Bootstrapping Pronunciation Dictionaries:
Practical Issues

M. Davel and E. Barnard

Human Language Technologies Research Group
AAIICT / University of Pretoria, Pretoria, 0001, South Africa.

mdavel@csir.co.za,

Abstract

Bootstrapping techniques are an efficient way to develop elec-
tronic pronunciation dictionaries [1, 2], but require fast system
response to be practical for medium-to-large lexicons. In ad-
dition, user errors are inevitable during this process, and it is
useful if automatic means can be used to assist in the search for
such errors. We describe how the Default&Refine grapheme-to-
phoneme rule extraction algorithm [3] can be adapted to meet
both of these goals. Experimental results demonstrate the utility
of these methods.

1. Introduction

Electronic pronunciation dictionaries can be created efficiently
through the use of bootstrapping [1, 2]. In prior work, we have
developed an audio-enabled bootstrapping approach that com-
bines machine learning and human intervention during the dic-
tionary creation process in a way that minimizes and simplifies
the human effort required. This approach is the basis for an
open-source system that has been used for the development of
several pronunciation dictionaries [1, 4, 5].

During use of the system, two important practical issues
have arisen repeatedly, namely (a) the need for rapid system
response, and (b) the requirement to validate user inputs care-
fully, in order to minimize the number of erroneous words used
in training the system. In this paper, we report on adaptations
to a previously reported algorithm that allow us to address these
requirements.

In Section 2 we review the general bootstrapping approach
that is used in our system. Section 3 describes the incremental
variant of this approach which provides the necessary acceler-
ation of the process, and reports on a number of experiments
which reveal its advantages and limitations. Section 4 shows
how the evidence from the extracted rules can be used to flag
potential user errors.

2. Background

The core of the dictionary bootstrapping process relies on an
efficient grapheme-to-phoneme pronunciation prediction algo-
rithm. This algorithm is used to generalise from the existing
dictionary in order to predict additional entries, increasing the
size of the dictionary in an incremental fashion.

2.1. The bootstrapping process

The bootstrapping system is initialised with a large word
list (containing no pronunciation information), or with a pre-
existing pronunciation dictionary, if such a resource is available.
The system chooses the next ‘best’ word to consider, predicts a

ebarnardQup.ac.za

pronunciation for this word and presents a human dictionary
developer with an audio version of the predicted pronunciation.
The human acts as a ‘verifier’ and provides a verdict with re-
gard to the accuracy of the word-pronunciation pair: whether
the pronunciation is correct as predicted, or not. The verifier
can also indicate that the word itself is invalid, ambiguous de-
pending on context, or that he or she is uncertain about the sta-
tus. If the word is wrong, the verifier specifies the correct pro-
nunciation by removing, adding or replacing phonemes in the
presented pronunciation. A new audio version is generated, for
which the verifier can specify a new verdict. At this stage, the
learning algorithm updates the word-to-pronunciation model in
order to account for the corrected pronunciation. The process
is repeated (with increasingly accurate predictions) until a pro-
nunciation dictionary of sufficient size is obtained.

2.2. The Default&Refine algorithm

The predictive ability of the rule extraction technique substan-
tially influences the speed at which the system learns, and there-
fore the efficiency of the bootstrapping process. In the boot-
strapping system described here, we utilise the Default&Refine
algorithm [6] for rule extraction. Iterative Viterbi alignment is
used to obtain grapheme-to-phoneme mappings, after which a
hierarchy of rewrite rules is extracted. The rule set is extracted
in a straightforward fashion: for every letter (grapheme), a de-
fault phoneme is derived as the phoneme to which the letter is
most likely to map. “Exceptional” cases — words for which the
expected phoneme is not correct — are handled as refinements.
The smallest possible context of letters that can be associated
with the correct phoneme is extracted as a refined rule. Ex-
ceptions to this refined rule are similarly represented by further
refinements, and so forth, leading to a rule set that describes the
training set with complete accuracy. Although this approach is
very straightforward, it is quite competitive in terms of learning
efficiency (that is, the accuracy achieved with a limited number
of training examples) and asymptotic accuracy, when compared
to alternative approaches [3]. Further detail with regard to our
implementation can be found in [3].

3. Accelerating the process by incremental
learning

Since the bootstrapping system updates the rule set after every
correction by the verifier, the time taken for such updates is of
crucial importance. The update speed is influenced by two fac-
tors: the alignment speed and the rule extraction speed. If n
represents the number of words in the training dictionary and
m the number of conflicting patterns in the training dictionary,



then the complexity of the alignment process is O(n), and that
of the rule extraction process approximately O(m) < O(n), if
it is assumed for the sake of simplicity that all words are more
or less of equal length. This is typical of various of the rule
extraction techniques that are appropriate for g-to-p bootstrap-
ping.

If the entire set of training words is processed after every
correction, the update time becomes a limiting factor as the dic-
tionary grows. In our implementation, continuous updating be-
comes unwieldy when the number of words with known pro-
nunciations exceeds approximately 2000. On the other hand,
by performing batch updates at specific times that suit the ver-
ifier (e.g. at the end of a verification session), the update time
does not become a constraint, but the learning obtained during
the session is not utilised to refine models until after the end of
the session. In order to obtain an algorithm that allows for con-
tinuous model updating while keeping the update time within
acceptable limits, an incremental version of the Default&Refine
algorithm was developed.

While the original algorithm creates a set of graphemic rule
trees (one tree per grapheme) from the training set by con-
sidering all the training words simultaneously, the incremen-
tal version utilises the trees constructed during the previous
(batch mode) update, and adds the new refinements as leaves to
these trees: for each grapheme in the new word, if the realised
phoneme is predicted accurately by the current graphemic tree,
no update occurs; otherwise the smallest rule is extracted that
will describe the new word without affecting any of the existing
predictions. This version has O(d) complexity where d rep-
resents the average depth of the various graphemic rule trees
(which is approximately equivalent to the average context size
of the graphemic rule set). Using this incremental process, ad-
ditional learning can be obtained from the new words added
without causing discernible delay, even for large training dic-
tionaries.

In practice, the bootstrapping process operates in two
phases: during the first phase a batch update occurs for every
word; during the second phase a batch update occurs at synchro-
nisation events only, and incremental updates are performed in
between synchronisation events. The interval between synchro-
nisation events is based on a set number of “update words”, i.e.
words that have been corrected by the verifier (words that were
correctly predicted prior to verification do not contribute to this
count). At the end of this interval, a synchronisation event oc-
curs: the complete training dictionary is re-aligned, and new
rules are extracted in batch mode. During the update interval,
the Viterbi probabilities calculated at the previous synchronisa-
tion event are used per word to perform a fast alignment (the
probabilities are used in the standard way, but not updated) and
incremental Default&Refine is used to extract additional rules
from the single aligned word-pronunciation pair. Phase 2 is ini-
tiated well before the time required by the full update event be-
comes noticeable. (For our current system we progress from
phase 1 to phase 2 when 1500 valid words have been processed.)

As can be expected, the new algorithm is an approxima-
tion of standard Default&Refine, and therefore somewhat less
accurate than the original. We evaluate the performance of the
system using an existing pronunciation dictionary: Fonilex, a
pronunciation dictionary of Dutch words as spoken in the Flem-
ish part of Belgium [7]. In order to determine the efficiency of
the incremental approach, we first compare the two rule extrac-
tion processes (incremental mode and batch or standard mode)
without taking changes in alignment into account. We utilise

96 T T . T
Batch mode (50) ——
95 Incremental mode (50) -

94 i

93 g
92 X

Phoneme accuracy

90 7
89 /
88 /:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of words in training dictionary

Figure 1: Phoneme accuracy comparison for incremental and
batch mode at an update interval of 50.

10

i " d1: Inc vs Batch (50)' L
x d2: Inc vs None (50) -~

[$)]

S

'
(6]
—

Percentage change in phoneme accuracy
o

4
o

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of words in training dictionary

Figure 2: Relative change in phoneme accuracy when compar-
ing incremental with batch mode (61), and incremental mode vs
no updating between synchronisation events (d2); both at up-
date interval 50.

the same set of alignments' for both types of rule extraction,
and measure phoneme accuracy on the same training set using
the two different algorithms. We find that the decrease in ac-
curacy is slight once the graphemic trees are of sufficient size,
as demonstrated in Fig. 1 for a synchronisation interval of 50.
The difference in accuracy can be analysed in further detail by
calculating two values: J1, the relative increase in phoneme er-
ror rate when utilising the incremental mode compared to the
batch mode, and J2, the relative decrease in phoneme error rate
when utilising the incremental mode, in comparison with only
performing updates at synchronisation events and not updating
the models in between; that is,

_inc(z) — batch(x)

ou(w) = 1 — batch(x)

inc(z) — batch(z — 1)
1 — batch(x — 1)

* 100 1)

(52(%) =

100 2)

and where batch(z) indicates the phoneme accuracy using
batch rule extraction, and inc(z) the phoneme accuracy us-
ing incremental rule extraction, both at synchronisation point

I'The alignments used were obtained from a 173,873-word training
dictionary.



x. Fig. 2 illustrates the trends for the §; and d2 values for an
update interval of 50 (still utilising ideal alignments), providing
an additional perspective on the same data as displayed in Fig.
1.

The effect on rule set accuracy is strongly influenced by the
length of the update interval. We therefore compare the perfor-
mance of the two algorithms for different update intervals, and
find that the average §; and 2 values are both fairly linear in
relation to the update interval: the longer the interval, the less
accurate incremental updating becomes when compared with
batch updating, and the more value is provided by incremental
updating vs performing no updates in between synchronisation
events. In Fig 3 we plot the 61 and J2 values for update inter-
vals of length 50, 100, 150 and 200 during the first 4500 words
of bootstrapping. These trends continue for larger update inter-
vals.

4

Average d1 ——
Average d2 T

Percentage change in phoneme accuracy
o

0 50 100 150 200 250
Length of update interval

Figure 3: Average §1 and 62 values for update intervals of
length 50,100,150 and 200.

Finally, in order to ensure that the fast alignment process
does not introduce a noticeable loss in accuracy, we compare
the two algorithms (batch and incremental rule extraction), ap-
plying the alignment process as it would be used in practise:
performing a full alignment during synchronisation events and
using the fast alignment process in between. We find that while
there is a greater variance in the effect on phoneme accuracy
when using the fast alignment process during the first phase of
bootstrapping, this effect becomes negligible during the second
phase of bootstrapping. (In practice, fast alignment is only used
during the second stage of bootstrapping.) In Fig 4 we plot the
01 values for an update interval of 50, when using ideal align-
ments and actual alignments.

The above results indicate that incremental Default&Refine
provides an effective way of increasing system responsiveness.
As there is a clear trade-off between the length of an update
interval and learning efficiency, the update interval can be cho-
sen in a way that is suitable for the specific dictionary devel-
oper: longer continuous sessions (requiring slightly more cor-
rections), or shorter sessions with frequent breaks. As the dic-
tionary size increases and the rule set approaches asymptotic
accuracy, the number of words considered between synchroni-
sation events increases automatically?. For large dictionaries,
the batch update process can become a daily event, rather than

2For example, using an update interval of 50, approximately 200
training words are considered per session when just past the 4000-word
mark. (See Fig. 2.)

an hourly event, as would be the case for relatively small dictio-
naries.

10 .
(
(b

a) Ideal élignments' —
) Actual alignments ------

o

Change in phoneme accuracy

500 1000 1500 2000 2500 3000 3500
Number of words

Figure 4: Change in phoneme accuracy (61) when compar-
ing incremental with batch mode when (a) ideal alignments are
used, and (b) when actual alignments are used.

4. Semi-automatic detection of verifier
errors

Dictionary developers are typically required to enter phonemic
predictions for several thousand words in order to develop dic-
tionaries of sufficient accuracy. Although our interface attempts
to assist developers in this task (e.g. by audibly sounding out the
chosen pronunciations and by providing automatic predictions
for every word), it is inevitable that errors will arise from time
to time.

Fortunately, the Default&Refine approach is well suited to
assist in the detection of such errors. Since every rule in the hi-
erarchy is selected to describe a particular set of words, and er-
rors are likely to result in rules that are applicable to few words
besides the erroneous one, one expects that erroneous transcrip-
tions will tend to show up as rules which support few words. Of
course, there may also be valid pronunciation rules which are
not supported by many examples; it therefore is an experimen-
tal issue to determine how useful this guideline is in practically
detecting transcription errors. Different languages will differ
in this regard — a highly “regular” language such as Spanish *
will generally have many examples of each valid rule, whereas
the idiosyncrasies of English pronunciation will produce a large
number of valid special cases. As a consequence, our approach
is expected to be more successful for languages such as Spanish.

To investigate the utility of the proposed method for detect-
ing transcription errors, we have conducted a number of sim-
ulation experiments with Afrikaans, which is a Germanic lan-
guage with a fairly regular grapheme-to-phoneme relationship.
Heuristically, we expect Afrikaans to lie somewhere in the mid-
dle of the continuum between regular and irregular languages.
Our experiments used a dictionary with 5 013 words, which
were transcribed by a linguistically sophisticated first-language
Afrikaans speaker and verified by the authors. Based on ear-
lier experience with dictionary developers who are more error
prone [5], we artificially corrupted a fraction of these transcrip-
tions and then measured the efficiency of the number-of-words

3That is, a language with a very regular mapping between phonemes
and graphemes.



guideline to indicate the words with corrupted transcriptions.
We introduced two types of corruptions into the transcriptions:

e Systematic corruptions reflect the fact that users are
prone to making certain transcription errors - for exam-
ple, in the DARPA phone set, ay is often used where ey
is intended. We allowed a number of such substitutions,
to reflect observed confusions by Afrikaans transcribers.

e Random corruptions simulate the less systematic errors
that also occur in practice; in our simulations, random
insertions, substitutions and deletions of phonemes were
introduced.

We generated four corrupted data sets (systematic substitutions;
random insertions, substitutions and deletions), where 1% of the
words were randomly selected for corruption. Default&Refine
rule sets were then generated for each case *, and the percent-
age of erroneous words that are matched by the most specific
rules was determined. (Since Default&Refine always applies
rules in the order most to least specific, the rule ordering used
for prediction was used as measure of specificity. The speci-
ficity of a word was taken as the specificity of its most specific
grapheme, since a transcription error may result in one or more
rules becoming highly specific to that word.) In Fig. 5 we show
the fraction of errors that remain undetected against the fraction
of words examined, as this threshold of specificity is adjusted.
(Note that this depiction is closely related, but not identical, to
that in the well-known Detection Error Tradeoff (DET) curves

(81)

100 100
80 80
60 60
40 40
2 2
oL oo
0 20 40 60 80 100 0 20 40 60 80 100
(a) (b)
100 100
80 80
60 60
40 40 <
20 20
0 e S 0 —
0 20 40 60 80 100 0 20 40 60 80 100
(c) (d)

Figure 5: Fraction of erroneous words that are not detected as
a function of the fraction of all words examined, when words
are examined in the order of their most specific rules, for vari-
ous types of corruptions: (a) random substitutions (b) random
insertions (c) random deletions and (d) systematic substitutions.

These results suggest that this method has significant use in
accelerating the process of error detection. For all three types
of random errors, more than 90% of the errors can be identi-
fied after inspecting fewer than 20% of the transcriptions. As
far as the systematic errors are concerned, about half the errors
occur in the first 5% of the words inspected; by that time, the
systematic patterns are obvious, and can be used to select other
candidate words where these same errors may have occurred.

In practice, the error-detection process can be combined
with the synchronisation event, with possible errors flagged by

4The full algorithm was used, not the incremental version described
in Section 3.

the bootstrapping system and corrected where necessary by a
human verifier, prior to continuing with the next session. This
then becomes a simple and efficient way of identifying errors
during bootstrapping. Alternatively, the error-detection process
can be used as a stand-alone technique, in order to identify pos-
sible errors in a pronunciation dictionary developed via different
means.

5. Conclusion

Bootstrapping is an important approach to the development of
resources in human language technologies. In the specific case
of developing pronunciation dictionaries, the past few years
have seen significant progress in terms of available algorithms
and systems. The techniques discussed here make it possible to
maintain acceptable system response times for growing vocab-
ulary sizes, and also to detect errors in such dictionaries in an
efficient manner. It is hoped that these and related developments
will accelerate the development of high-quality open resources
for many of the languages of the world.

6. Acknowledgements

This work was supported by the African Advanced Institute for
Information and Communication Technologies (AAIICT).

7. References

[1] M. Davel and E. Barnard, “Bootstrapping for language re-
source generation,” in Proceedings of the Symposium of
the Pattern Recognition Association of South Africa, South
Africa, 2003, pp. 97-100.

S. Maskey, L. Tomokiyo, and A.Black, “Bootstrapping
phonetic lexicons for new languages,” in Proceedings of
Interspeech, Jeju, Korea, October 2004, pp. 69-72.

[2

—

[3] M. Davel and E. Barnard, “Prediction pronunciations with
default&refine: analysis and results,” in Proceedings of
Interspeech (submitted for publication), Lisboa, Portugal,
October 2005.

M. Davel and E. Barnard, “The efficient creation of pronun-
ciation dictionaries: Machine learning factors in bootstrap-
ping,” in Proceedings of Interspeech, Jeju, Korea, October
2004, pp. 2781-2784.

[5] M. Davel and E. Barnard, “The efficient creation of pro-
nunication dictionaries: Human factors in bootstrapping,”
in Proceedings of Interspeech, Jeju, Korea, October 2004,
pp. 2797-2800.

M. Davel and E.Barnard, “A default-and-refinement ap-
proach to pronunciation prediction,” in Proceedings of the
Symposium of the Pattern Recognition Association of South
Africa, South Africa, November 2004, pp. 119-123.

[7] P. Mertens and F. Vercammen, ‘“Fonilex manual,” Tech.
Rep., K.U.Leuven CCL, 1998.

[8] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and
M. Przybocki, “The det curve in assessment of detection
task performance,” in Proceedings of the European Con-
ference on Speech Communication and Technology, 1997,
pp. 1895-1898.

[4

—

[6

—_



