
The Efficient Generation of Pronunciation Dictionaries:
Machine Learning Factors during Bootstrapping

Marelie Davel and Etienne Barnard

CSIR / University of Pretoria
Pretoria, South Africa

mdavel@csir.co.za ebarnard@up.ac.za

Abstract
Several factors affect the efficiency of bootstrapping approaches
to the generation of pronunciation dictionaries. We focus on
factors related to the underlying rule-extraction algorithms, and
demonstrate variants of the Dynamically Expanding Context al-
gorithm, which are beneficial for this application. In particular,
we show that continuous updating of the learned rules, coupled
with a new approach to grapheme-to-phoneme alignment and a
sliding-window approach to choosing the context window, leads
to an efficient and accurate bootstrapping mechanism.

1. Introduction
An accurate pronunciation dictionary or letter-to-sound conver-
sion model is an important resource when developing speech
technology for a new language. The development of either of
these resources typically requires significant effort and linguis-
tic expertise. This can be an obstacle in language environments
where prior linguistic resources do not exist and skilled com-
putational linguists are not readily available. In prior work we
therefore proposed audio-enabled bootstrapping [1] as an effec-
tive approach to the development of pronunciation dictionar-
ies and/or rule sets. The aim of this approach is to combine
machine learning and human intervention during the dictionary
creation process in a way that minimizes the amount and so-
phistication of human effort required. This is achieved by (a)
optimizing the speed and accuracy with which the system learns
from the human input, and (b) minimizing the effort required by
the human verifier to identify errors accurately.

Our initial explorations focused on the feasibility of the pro-
posed process and predicted that significant acceleration could
be achieved via this approach. In [2] we explored ways in which
the process can be optimised by analysing user-system interac-
tion. In this paper we describe the techniques implemented to
optimise the process from a machine learning perspective, and
report on the results achieved. Section 2 provides background
with regard to the use of bootstrapping in language resource
generation. Section 3 describes the specific machine learning
techniques implemented and section 4 describes the experimen-
tal results obtained.

2. Background: Bootstrapping
Bootstrapping techniques, including cross-language bootstrap-
ping, have proven useful for the cost-effective development
of language resources in new languages. For example, when
acoustic models are developed for a new target language, an au-
tomatic speech recognition system can be initialised with mod-
els from an acoustically similar source language, and these ini-

tial models improved through an iterative process during which
audio data in the target language is automatically segmented
and used to retrain the target language acoustic models. The
potential saving in effort achieved through such a process has
been well demonstrated[3].

Bootstrapping approaches are applicable to various lan-
guage resource development tasks, specifically where an au-
tomated mechanism can be defined to convert between vari-
ous representations of the data considered. In the above exam-
ple, two representations are utilised: annotated audio data and
acoustic models, and the mechanisms to move from one rep-
resentation to the other are well defined through the phoneme-
alignment and acoustic modelling tasks respectively.

This general approach can be applied to the task of creating
a pronunciation dictionary, using word/pronunciation pairs and
word-to-pronunciation rules (also referred to as letter-to-sound,
grapheme-to-phoneme or G2P rules) as alternative representa-
tions of the same information, as we described in [1].

Here the system is initialised with a large word list (con-
taining no pronunciation information). The system chooses the
next ‘best’ word to consider, predicts a pronunciation for this
word and presents a human dictionary developer with an audio
version of the predicted pronunciation. The human acts as a
‘verifier’ and provides a verdict with regard to the accuracy of
the word-pronunciation pair: whether the pronunciation is cor-
rect as predicted. The verifier can also indicate that the word
itself is invalid, ambiguous depending on context, or that he or
she is uncertain about the status. If the word is wrong, the ver-
ifier specifies the correct pronunciation by removing, adding or
replacing phonemes in the presented pronunciation. A new au-
dio version is generated, for which the verifier can specify a new
verdict. At this stage, the learning algorithm updates the word-
to-pronunciation model in order to account for the corrected
pronunciation. The process is repeated (with increasingly ac-
curate predictions) until a pronunciation dictionary of sufficient
size is obtained.

3. Optimizing system learning efficiency
We now discuss a number of algorithmic factors that are impor-
tant for the efficiency of the bootstrapping approach.

3.1. System continuity

The faster the system learns, the fewer corrections are required
of the human verifier, and the more efficient the bootstrapping
process becomes. The most important aspect that influences the
speed at which the system learns relates to the continuity with
which the system updates its knowledge base. A continuous
process was chosen, whereby the system regenerates its predic-

tion models after every single word verified. This has a signifi-
cant effect on system training responsiveness, especially during
the initial stages of dictionary development when the system has
access to very little information on which to base its predictions.

3.2. Word-to-pronunciation prediction model

A second aspect that influences system performance signifi-
cantly relates to the type of word-to-pronunciation prediction
model used. The ideal formalism would be able to represent
the word/pronunciation data exactly, have high predictive abil-
ity and achieve an acceptably high level of performance at a low
computational cost for model training – an important consider-
ation for our system, given that continuous model updating is
required.

Various formalisms have been used for the generic task
of pronunciation prediction, including explicit hand-crafted
grapheme-to-phoneme mapping rules, neural networks, deci-
sion trees and various forms of instance-based learning. The
results when applying appropriate versions of the different for-
malisms mentioned above are comparable, with different al-
gorithms outperforming others in different conditions. Koho-
nen’s Dynamically Expanding Context (DEC), initially applied
by Torkkola to the G2P problem [4], is a popular instance-based
learning algorithm that predicts phoneme realisation based
solely on graphemic context. As DEC meets the specific re-
quirements for our bootstrapping system (as mentioned above),
a variation of DEC was chosen as rule extraction mechanism.

In DEC, each rule specifies a mapping of a single grapheme
to a single phoneme for a given left and right graphemic con-
text, i.e is of the form: (left context, grapheme, right con-
text) → phoneme. Each word in the training dictionary is first
aligned with its pronunciation on a per-grapheme basis. For
each grapheme-to-phoneme alignment pair, rules are extracted
by finding the smallest graphemic context that provides a unique
mapping to a specific phoneme. In DEC, if an n−letter context
is not sufficient, the context is expanded to either the right or
the left. This ‘specificity order’ influences the performance of
the algorithm. In the initial implementation, the set of rules was
then ordered in an efficient tree structure.

Two variations on traditional DEC are implemented: (1)
Using a sliding window for each context size, and (2) Over-
growing the set of rules for each context size, optionally remov-
ing redundant rules. DEC, as applied by Torkkola [4] expands
the context one letter at a time, either favouring the right- or left-
hand side explicitly. We use a sliding window that first consid-
ers all possible contexts of size n, before continuing to consider
contexts of size n+1. This prevents a rule with unnecessarily
large context from being extracted, when a more general rule
would suffice. Since multiple rules of the same context size
may apply to a single grapheme-to-phoneme mapping (such as
re,s,ti → s and ere,s,t → s), contexts that are already served
by existing rules can be removed to prevent over-specialisation.
Because all contexts of each size are considered, the order in
which contexts are expanded (for a specific context-level) be-
comes insignificant.

Generating a new pronunciation is a simple procedure: each
grapheme in the word is considered in turn, and the rule describ-
ing the largest matching context is used to predict the phoneme
to be generated. When a shifting window is used, more than one
conflicting rule of the same size may apply to a word. Various
conflict resolution strategies can be implemented: in the set of
experiments reported below, the most frequently observed rule
is selected.

3.3. Grapheme-to-phoneme alignment

In order to extract DEC G2P rules, each word/pronunciation
pair in the current pronunciation dictionary must be aligned on
a grapheme-to-phoneme basis, inserting graphemic and phone-
mic nulls as required. (A phonemic null is inserted where a
single phoneme is produced from more than one grapheme, and
a graphemic null where a single grapheme is realised as more
than one phoneme.)

Errors in grapheme-to-phoneme alignment do not affect
different rule extraction techniques to the same extent. The
DEC-based rule extraction mechanisms used by this system is
sensitive to alignment accuracy. For example, the correct DEC
extraction rule for the grapheme-pair ‘aa’ in Afrikaans is a a

− > a:0 where 0 indicates the null phoneme. If the system in-
correctly aligns the words ”daar” and ”waar” as follows: d a a r

− > d a : 0 r and w a a r − > v 0 a : r, DEC will not be able to
extract the fairly simple rule specified above, as the two words
provide conflicting evidence with regard to the pronunciation
of ‘aa’. For this reason, the grapheme-to-phoneme alignment
process is optimised. Where the alignment process is typically
based on the set of probabilities that a grapheme is realised as a
specific phoneme, we add an additional set of probabilities: the
probability that a grapheme is realised as a null phoneme, given
the identity of the preceding non-null phoneme observed.

3.4. Word validation order

The final system design aspect considered that has a signifi-
cant influence on the speed at which the system learns, relates
to the mechanism whereby the next ‘best’ word to add to the
knowledge base is predicted. As user verification speed re-
lates first and foremost to the number of incorrect phonemes
to correct (see [2]) shorter words are chosen first. The system
grows its understanding of pronunciations-in-context systemat-
ically. Contexts of varying sizes are ordered according to oc-
currence frequency in general text, creating a list of ‘contexts
in question’. A continuous process predicts the next best word
to verify based on the current state of the system: the shortest
word is chosen that contains the next context in question.

4. Experimental results
In order to measure the accuracy of the dictionary development
process from a system perspective, the process was tested on
three existing pronunciation dictionaries:

• NETtalk, a publicly available 20,008-word English pro-
nunciation dictionary[5]. Hand-crafted grapheme-to-
phoneme alignments are included in the dictionary.

• Fonilex, a publicly available 200,000-word pronuncia-
tion dictionary of Dutch words as spoken in the Flemish
part of Belgium[6].

• a 3,439-word Afrikaans pronunciation dictionary, built
using the bootstrapping system.

4.1. G2P alignment accuracy

Iterative forced Viterbi alignment (Align v1) is used to align
each grapheme-to-phoneme pair, inserting phonemic nulls
where required, as used by Anderson[7] and others. Graphemic
nulls do not occur in the NETtalk corpus. For other corpora, our
algorithm inserts graphemic nulls during a pre-processing step:
graphemic null generator pairs (two graphemes that result in
more than two phonemes) are identified by Viterbi-alignment of

all word-pairs where pronunciation length is longer than word
length. The initial probabilities for both types of Viterbi align-
ment are obtained from words and pronunciations that have
equal length, and the alignment process is repeated until no fur-
ther likelihood improvement is observed. Alignment accuracy
on the NETtalk corpus using this implementation is higher than
the results reported by Anderson [7], as compared in Table 1.
The basic algorithms are similar, apart from the different han-
dling of graphemic nulls.

An additional improvement can be obtained if the transcrip-
tion convention used by NETtalk is adapted. In NETtalk, null
phonemes are used to identify graphemes that are “deleted” dur-
ing pronunciation, for example the word writer is transcribed as
w r i t e r − > 0 r A t 0 R. An alternative convention would
be to use null phonemes simply to identify instances where two
or more graphemes give rise to a single phoneme (without iden-
tifying a particular grapheme as deleted), by aligning the first
grapheme in such a group with a non-null phoneme, and sub-
sequent graphemes with nulls. Using this convention, the word
writer is transcribed as w r i t e r − > r 0 A t R 0

Using a set of about 40 rewrite rules, the NETtalk dictio-
nary can be rewritten using either the one convention or the
other. Using the second convention, the dictionary responds
better to data-driven alignment and the second version of our
Viterbi algorithm (Align v2). This algorithm explicitly calcu-
lates the probability that a specific grapheme is realised as a
null phoneme, given the previous non-null phonemic realisa-
tion of the preceding grapheme or graphemes, and provides a
significant performance improvement.

Table 1: Phone and word alignment accuracy obtained on the
full 20,008-word NETtalk corpus

Database Type Phone Word
NETtalk-original Iterative Viterbi [7] 93.2 83.7
NETtalk-original Align v1 96.5 87.3
NETtalk-rewritten Align v2 98.7 95.4

The effect of the improvement in alignment accuracy on
rule extraction accuracy is depicted in Fig. 1. The Align v1 and
Align v2 algorithms are used prior to DEC-min rule extraction
on the Fonilex database, and grapheme-to-phoneme prediction
accuracy measures against a 5000-word test set.

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

W
or

d-
le

ve
l a

cc
ur

ac
y

Number of words

Align v1
Align v2

Figure 1: Effect of different alignment algorithms on word-level
pronunciation prediction accuracy of DEC-min

4.2. G2P rule extraction

4.2.1. Accuracy during bootstrapping

The accuracy of the different DEC variations tested differ based
on the stage of bootstrapping. In this section we describe the
trends observed during the critical first 5000 words of boot-
strapping. The bootstrapping process is simulated by testing the
algorithms on an existing dictionary (the Flemish Fonilex dic-
tionary). In all experiments the size of the maximum context al-
lowed when extracting rules is not restricted and the same word
training order (even selection from corpus) is used. A 5000
word test set is used. Figures 2 and 3 compare the performance
1 of different DEC variations.

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

DEC-min
DEC-win

DEC-grow
DEC-conflict

Figure 2: Word accuracy of different DEC variations

 84

 86

 88

 90

 92

 94

 96

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

DEC-min
DEC-win

DEC-grow
DEC-conflict

Figure 3: Phoneme accuracy of different DEC variations

The lowest accuracy is observed if DEC is not allowed to
grow a context beyond word boundaries and conflicting words
are ignored (DEC-conflict). In order to remove this boundary
effect, the version of DEC (DEC-grow) that was implemented
allows a context to grow towards the opposite side if a word
boundary is encountered. Three shifted window versions of
DEC are implemented: extracting the first valid rule (DEC-
win), extracting the maximum number of valid rules (DEC-
max), and pruning this system to obtain the minimum number
of rules that still provide full coverage for the training corpus
(DEC-min). Since DEC-max (not shown) over generates rules,
performance is lower than in the case of DEC-win but once

1Word accuracy measures the number of words that are completely
correct, while phoneme accuracy is measured as the number of correct
grapheme-to-phoneme mappings minus deletions, divided by the total
number of grapheme-to-phoneme mappings considered.

pruned back (DEC-min), performance again increases. For the
training set sizes analysed, the pruned, shifted window version
of DEC (DEC-min) provides a consistent improvement in accu-
racy, as illustrated in Figures 2 and 3.

Asymptotic performance is only achieved for larger train-
ing sets, yet the system performs well for the small data sets
that are available during the initial stages of the dictionary cre-
ation process: after a 1000 words have been observed, a verifier
would be correcting less than 1 out of 10 phonemes.

While our goal was to find an algorithm that performs well
during the initial stages of bootstrapping, accuracy on larger
corpora compare with previously published results. On the
NETtalk corpus we achieve an accuracy similar to Torkkola’s
DEC [4] and Hakkinen’s trie and decision-tree implementations
[8]; and slightly worse than Yvon’s chunk-based implementa-
tion [9]. For larger corpora, the relative performance of the
DEC variations studied becomes less distinct; for example, at
40,000 training words from the Fonilex corpus, DEC-grow ob-
tains a phoneme prediction accuracy of 97.10% compared to the
97.18% phoneme prediction accuracy of DEC-min.

4.2.2. Rule set analysis

While algorithmic analysis is possible using pre-existing dictio-
naries, the aim of the bootstrapping process is the development
of new dictionaries. The system described here was used to
generate a bootstrapped dictionary for Afrikaans, as described
in [2]. Using DEC-min, a phoneme accuracy of 93.1% and a
word accuracy of 68.57% were obtained after training on 2,580-
words (and testing on the remainder). An analysis of the rules
obtained from the bootstrapped Afrikaans dictionary is shown
in Table 2. The numbers of rules of each size (the size of the
context that specifies the rule), as extracted from different-sized
training dictionaries, using DEC-grow, DEC-max and DEC-
min are compared. Note that DEC-max tends to extract more
rules than DEC-grow but that these rules tend to be shorter, as
expected. DEC-min reduces the number of rules significantly
(without compromising on performance.)

Table 2: Number of rules of each size generated by different rule
extraction techniques

DEC
grow

DEC
max

DEC
min

100 1,000 2,580 100 1,000 2,580 100 1,000 2,580

1 26 26 26 26 26 26 26 26 26
2 35 50 46 74 89 85 53 75 70
3 63 364 526 74 589 922 32 310 507
4 6 200 626 3 274 1078 2 111 414
5 0 85 305 0 8 41 0 4 22
6 1 7 39 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0

131 732 1569 177 986 2152 113 526 1039

5. Conclusion
By carefully optimizing a number of factors, such as selection
of the context window, alignment algorithm, and the order of
word validation, it is possible to achieve significant gains in the
efficiency of bootstrapping for the generation of pronunciation
dictionaries. Our initial experiments, as reported in [2], con-
firm that this enables dictionary developers with limited formal

linguistic training to create accurate pronunciation dictionaries
efficiently.

The current system provides an effective platform for the
development of such dictionaries, but further gains are likely to
arise from future improvements. Most importantly, the current
algorithm treats each grapheme as a unique entity, whereas sim-
ilar graphemes (e.g. those that code for vowels) tend to behave
similarly. A class-based algorithm should therefore be able to
improve learning speed significantly. Further work relates to ex-
ploring the ways in which the algorithmic requirements change
for different phases of the bootstrapping process.

6. Acknowledgements
This work was supported by the CSIR Information Society
Technologies Centre, South Africa, as well as the Local Lan-
guage Speech Technology Initiative (LLSTI).

7. References
[1] Marelie Davel and Etienne Barnard, “Bootstrapping for

language resource generation,” in Proceedings of the 14th
Symposium of the Pattern Recognition Association of South
Africa, South Africa, 2003, pp. 97–100.

[2] Marelie Davel and Etienne Barnard, “The efficient creation
of pronunication dictionaries: Human factors in bootstrap-
ping,” in Proceedings of the ICSLP, Jeju, Korea, 2004.

[3] T. Schultz and A. Waibel, “Language-independent and
language-adaptive acoustic modeling for speech recogni-
tion,” Speech Communication, vol. 35, pp. 31–51, Aug.
2001.

[4] K. Torkkola, “An efficient way to learn english grapheme-
to-phoneme rules automatically,” in Proceedings of the
International Conference on Acoustics and Speech Signal
Processing (ICASSP), Minneapolis, 1993, vol. 2, pp. 199–
202.

[5] T.J. Sejnowski and C.R. Rosenberg, “Parallel networks that
learn to pronounce english text,” Complex Systems, pp.
145–168, 1987.

[6] P. Mertens and Filip Vercammen, “Fonilex manual,” Tech.
Rep., K.U.Leuven CCL, 1998.

[7] Ove Andersen, Roland Kuhn, Ariane Lazarides, Paul Dals-
gaard, Jurgen Haas, and Elmar Noth, “Comparison of two
tree-structured approaches for grapheme-to-phoneme con-
version,” in Proceedings of the ICSLP, Delaware, 1996, pp.
1808–11.

[8] J. Hakkinen, J. Suontausta, S. Riis, and K Jensen, “Ac-
cessing text-to-phoneme mapping strategies in speaker in-
dependent isolated word recognition,” Speech Communica-
tion, vol. 41, pp. 455–467, 2003.

[9] Francois Yvon, “Grapheme-to-phoneme conversion using
multiple unbounded overlapping chunks,” in Proceedings
of Conference on New Methods in Natural Language Pro-
cessing (NeMLaP), Ankara, Turkey, 1996, pp. 218–228.

