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Abstract—This paper presents a self collision detection scheme
for humanoid robots using elliptical and circular capsules as
bounding volumes. A capsule is defined as an elliptical or circular
cylinder capped with ellipsoids or spheres respectively. The
humanoid body is modeled using elliptical capsules, while the
moving segments, i.e. arms and legs, of the humanoid are modeled
using circular capsules. This collision detection model provides
a good fit to the humanoid body shape while being simple to
implement. A case study of the self collision free workspace of
the humanoid arm is then presented to illustrate the effectiveness
of the collision detection scheme.

I. INTRODUCTION

Humanoid robots are being developed for numerous applica-
tions such as service, household and healthcare robots. These
robots have to perform a wide range of different tasks that
require a large arm workspace, and well coordinated motion
of the robot. Self collision occurs when any segment of the
humanoid collides with another segment while the robot is in
motion, or statically when the desired pose of the robot would
result in the intersection of two segments. Such collisions
not only impede the robot’s motion but can cause damage
to the robot itself. The motion of the robot therefore has
to be restricted to avoid these self collisions. Self collision
detection is thus important for motion planning, as well as for
determining the workspace of humanoid robots. At its basis,
self collision detection computes the closest distance between
the various segments of the humanoid and determines whether
any two segments are in contact. Segments are modeled
using a number of different bounding volumes which can be
split into two groups depending on how tightly they fit the
humanoid form.

The first group of bounding volumes includes those that
attempt to precisely model the shape of the humanoid, giving
a tight fit to the humanoid form. For instance, convex hulls [1],
[2], [3], [4] and swept-sphere volumes [5], [6], [7], [12], have
been used in real-time collision avoidance schemes. However
these methods tend to be computationally expensive as they
generally involve a large number of collision checks for each
segment. In addition, fitting models such as the swept-sphere
volumes and convex hulls to the humanoid can be complex.
Computing the distance between segments at fine level of
detail given by these models is not always necessary. In fact,
in [6], the collision detection is performed in two steps; a
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Fig. 1.  Model of humanoid body using circular and elliptical capsules as
bounding volumes for self-collision detection

coarser model of the humanoid is used first to compute the
proximity between segments. Only if two segments are close
to each other is the finer model used to detect collision.

The second group of bounding volumes use simpler rep-
resentations of the humanoid shape which are generally less
computationally expensive. In many applications such as hu-
man motion imitation or during the design stage of the hu-
manoid, a simple representation of the humanoid form for self
collision detection is sufficient. Common bounding volumes
used in this group are circular cylinders and spheres. In [9]
and in [10], circular cylinders are used to represent a robot
arm. While collisions between the cylinder bodies are simple
to model, the collisions of the cylinder end points are relatively
complicated. Adding a spherical cap to the end points of the
cylinders as done by a number of authors, simplifies end point
collison detection. In [11] circular cylinders capped by spheres
are used to detect self collision of a humanoid for human
motion imitation. This cylinder with end caps is similar to
the line swept sphere used in [12] to model the human body
for collision detection. Circular cylinders and spheres are also
used in [13] to model the robot body and arms. In [14], to
generate self collision free motion for a humanoid from human
motion, check points are placed inside the robot’s body and the



arm is modeled using circular cylinders. The distance between
a cylinder and the check points is then used to determine
collisions. While these methods may be relatively simple to
implement, they do not provide a good fit for the humanoid
torso shape.

In this paper a new self collision detection scheme, falling
into the second category of bounding volumes, is formulated.
The collision detection scheme uses a new type of bounding
volume, an elliptical capsule, which is an elliptical cylinder
capped at either end by ellipsoids, to model the humanoid
body. The elliptical capsule gives a tighter fit than a capped
circular cylinder or line swept spheres to the humanoid torso
shape. It has the advantage of simplicity while proving a good
fit to the humanoid form. A case study then compares collision
detection using the elliptical capsule and the line swept sphere
and capped cylinder as bounding volumes for the torso.

II. REPRESENTATION OF THE HUMANOID BODY

An elliptical capsule is defined here as an elliptical cylinder
capped by ellipsoids. A circular capsule is defined as a circular
cylinder capped by spheres. As shown in Figure 1, the arms,
legs and neck of the humanoid are modeled using circular
capsules. The body is modeled using elliptical capsules. If the
body has a waist joint, two elliptical capsules are used. The
shoulder girdle is an ellipsoid and spheres are used to represent
joints.

Each capsule is made up of three sections; two end caps
and a cylinder, and has the following properties:

[ is the length of the cylinder

Ppo and p; are the cylinder axis end points

u is the unit vector of the cylinder axis

r is the radius of the circular cylinder

a is the width of the elliptical cylinder

b is the depth of the elliptical cylinder

c is the height of the ellipsoid

To apply the capsule models to a humanoid robot, the
major dimensions of the humanoid are required. The width
and depth of each torso segment of the humanoid are used
for the parameters a, and b of the elliptical cylinder and the
ellipsoid. The width a should also satisfy the condition:

o< 56 g (1)

2
where Lgg is the shoulder girdle length in millimeters.
This is to ensure that the glenohumeral joint is attached to
the shoulder girdle while remaining separate from the body
to enable self collision detection between the upper arm and
body. The length of the elliptical cylinder and the height of

the ellipsoid are given by the length L1 of the torso segment.

Ly =1+2c )

The height c of the ellipsoid is determined by the shape of
the top and the bottom of the torso. For instance, if the torso
is flat towards the top and bottom, a low value of c is used,
and if the torso has a curved top and bottom, a higher value of

c is used. For the arms and legs, the length and radius of each
segment are used as inputs for the circular capsule parameters.

ITII. SELF COLLISION DETECTION

Possible collisions between the humanoid segments are
shown in Table 1. Depending on the range of the humanoid
joint angles, certain segment collisions are unlikely or im-
possible. For example, collisions between the head and legs
is theoretically possible, however due to the limited range of
waist and hip joint movements in most humanoids, such a
collision is highly unlikely for those humanoids. For connected
segments such as the upper and lower arm, the joint limit of
the elbow prevents the two segments from colliding.

UA,

LA,

UA,

LA,

B

H,N

)

T,

Ly

[ 2NN NN BN J

T

o|ofo|oO

Ll o

N O|e|O|e e efee@
[ )
[ )

njeleje e 00 0 0
:]>......
|ejoefoe|o

=
=~

r | UA] | LA;

TABLE I
POSSIBLE SEGMENT COLLISIONS.

e - Likely collision, o - Unlikely collision
(UA - Upper Arm, LA - Lower Arm, B - Body, H - Head, N - Neck, T -
Thigh, L - Leg, » - right, ; - left)

A. Collision detection algorithm

Each collision check is between two capsules representing
the two test segments of the humanoid. The moving segments
of the humanoid - the arms and legs - are represented by
circular capsules. Collisions can thus be either between a
circular capsule with an elliptical capsule (see figure 2) or a
circular capsule with another circular capsule. For the simpler
case of the head and the shoulder girdle, a sphere or an
ellipsoid respectively are tested with the circular capsules that
represent the moving humanoid segments.

Fig. 2. Collision test points of two capsules showing the three critical closest
points between capsules (A) and test points of the capsule end caps (B)



For collisions between two capsules, each collision check
is then reduced to a collision check between a sphere in space
and a capsule. This is done by finding the critical points
that gives the closest distance between the two test capsules.
There are three possible critical points representing the closest
distance between the circular capsule (Capsule P) with the
cylindrical section (c) and the top (¢) and bottom (b) end
points of the second, circular or elliptical, capsule (Capsule
Q). A sphere is located at the critical points on the circular
capsule P and collision checks are performed using spheres at
the critical points as well as the end caps of Capsule P. Figure
2 illustrates the concept.

The algorithm for collision detection between two capsules
is :

1) Find the three critical points p; ( where ¢ = ¢, ¢, b )
on the axis of Capsule P representing the closest points
between the two capsules

2) Find distance d; between each critical point p; and the
second test capsule, Capsule Q

3) If all of critical point distances are greater than their
respective minimum distance d,,, no collision possible.
ie. d; > dm.-

4) Else check if the critical points p; lie within the Capsule
P line segment. ie |p; — po| + [ps — p1| =1,

5) If any critical point lies on the Capsule P line segment
and its respective distance, d; > d,,, then collision
occurs. And for the point p., its corresponding closest
point g. on Capsule Q must also lie on the Capsule
Q line segment for collision to occur. ie |ge — qo| +
9c —a1| =1,

6) Else find distances between the two Capsule P end points
with all three sections of Capsule Q

7) 1If each distance is greater than its minimum distance d,,
then no collision occurs

8) Else collision occurs. And for collisions with the cylin-
drical section of Capsule Q, the closest point to the
Capsule P end points must also lie on the Capsule Q
line segment for collision to occur.

The minimum distances are: d,, = r}, + 4 for two circular
capsules, and d,, = r, for a circular capsule and elliptical
capsule.

Figure 3 shows all nine possible collisions between two
capsules. Collisions are between the cylindrical sections of
the capsules as well as the end points of the capsules.

B. Computing the critical points

1) Critical points for circular capsule collisions: For two
circular capsules, P and @ with axis having direction given
by unit vectors u, and ug, the critical points p., ps and pp
giving the shortest distance between the capsules are found
simply using well known equations relating the closest points
between two lines in space and a point and a line in space.

The critical point p, is:

Pe = Po + clp 3)

Fig. 3.

Nine possible collisions between two capsules

where [10]:

fie = ((Po — qo) x ugly) - (1) (4)

n-n

and the common normal n between the two axis is:

o Up X Uq 5)
[Up X uq|
If the axis are parallel then there is no unique value for p..
The closest points p; and pp on the Capsule P axis to the
end points of Capsule Q are given by:

(go — po) - (P1 — Po)

Iy

Pt = Up + Po (6)

Py 1s found similarly.

2) Critical points for elliptical capsule collisions: To find
the critical points, the circular cylinder is first projected onto
the coordinate frame given by the elliptical capsule axes (i.e
the elliptical cylinder axis and the ellipse major and minor
axis). The critical points p; on the circular cylindrical capsule
giving the shortest distance to the elliptical capsule are then
found.

On the plane given by the elliptical cylinder axis, the
parametric equations of the projected circular capsule axis are:

Tp = To + Ay (7

Yp = Yo + Auy 8

Substituting the parametric equations of the projected cap-
sule P axis into the ellipse equation of the capsule Q cylindrical
section, let:



(zo + Mug)® | (yo + Auy)?

F(\) = e E R 9)

a

Which is a quadratic equation in A. The turning point A, of
the quadratic function is given by:

_-k
° 2a
where [ is the coefficient of A and « is the coefficient of
A2,
The critical point p, is:

(10)

(1)

A gives the critical point and has the following properties:

If F(A\.) =0, then p. touches the ellipse.

If F(A.) <0, then p,. lies inside the ellipse.

If F(\;) > 0, then p. lies outside the ellipse and gives the
closest distance to the ellipse.

If the axis are parallel then there is no unique value for p..

For the critical point p; between the circular capsule with
the ellipsoid end point, the formulation can be extended to an
ellipsoid as follows:

Pc = Po + )\cup

(zo + Aug)?  (yo + )\Uy)Q
a? + b2 +

and for the critical point py

F(/\) _ (ZO +2)\Uz)2

-1 (12)

(20 + Aug)? N (yo + Auy)? N (20 + Mz + )2

F(A) = a2 b2 2

~1
(13)

C. Computing the shortest distance between capsules

For collision detection of Capsule P and Q, five spheres
representing Capsule P critical points and end points are placed
with centers py, Pt, Pe, Po, P1. For the general case of a
sphere with a capsule collision, let s represent the center of
any sphere.

1) Sphere - circular capsule collisions: As shown in figure
4, the shortest distance between the cylinder section of capsule
Q and sphere S is found using the distance of the point s to
the cylinder axis of P. The distance between the ends points
of the capsule and the sphere is given by the distance between
two points in space.

Fig. 4. Collision testing of sphere and circular capsule

The shortest distance between the center of the sphere s
and the axis of Capsule Q is:

|(s — qo) x (5 —q1)]
l(I

The shortest distance between the center of the sphere s
and the end points of Capsule Q is:

d= (14)

d=|(s—qo)l

2) Sphere - elliptical capsule collisions: To find the shortest
distance between the sphere and the elliptical capsule, the
sphere is projected onto the cooedinate frame given by the
elliptical capsule axes (i.e the elliptical cylinder axis and the
ellipse major and minor axis). The closest distance between the
sphere and the surface of the elliptical cylinder and ellipsoids
(see figure 5) is the found. For the elliptical cylinder scetion,
the shortest distance lies on the plane given by the center of
the sphere and the elliptical cylinder axis. The plane contains
an ellipse and a circle.
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Fig. 5. Collision testing of sphere and elliptical capsule

[16] gives the equations relating the closest point on an
ellipse to a given point. The closest point ks = (2, yx) on
the ellipse surface to the center of the circle s = (xs,ys)
occurs such that the line connecting the two points is normal
to the ellipse. The ellipse normal at any point (z,y) on the
ellipse is given by: [16]

2 2
S(EE)- G o
Orthogonality condition gives [16]:
(v = onsys =) = ¢ (5. 55 an
Replacing in the equation of the ellipse gives [16]:
ars \’ bys \’
(t—I—aQ) +<t+b2> —-1=0 (18)

Expanding gives a quartic polynomial in ¢. The largest root
tmaz Of the polynomial leads to the closest point [16]. The
roots of a quartic polynomial can be obtained using a number
of methods e.g. Newton-Raphson. However some programing
languages such as Matlab have built in functions that can be
used to easily and quickly compute the roots.



The closest point on the elliptical cylinder surface is [16]:

a’z,

=— 19
S —— (19)
b%ys
=—— 20
e — (20)
To check if the point lies outside of the ellipse:
2 2
Lk Yk
F(k) oz + 57 1 21
if F(k) > 0 the point is outside the ellipse.
The distance is then:
d=|(s—ks)| (22)

To calculate the distance from the sphere to the ellipsoid end
caps, the above equations can be extended as follows [15]:

e V(e V(e Y sy )
t+ a? t+ b2 t+c? B

for the bottom end cap

2 2 2
axs by c(zs +1p) B
(t+a2) +(t+b2> +< t+c? 1=0 @9

and the closest point ks = (x, yk, 2) formulated as above.

IV. CASE STUDY: SELF-COLLISION FREE ARM WORKSPACE

Using the forward kinematics [17] of a humanoid arm, the
arm workspace is computed with the added collision detection
constraint. To compute the workspace, each arm joint angle is
cycled through its minimum to maximum range of motion
and a discrete representation of the wrist and elbow position
is found. Any arm configurations that violate the collision
detection check are invalid and the corresponding wrist and
elbow positions are removed. The workspace is computed for
a simulated humanoid with the properties shown in Table II
and Table III:

Segment Length (mm)
Upper arm 365
Lower arm 270

Shoulder girdle 465
Body depth 190
Body width 445

TABLE II

HUMANOID PHYSICAL PROPERTIES

Joint Min | Max
Glenohumeral Adduction -40 180
Glenohumeral Flexion -60 180
Glenohumeral Rotation -90 90
Elbow Flexion 0 150
TABLE III

HUMANOID JOINT ANGLES

Two cases are considered. The first case computes the self
collision free workspace with the torso modeled as a circular
capsule which is similar to the single line swept sphere or the
capped circular cylinder used in [12] and [11] respectively. The
second case computes the self collision free workspace using
an elliptical capsule, as formulated in this paper, to represent
the torso.

A. Results

Figure 7 shows the results of the self collision detection for
the wrist workspace of a typical 7 degree of freedom humanoid
arm, using an elliptical capsule to represent the torso. The
workspace points are mapped to the nearest 2cm and each
graph shows a cross-section with a range of of points equal
to 10cm. Figure 8 shows the self collision free workspace
that would be obtained using a circular capsule to represent
the humanoid torso. Using the circular capsule as a bounding
volume for the torso results in 2.5% less number of feasible
workspace points compared to using an elliptical capsule as a
bounding volume. Figure 6 shows the difference in workspace
points obtained using an elliptical capsule versus a circular
capsule. As shown in Figure 6, not only the workspace points
close to the robot torso are affected, but the overall reach of
the arm is restricted by using the circular capsule to represent
the torso.
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Fig. 6. Difference in workspace points obtained using elliptical capsule
versus a circular capsule for the torso

V. CONCLUSION

The self collision detection scheme based on elliptical and
circular capsules as bounding volumes provides a simple and
quick way of modeling self collisions for humanoid robots.
It provides a good fit to the humanoid form and can be
used effectively for applications such as determining the self
collision free workspace and can potentially be used for
humanoid motion planning. Further work includes applying
the self collison detection scheme to a real humanoid robot
and using the scheme in motion planning for humanoid robots.
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Fig. 7.
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Self-collision free workspace of a humanoid arm using an elliptical
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