression are that these particles can reasonably be treated as 
interchanged [5]. “large”. 

The processes of rafting and of creep by the motion 
of dislocations are essentially distinct. In the lower 
part of the usual range of testing temperatures, 
considerable dislocation motion and multiplication 
occurs without any observable rafting [e.g. 6, 71. On 
the other hand, at high temperatures and under low 
stresses, the distortional strain of each particle during 
rafting is of the order of 15% while the total creep 
strain of the sample as a whole is only about 0.02%. 
Moreover, the deformation of each particle under 
typical conditions of rafting has the opposite sense to 
the bulk deformation of the sample [8]. 

We believe that rafting is essentially a diffusional 
process in which lattice coherence is maintained. The 
boundaries of each ordered y’ region move, but the 
volume of the region remains constant. We therefore 
consider the driving force for rafting in the absence 
of plastic deformation mediated by dislocations. It 
is, of course, possible that the rate of rafting may 
be increased if dislocations are present to provide 
mechanisms of easy diffusion and it is certain that the 
stress concentration produced by plastic flow in the 
y matrix can influence both the rate and the direction 
of rafting. 

The strength of Pineau’s calculation lies in the fact 
that Eshelby’s formulae allow him to treat values of 
m ranging from - 1 to co, and values of 2 ranging 
from ~ co to m. One weakness is that the numerical 
calculations become imprecise when these parameters 
are small, which is usually the case of practical 
interest. Another weakness is the use of isotropic 
elasticity, because the y and 7’ phases actually 
involved show extreme elastic anisotropy, with 
2C‘n/(C,l - Cl2 ) of the order of 3.5. Finally, with a 
typical y’ volume fraction of over 60%, the cubes of 
y’ are separated by sheets of y whose thickness is only 
about 0.15 of the side of each cube; the approxi- 
mation that the y’ cubes are isolated is no longer 
plausible. 

The case of an isolated particle whose shape can be 
adequately represented by a spheroid was solved 
exactly within the approximation of isotropic 
elasticity by Pineau [9], using the methods developed 
by Eshelby [lo, 111. Even though Pineau simplified 
the calculations by assuming that the matrix and the 
inclusion have the same Poisson ratios, the formulae 
are complicated, and most of the results are displayed 
only numerically. 

The Fourier transform method of Khachaturyan 
et al. [I21 allows some problems to be solved exactly 
for a cubical array in anisotropic elasticity. However, 
their treatment is limited to the case in which matrix 
and precipitates have the same elastic constants. 
Our own analysis confirms the results of Pineau for 
an isolated precipitate particle: there is no driving 
force for rafting under external stress in the elastic 
regime if matrix and precipitate have the same elastic 
constants. Similarly, our prediction that, for small 
values of C and m, rafts are formed normal to the 
stress axis if mC is negative, and needles along the 
stress axis if mC is positive, agrees with Pineau’s 
results. 

Fundamental parameters are the elastic moduli of 
the matrix and of the inclusion, E,,, and E,, 
respectively. We shall write 

E,/& = I + m, (1) 

and assume that m is small, so that terms in m’ may 
be neglected. In practice, m is of the order of 0.15. 

Further fundamental parameters are the un- 
strained lattice parameters a,, and ~7~. We define the 
misfit parameter 6 by 

6 = 2(a, - a,)/(a, + a,). (2) 

The applied stress 0 causes an elastic elongation 
~I-&> and its importance may be measured by the 
ratio of this elongation to the misfit 6. We write 

C = a/E,G. (3) 

Pineau’s calculations neglect the interfacial energy 
of the two phases, which means that they apply 
to “large” particles. The dimensions of a particle 
for which surface energy is of comparable importance 
to elastic energy are of the same order as the radius 
of curvature of the rounded edges of a “large” 

By numerical analysis, Socrate and Parks [13] 
calculated the driving force for rafting in a regular 
cubical array both with and without allowance for 
plastic flow in the y matrix. The calculations are 
carried out in a generalized plane strain two-dimen- 
sional model, allowing a uniform displacement in the 
third dimension. It does not seem obvious that a 
two-dimensional model will successfully predict the 
behaviour in the real three-dimensional case. In the 
absence of plastic flow, their results in the elastic 
regime agree with those of Pineau for the isolated 
three-dimensional inclusion: the nature of rafting is 
determined by the sign of the product mC. These 
predictions do not always agree with experiment. 
After plastic strain in the y matrix of the order of 2f 
times the initial misfit, the predicted directions of 
rafting agree with those observed. Under these 
conditions, the initial misfit and the elastic properties 
cease to be important. If the stress is tensile, y 
material is flowing from the transverse sheets to the 
normal sheets. This implies that there is a large 
hydrostatic tension in the middle of the normal sheets 
of y. If 6 is positive, this tension will be relieved 
if the y’ cube elongates along the tensile axis. 
Thus the condition for the formation of rafts normal 
to the tensile axis is that 06, or equivalently C, 
is negative. This prediction is confirmed by the 
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calculations of Socrate and Parks, and is in 
agreement with experiment. 

2. SOME GENERAL RESULTS 

We now discuss some general results in linear 
elasticity which may either assist the analysis or 
provide criteria which the results of the analysis 
must satisfy. Most of them concern homogeneous 
elastic bodies in which a region undergoes a uniform 
expansion, not necessarily isotropic, while remaining 
coherent with the matrix. If the elastic constants are 
unaltered by the transformation, the transformed 
region is called an inclusion; if the elastic constants 
are altered, the region is called an inhomogeneity. 
Some results apply in the presence of external 
stresses, others to internal stresses alone. 

2.1. Colonnetti’s theorem 

The most general result is Colonnetti’s theorem 
[ 141. If an arbitrary body is subjected to both internal 
and external stresses, the internal energy contains no 
cross terms between the internal and the external 
stresses. The proof is intuitive. Take the body 
internally stressed. Its surface is free from tractions. 
Impose surface displacements which increase slowly 
from zero to their final values. By the principle of 
superposition, the surface tractions increase in linear 
proportion to these imposed displacements. Thus the 
work done by the surface tractions is proportional to 
the square of the surface displacement, or to the 
square of the tractions, and this work is stored in the 
body. The internal energy is the sum of the initial 
internal energy and of this work. 

2.2. ConscJyuences of’ cubic synmetr~ 

We consider an infinite medium of cubic symmetry, 
free from external stresses, in which there is an elastic 
inhomogeneity having the form of a parallelepiped or 
a spheroid whose principal semi-axes a, b and c are 
directed along cubic axes. Then, for a given volume 
of the inhomogeneity, the elastic energy is stationary 
when a = b = c. (In the two-dimensional case the 
result follows at once from symmetry, because the 
region of dimensions a x b is converted into a region 
of dimensions b x u by a rotation of 71/2, which is a 
symmetry operation of the system.) 

Let the elastic energy of the system be U(a, b, c) 
Then, when a = b = c, 

au au dU 
-=-E-E 

?a db & grade U, 

and so, to first order, 

6iJ = gradoU(6a + 6b + &), 

but, at constant volume, to first order, 

ba + 6b + 6c = 0, 

(5) 

(6) 

and the result follows. In the absence of external 
stress, a spherical or cubical inhomogeneity is always 
in equilibrium, stable or unstable. 

2.3. Transformation without change qf elastic con- 
stants 

The next two results concern a finite homogeneous 
body in which a region, not necessarily small in 
comparison with the whole body, undergoes a 
homogeneous expansion, not necessarily isotropic, 
while retaining its elastic constants and its coherence 
with the matrix. The proofs will be published 
elsewhere [ 151. 

2.3.1. The change of rolume. Under the conditions 
stated, the volume of the body after the transform- 
ation has occurred is equal to the sum of the volumes 
of the unconstrained matrix and the unconstrained 
inclusion after transformation. 

2.3.2. Work of external stress. If the transform- 
ation occurs under a uniform external stress, the 
work done by this stress during the transformation is 
equal to the work which would be done by this stress 
during the transformation of the otherwise uncon- 
strained inclusion. It follows that a uniform external 
stress cannot influence the equilibrium shape of an 
inclusion which has the same elastic constants as the 
matrix. 

Consider the process of rafting under an applied 
tensile stress g. Initially, a symmetrical supercell (see 
Section 4) under zero stress has energy c’,,. When the 
stress is applied, the energy increases to U,, + go’, 
where 2g is the total volume divided by the 
appropriate elastic constant. Rafting measured by c 
is then initiated by transforming layers of 7’ normal 
to g into 7. By Theorem 2.3.2, the work done by the 
external stress is the same as that which would be 
done if the y’ inclusion was isolated from ;‘. Rafting 
is then completed by transforming an equal volume 
of 7 in sheets parallel to o into 7’. Theorem 2.3.2 
again applies, and the work done in this step exactly 
cancels that done in the previous step. By 
Colonnetti’s theorem (2.1) the total internal energy is 
the sum of the elastic energies of the internal and the 
external stress systems considered separately. By 
Theorem 2.2 the former is U0 + O[t’]. Since the body 
is elastically homogeneous, the latter is still go’. 
The “driving force” for rafting is measured by the 
difference between the total work done by 
the external stresses, which has been shown to be 
zero, and the increase of internal energy, which is 
O[c’]. There is thus no driving force for rafting of the 
equiaxed configuration if ;’ and y’ have the same 
elastic constants. 

2.4. Khuchaturyan’s theorem 

An important result is due to Khachaturyan [16]: 
an inclusion of given volume in an elastically 
anisotropic medium has minimum elastic energy if it 
is “rolled out” to give an infinite platelet of 
infinitesimal thickness whose habit is determined by 
the elastic anisotropy. 
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2.5. Transformation without change of rigidity 

For a homogeneous coherent region undergoing an 
isotropic expansion with no change in rigidity in an 
elastically isotropic matrix, the elastic energy (with or 
without external stress) depends only on the volume 
of the inclusion and not on its shape. This result is 
due to Goodier [17], and was rediscovered indepen- 
dently by Crum [ 181 and Robinson [I 91. 

While a formal analytical proof is available, a 
qualitative argument allows an interesting extension: 
if the matrix is not infinite, but all parts of its free 
boundary are far from the inclusion in comparison 
with the dimensions of the dilated region, the change 
in volume is independent of the shape of the dilated 
volume. We may regard the dilated volume as 
composed of infinitesimal centres of dilatation. 
Within each centre, the centre itself has a purely 
dilatational field. Outside the centre the field is purely 
shear. Because the transformation occurs without 
change of shear modulus, the elastic field of each 
centre propagates uniformly through the matrix and 
through other centres. The centres may be displaced 
with respect to each other without any elastic 
interaction. 

3. A QUALITATIVE MEASURE OF THE DRIVING 
FORCE 

It is sometimes suggested that one can predict the 
sense of rafting in the elastic regime by the following 
simple argument: suppose, for example, that y’ has a 
larger lattice parameter than y, that y’ is stiffer than 
y, and that tension is applied along a cube axis. Then, 
on the lateral interfaces, the weaker y will be stretched 
by the applied stress so that its lattice parameter fits 
that of y’ better, while, neglecting Poisson contrac- 
tions, the misfit on the transverse interfaces will not 
be affected. The misfit energy will be reduced, and all 
the more so if the lateral faces increase in area, i.e. 
needles are formed. The answer is right, but the 
argument is fallacious, because (1) Colonnetti’s 
theorem shows that there are no cross terms in the 
total internal energy between the internal and the 
external forces, and it is just such a cross term which 
is considered here; and (2) rafting is driven by the 
difference between the work done by the loading 
machine and the increase in internal energy, and 
the present argument neglects the 
argument following equation (32) 
such objections. 

work done. The 
seems free from 

4. THE MODEL 

We shall use a model in which identical cubical 
supercells (Fig. 1), each consisting of a centred y’ cube 
surrounded by a shell of ‘/, are stacked in an array 
which initially is simple cubic. 

If a single supercell is dissected out, the misfit 
between y and 7’ will, in general, cause the supercell 
to become barrel- or pincushion-shaped, even if */ and 

1 ++“e) cells 

ZD:v=l 

3D:v=2 

- IAtaal plate 

Fig. 1. Rafted unit supercell in a superalloy. The coherent 
interfaces have wa(1 + c) or KU(I - vc) lattice cells; the 

unstrained lattice parameter of the matrix lattice is a. 

y’ have the same elastic constants. Before the 
disassembled cells can be reassembled, they must be 
constrained by surface forces to have plane faces. 
These forces vary across each interface between 
supercells. They are not easy to calculate, and their 
stress fields, which we will call pincushion stresses, 
extend into the supercell for a distance which will not 
allow them to be neglected on the nearest y-y’ 
interfaces. On the other hand, the specimen as a 
whole is initially free from external stress, and so the 
total force acting across any face of a supercell is 
initially zero. We shall argue that the presence of the 
pincushion stresses in the assembled system makes a 
negligible contribution to the thermodynamic driving 
force for rafting. 

Let r be the ratio of the thickness of a y sheet to 
the side of a y’ cube, and let 6 be the lattice misfit 
between y and 7’. Then, when r is small, as we shall 
assume it to be, the strains involved in constraining 
this supercell to have planar faces are obviously 
proportional to St. The work done in the process of 
constraint is then of the order of r2, and can be 
neglected. We shall also neglect terms involving the 
product mr 

Since one question of interest is whether there are 
essential differences in behaviour between the two- 
and the three-dimensional cases, we treat the cases 
together, labelling the two-dimensional case by v = I 
and the three-dimensional case by v = 2. The 
longitudinal direction is that cube axis along which a 
tensile stress g may be applied, and there are v 
transverse directions. We consider only the elastic 
regime in which coherence is maintained between y 
and y’ lattices, and take the unit supercell to have 
2(v + 1) sides each of ~(1 + r) lattice cells. The 7’ 
particle, originally a square or cube of M?’ + ’ lattice 
cells, has after rafting ~‘(1 + c) cells in each of v 
transverse directions, and, to maintain a constant 
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volume fraction of y’, ~(1 + c)-’ z ~(1 - vt) cells in 
the longitudinal direction. 

Then (Fig. 1) the symmetrical unit supercell has 
two plates normal to the longitudinal direction which 
each are fw(r + vt) cells thick and of transverse 
dimensions ~(1 + f~ + ;T) cells. As shown in the 
figure, this last choice ensures that in the two-dimen- 
sional corners or three-dimensional edges the number 
of unoccupied cell sites is equal to the number of 
doubly-occupied sites. If the edges of the plates are 
bevelled, the sites in a supercell are each occupied 
exactly once. There are 2v transverse plates each 
fw(r - t) cells thick, of longitudinal length 
i2’[1 - iv6 + fr] cells. 

The side of the unit cell in y being a and of that in 
11’ being (1 + @a, we assume that when the supercell 
is assembled in elastic equilibrium from a y’ block 
and 2(v + 1) y plates, the actual length of a transverse 
y-y’ interface is ~(1 + c)(l + 6 + <S) while the 
actual length of a longitudinal interface is 
nU( 1 - vt)( 1 + 6 + [S). 

If longitudinal strains are denoted by eL and 
transverse strains by e7, the strains in the components 
are as follows: 
in y: 

in 7’: 

(7) 

(8) 

(9) 

(IO) 

5. THE METHOD OF CALCULATION 

There are two possible approaches to the 
calculation. In the first, we calculate the internal 
energy as a function of the distortion t to first order 
in t, calculate the work done by the external stress 0 
during the distortion to order t, and take the 
difference, which gives the change in enthalpy. This 
procedure turns out to be analytically complicated. It 
is preferable to use the Eshelby energy-momentum 
tensor to calculate the thermodynamic force tending 
to move each interface, as was done by Socrate and 
Parks [13] in considering this problem. 

Eshelby [20, 211 showed that in an elastically 
stressed body there is an effective (configurational) 
normal force F on unit area of an interface, given by 

F=[I+‘-T. g [I 
Here [r] represents the value of Y on the side of the 
interface towards which the normal points minus its 
value on the other side, W is the elastic energy 
density, T is the traction at the interface, and au/an 
is the normal gradient of the elastic displacement. 

This formula, derived by the use of the elastic 
energy-momentum tensor, has an intuitive interpret- 
ation: when the interface sweeps out unit volume, the 
elastic energy changes by [IVj, and the local stresses 
do work T [&r/&z]. 

The formula simplifies in the present problem, 
because T is a purely normal stress p” and au/&r is a 
diagonal strain component e,. We may thus write 

F, = [II’j - p&J. (12) 

The unknown “pincushion” stresses which are 
required to constrain the supercell to have planar 
faces enter into both terms of equation (12) but we 
proceed to show that they make a negligible 
contribution to the final result. The terms in equation 
(12) are quadratic in the elastic field, and so the 
pincushion stresses enter both as their products with 
the pincushion strains and as their products with the 
misfit strains 6 and with the strains of order o/c,, 
produced by the external stress. The pincushion 
stresses are of order c116r, and the corresponding 
strains are of order 6r. The product of these two is 
of order ~,,6%~, and negligible. The contribution to 
the energy density Wof the product of the pincushion 
stresses and the strain produced by the external stress 
is of order &, and the discontinuity [K’j of this 
contribution across an interface is of order ma&, and 
negligible. Similar arguments show that all but one of 
the cross terms in p.[eJ may be neglected on each 
interface. The remaining term is the product of 
the contribution c,,& of the pincushion stresses to 
pn with the misfit strain 6 normal to an interface. 
This product tends to move each interface outwards 
to produce a homogeneous unstrained cube of y’. 
However, in our model, rafting occurs at constant 
volume of y’, and the contributions of the transverse 
and the lateral interfaces to the total thermodynamic 
force for rafting cancel. 

We approximate the stress distribution by assum- 
ing that the principal stress axes are everywhere 
parallel to the cube axes and that each principal 
component of stress is continuous across an interface 
which it meets normally. The values of these principal 
components are determined by requiring elastic 
equilibrium over the faces of each supercell and 
across the principal central sections of each supercell. 
While this approximate stress system ensures elastic 
equilibrium, it leads to discontinuities of strain in the 
corner and edge regions of each supercell. While the 
supplementary strains required to restore continuity 
are large of order 6, they are confined to small parts 
of the supercell, and we assume that their effects are 
negligible. 

Even with these approximations the problem is too 
complicated to be solved without the aid of computer 
algebra. This recourse to a computer has the 
disadvantages that one loses all physical insight, and 
that it is difficult to detect errors. We therefore 
adopted the following procedure: in a first approxi- 
mation, Poisson contractions were neglected by 
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putting c,? = 0 in both y and y’. This is far from the 
practical situation, but is physically acceptable 
because the theoretical limits on Poisson’s ratio are f 
and - 1. This procedure completely decouples the 
longitudinal and transverse elastic fields, and leads 
to two sets of equations which are tractable manually. 
The analysis applies to either the two- or three- 
dimensional case, and is outlined in Section 6. Then, 
in Section 7, the complete analysis for the 
three-dimensional case is outlined, and it is confirmed 
that setting cIZ = 0 in both media recovers the result 
of Section 6. 

6. POISSON CONTRACTION NEGLECTED 

In this illustrative calculation we neglect both the 
Poisson contractions and the pincushion stresses, but 
we consider both the two- and three-dimensional 
cases. 

With these approximations, the strains in thickness 
are, in a transverse y plate 

elr/b = 0 

and in a normal y plate, 

(13) 

e3l_ = a/c,, (14) 

We now write down the condition that there should 
be no total force across a longitudinal central section 
of a supercell. We take 

c;, = (1 + m)c,,, (15) 

and assume that m and z are of the same order of 
smallness, so that terms in m2 and mr can be 
neglected. We omit a factor XJ’U’C~,. The condition is 
then, when c = 0, 

vr(1 + 5) + (1 + w2)(1 + s>V[ = 0. (16) 

Since the strains involve < in the form <S, and the 
strains are to be considered only to terms linear in 6, 
the factor (1 + 6)’ in equation (16) may be replaced 
by unity. Retaining only terms linear in m and T, we 
find 

< = --vz. (17) 

Similarly, the condition that the total force across a 
transverse central section of a supercell should be that 
produced by the applied stress is, for t = 0, 

v~(l + i) + (I + m)(l + SYi = (1 + 6 + z)“C (18) 

where 

c = (r/c,,6. (19) 

We note that C, unlike m and z, is not assumed to be 
small. 

According to equations (7) and (9) the strains 
contain terms in 6 and SC, and we wish to determine 
them to orders 6 and crjc,,, that is to say, to orders 
6 and 6X. It is thus adequate to determine < to order 
zero in 6, and (1 + 6) in equation (18) may be 

replaced by unity. The solution, neglecting terms in 
t2 and terms quadratic in m and z, is 

[ = -vr + C - mC. (20) 

Because of our assumption that cl2 = & = 0, the 
energy density depends only on the squares of the 
strains in equations (lo), (13) and (14). Using these 
equations together with equations (17) and (20) leads, 
on retaining only terms up to those quadratic in C 
and only those linear in m and r, to the results of 
equations (Al)-(A6) of the Appendix. 

We insert these quantities in equation (12). 
There are 2v interfaces parallel to the stress axis. 

Each is of area w”u’, and moves a distance fwat in the 
direction of the outward normal to the y’ cube when 
the distortion t occurs. The energy density outside the 
interface is 

IV,,, = +,,[e), + (v - l)e$] (21) 

where ef, and efr are obtained from equations (Al) 
and (A2). This gives 

W,, = fc,,P(v - 2v2r + 2Z - 2mC 

- 2vrC + c’ - 2mx’). (22) 

In calculating the energy density just inside 
the interface, we recognize that within the present 
approximation the interface is sufficiently close to the 
unstressed free surface of the supercell for there to be 
no normal stress or strain. The energy density is thus 

W,I = !j ~((1 + m)[ef, + (v - I)+], 

where ef,L and e,Z, are obtained from equations (A3) 
and (A4), giving 

W,, = kc1,6’(-2vrZ + Z* - mIP). 

On these interfaces p” = 0 and so 

(23) 

i c1,6’(v - 2v*r + 2C - 2mC - mP). (24) 

This is the configurational pressure moving these 
interfaces outwards. 

When rafting occurs, they sweep out a volume 
vpl,“+ la”+ jc , and the energy released when they 
move is 

1 
- VMI’+~U’+‘C,,~‘C[V - 2v’t + 2C - 2mC - mC2]. 
2 

(25) 

In the two sheets of y normal to the stress axis, the 
energy density is 

Wd = - ct,(ve,, + e. 2 :, ) 

=; c,,62(v - 2v’z + CZ) (26) 
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while the energy density inside is 

W,, = i c,,[(l + m)ve& + (1 - m)Pl 

=; c,,(l - m)C’ (27) 

On this interface, 

p” = c116C. P3) 

The normal strain outside is 6X, and that inside, 
allowing for the transformation strain, is 
6 + (1 - m)XL 

Thus on these interfaces 

[e,] = -6 + m6C 

and 

(29) 

[wl - p.[e.] = i c,,~~(v + 2X - 292 - m.F). (30) 

These two sheets are also of area w’u’, and during 
rafting they sweep out a volume - VM‘” + ‘a’ + ‘6. The 
energy released when they move is 

--fVM++la ““C,,f?c[V - 2v’r + 2X - mC*]. (31) 

The total energy release is the sum of equations (25) 
and (31), equal to 

; v,z?’ + 1,s + 1 cl,&-2mC) = -vw++‘a”+‘6~ma. (32) 

There is no essential difference between the cases of 
two dimensions (v = 1) and three dimensions (v = 2). 
Moreover, both agree with the terms linear in (r in 
Pineau’s analysis for an isolated spheroid. This 
suggests that the arguments of the paragraph which 
follows have a rather broad heuristic value. 

In the mutual compensation of terms, only one 
term has survived. It is obtained from the term 
-c,,6’mC in equation (22), which appears in the 
energy density in a lateral y sheet. The physical origin 
of this term is clear. Suppose a small tensile stress G 
is applied. This stress will make a substantial 
first-order contribution to the energy density only in 
those regions which already have substantial strains 
in the longitudinal direction, i.e. in the lateral y 
sheets. This contribution to the energy density is 
fc,,e.j,, and the increase in this energy density is 

A W,, = c,j+l(de,Jda)o. (33) 

This is of the order of 06. The only other term of this 
order is the contribution -p.[eJ to the thermodyn- 
amic pressure on the lateral interfaces. The present 
calculation shows that if 7’ and y have the same 
elastic constants, the contribution of cr to [B”j on a 
lateral interface is exactly equal to the contribution of 
g to -pn[e,] on a transverse interface. 

However, the thin lateral sheets of y are 
constrained by the cube of y’, and so, in general 

drjL/do = l/(1 + m)c,, 

~(1 - m)/c,,. (34) 

There is no corresponding term in -p.[e,] on the 
transverse interfaces, and the uncompensated term 
- me.,Lc7 z -m&J in equations (33) and (34) drives 
the rafting process. On rafting, the lateral interfaces 
sweep out a volume VMJ ‘+‘a’+ ‘t, and the energy 
release is VM‘” + ICI’+ ‘&mu, in agreement with equation 

(32). 
We now enquire whether the presence of the 

pincushion stresses affects this argument. On the 
interfaces, the pincushion stresses of order rcll 
alter [e,] by a quantity of the order of mT, which 
is negligible. So far as the term (39) effective on 
the lateral interfaces is concerned, the contribution 
is proportional to eyL, the longitudinal strain present 
in a longitudinal sheet of y before the application of 
external stress. The pincushion stresses alter this 
strain by a fraction of the order of Z. The 
uncompensated term -me.,Lo is therefore altered 
by a quality of the order of zmei,Lo, which is 
negligible. 

Since the contribution of fibre reinforcement to the 
stiffness of a composite depends on the angle between 
the fibre axes and the tensile axis, one might expect 
that the driving force for rafting under an applied 
stress 0 would contain a term in g2. No such term 
appears in our calculation. It is difficult to find a 
simple argument for or against its presence when the 
structure is one of cubes of y’ separated by thin sheets 
of i’. Pineau’s calculations [lo] for an isolated 
spheroid indicate, as would be expected, that platelets 
will be formed under high stresses, regardless of the 
signs of the misfit, of the difference of elastic 
constants, or of the stress, because the softer 
component is then free to draw energy from the 
loading system. 

Since these effects are even in misfit and difference 
of elastic constants, and vanish when these quantities 
vanish, they will not appear in our linearized 
theory. 

7. ALLOWANCE MADE FOR POISSON 
CONTRACTION 

The regular cubical arrays of cubes before rafting 
and of rectangular parallelepipeds after rafting are 
stabilized by the high value of the anisotropy 
constant 2c4J(cll - c,& In the limit of a high volume 
fraction of ;“, the elastic strains are composed of 
extensions and compressions along the cube axes. 
Shear strains which lead to energy densities 
proportional to cd4 are present only in negligibly small 
regions with volumes proportional to T’. The rest of 
the material behaves like an isotropic medium with 
Young’s modulus (cf, + cllclz - 2&)/(c,, + cIz) or 
(CL? + c;,& - 2&)/(c;, + CL) and Poisson’s ratio 
c12/(cll + CC) or &(c;, + CL). 

We consider the three-dimensional case, and 
make allowance for the pincushion stresses and the 
Poisson contractions. Equations (7)-( 10) remain 
valid. 
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The stresses in the various regions may be written: 
in transverse y plates- 

~~~ = cllej+ + clZeyT + c12e17 (35) 

UTT = CIIC?;.T + cIZE;~L + c12e1r (36) 

HIT = clleiT + cI2e;L + rlze;r (37) 

in y’- 

gi.L = c;, ej,L + 2&e, 7 (38) 

cr,‘-r = clle,,-r + c;ze,,L + c;2ej,r; (39) 

in normal 7 plates- 

giL = cl,e~ + 2clzejr (40) 

GjT = cllerT + ClZelT + wk. (41) 

The conditions of equilibrium are 

CIT = 0 (42) 

g3l. = 0 (43) 

r(l + 6)&T + z(l + 6)03T + (1 + @‘a,.‘, = 0 (44) 

2T(l + 6)g.,.L + (1 + 6)%rY.1. = (1 f s + z)QT. (45) 

Again, 6 may be neglected in the last two equations. 
We rewrite these, using equations (7)-(10) and the 
last remark, to obtain, with 

c;, = (I + m)c,, (46) 

and 

CL = (1 + n)cu, (47) 

results of equations (A7)-(A28). 
The previous calculations may now be repeated, 

remembering that if the principal strains are e,, e2 and 
e3 the energy density is now 

W = Lj c,,(e? + ef + e:) + cl~(ezei + e?el + ele?). (48) 

The final result is that the energy dissipated when a 
cube of y’ of dimensions wa x wa x wa becomes a 
raft of dimensions 

(1 + t)~?a x (1 + t)wa x (1 - 26)~~ is 

- 2da’t (mc,, - ncd(cll + 2cd &, 

c,,(c,, - cd (49) 

Here 

6 = 2(a’ - a) 
a’ + a 

We confirm that equation (32) with v = 2 and 
equation (49) with clz = ci2 = 0 agree. 

Since elastic stability requires Cl1 > 0, 
CII + 2~12 > 0, c,, - cl2 > 0 [22], the sign of equation 

(49) is determined by that of mc,, - nclz. It follows 
that the inclusion is harder or softer than the matrix 
if it has a larger or smaller value of the constant 
c,, - c,?. This is in agreement with the result of 
Johnson et a/. [23] that for an isolated spheroid under 
uniaxial stress along a cube axis in a medium with 
cubic elastic anisotropy the precipitate shape is 
determined by AC,, - Aciz. 

8. THE INFLUENCE OF PLASTIC DEFORMATION 
IN THE MATRIX 

We have seen that, in the absence of plastic strain, 
the driving force for rafting has no term independent 
of m. Socrate and Parks [ 131 found that after 
appreciable plastic strain in the y matrix there was a 
term in (r6 which outweighed all others, and led to the 
formation of rafts when aS was negative. 

We can understand this term in the following way. 
Socrate and Parks [24] not only allowed for the local 
increase of pn during plastic flow, but also included 
the plastic strain in the 7 sheet in [e,]. If one interprets 
equation (12) naively as meaning that when the 
interface sweeps out unit volume, stored elastic 
energy [IVj is released, while the normal traction pn 
does work pn[en], then it might seem that prior plastic 
deformation should not contribute to [e,,]. Work 
hardening is not considered, and so prior plastic 
deformation on one side of an interface does not 
alter the state of the material in which it has 
occurred, and does not alter the changes of energy 
which occur when the interface moves. In the 
present case, however, the dislocations which 
caused the prior plastic strain have not moved out 
of the neighbourhood of the interface. They are 
stored in the interface. When the interface moves, 
these dislocations move, and the total volume 
which has been plastically strained is changed. The 
strain involved is not plastic, but anelastic, and, 
under the conditions assumed in the model, 
reversible. 

The effect of this on the rafting behaviour follows 
immediately from the discussion below equation (32). 
The elastic constant mismatch between inclusion and 
matrix is no longer important. The mechanical 
properties of the plastic y phase no longer 
approximate closely to those of the y’ phase, which 
is still elastic. 

Flow begins in those sheets in which the shear 
component of the applied stress adds to that 
produced by the coherency stresses. If a6 is positive, 
these will be the lateral sheets, in the more usual case 
of negative aS, these will be the transverse sheets. 
These plastic flows will upset the balance between the 
thermodynamic pressures tending to move the lateral 
and the transverse interfaces outwards. With positive 
~6, plastic flow t, in the lateral y sheets reduces the 
energy density in the lateral sheets by an amount of 
order tpg, thereby reducing the outward thermodyn- 
amic pressure on the lateral interfaces, while the 
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thermodynamic pressure on the transverse interfaces 
is unaffected by the plastic flow over the lateral 
interfaces. So, if aS is positive, needles are formed 
parallel to the axis of stress. If ~6 is negative, plastic 
flow begins outside the transverse interfaces. If 
these interfaces are displaced outwards, the volume of 
the plastic region is reduced, and the work done 
by the external forces is reduced by an amount tpg 
per unit volume swept out by these interfaces. 
The thermodynamic pressure on these interfaces 
is reduced, while that on the transverse interfaces 
is unaltered. Rafts are formed normal to the stress 
axis. 

These rules agree with those following from the 
calculations of Socrate and Parks [ 131, and will apply 
when ItFgI > lm&r(, i.e. 

IfpI ’ lm61. (50) 

When the Pineau and the Socrate-Parks rules 
disagree, which will be the case when m is negative, 
the sense of rafting will reverse when the creep strain 
reaches a value of this order. 

Such a reversal is actually observed in the com- 
putations of Socrate and Parks [13] in their Fig. 11, 
which applies to the (isotropic) case with 
n2 = -0.089, 6 = +0.0002. Their numerical treat- 
ment does not provide any obvious interpretation of 
such a reversal, and they attribute it to some 
unexplained failure of the numerical process arising 
from the very small value of 6: “the misfit chosen for 
this hypothetical alloy is exceedingly small-the 
misfit strains and the elastic strains have comparable 
magnitude. It is obvious that, in the limit of zero 
misfit, quantities normalized by the misfit itself lose 
their significance”. In our treatment, a reversal 
occurring within the (very wide) range of plastic 
strains for which they made computations is explicitly 
predicted. The concordance of their numerical results 
and our analytical results and theoretical arguments 
should lend confidence to both. 

9. CONCLUSIONS 

(1) For the models consisting of square or cubical 
particles of y’ arranged in a simple square or cubical 
array and separated by thin layers of ;‘, there is no 
essential difference between the behaviours in two 
and three dimensions, or between the behaviours of 
a cubical particle in a cubic array and that of an 
isolated spherical particle. 

(2) The driving force for rafting in the elastic 
regime is proportional to the product of the lattice 
misfit, the difference of elastic stiffnesses and the 
applied stress, leading to the formation of needles 
when all of these parameters are positive. 

(3) The relevant elastic stiffness is the modulus 
(‘,,p(‘12. 

(4) In the elastic regime, there is no term in the 
driving force which is proportional to the square of 
the applied stress. 

(5) If plastic deformation occurs in y, this 
deformation should be regarded as anelastic and 
reversible. 

(6) When the plastic strain exceeds lrn61, the 
driving force leads to the formation of platelets 
normal to the stress axis when the product of tensile 
stress and misfit is negative. If m is negative, the 
direction of rafting reverses when the strain is of this 
order, as appears in the numerical analysis of Socrate 
and Parks. 
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APPENDIX 

When the Poisson contractions and the pincushion 
stresses are neglected, the squares of the strain components 
are given to the appropriate order by 

(e,1;6)’ = 1 - 2~s + 2C ~ 2mZ - 2v~Z + 2’ - 2mC’ (Al) 

(e r!a)z = 1 - 2vt (A2) 
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and 

while 

(e.,,L/s)’ = -2vrC + 22 - 2mC2 

(e,,r/6)2 = 0 

(e,7/6)2 = 0 

(A3) and 

(A4) 2C,lZ(l + i) + ZCQT(l + 5) + 2c,*5(e,r/6) 

+(l + m)c,,[ + 2(1 + n)c,z< = (1 + 25)~. (A21) 

(A5) 
From equation (A16) 

(ex/6)2 = P. (A6) (e,r/6) = -z (2 + t + 0. (A22) 

In the general case, the stresses are given by 
From equation (A19) 

Q/6 = C,,(l + [) + (.12(1 + 5) + clz(elTi6) (A7) 
2C12 

ail/s = ~~(1 + 5) + c12(1 + i) + cl2(elr/d) (A8) &L/6 = (U/C,,) - r (1 + 5). (A 

(T,T/?~ = cll(elr/S) + C12(1 + i) + C12(1 + 5) (A9) Substituting into (A18) leads to 
c;x/s = (1 + m)c,,i + 2(1 + n)c125 (Al@ 

cr,,r/~ = (1 + m)c,,< + (1 + n)c,25 + (1 + n)c125 (Al 1) CllT(l + C) + c125(1 + i) - $ (2 + i’ + i) 

23) 

03L/S = Cll(CL/@ + 2CU(l + 5) (A12) 

(~~~/fi = ~~~(1 + 5) + cl~(l + 5) + c12(e3JG) (Al3) 
+c,,r(l + s’) + c,zr(l + c’) + z0 - %(l + 4) 

together with 

(TIT = 0 

f(1 + m)c,,5 + (1 + n)c,,i + (1 + n)c125 = 0. (~24) 

(A14) Substituting into (A21) leads to 

ux = 0 

TU,T + 503~ + U, T = 0 

(A15) 

(A16) 
2Cj,T(l + i) + 2c125(1 + i”) - $(2 + 5 + i) 

and 

2TQ + G; L = (1 + 2T)O. 

+(I + m)c,,i + 2(1 + n)c& = (1 + 2T)a. (A25) 

(A17) A 1 n e ementary but tedious calculation leads to 

Substituting the first seven into the last four 
2(c,, - 02) 

(A18) - 
T_X+ (n - m)(ci,c,* + 

C,,(e,T/6) + c,z(l + i) + C,l(l + 5) = 0 Cl1 R 
rn20 

R’ (A261 

c,,(e?L/6) + 2c12(1 + 5) = 0 

C,,T(l + <) + C~t(l + [) + C,>T(C,T/@ 

(A19) -c,,) t + (cl, + ~12)~ (A27) 
Cl1 R - 

m(c,, R’ c,,)a + (n - m)(4) 

+C,,T(l + 5) + CuT(l + 5) + CnT(Px/6) with 

+(1 + m)c,,t + (I + N)(.I>[ + (1 + n)c,>5 = 0 (A20) R = c:, + CI,C,Z - 2&. (A28) 


