A default-and-refinement approach to pronunciation prediction

M. Davel and E. Barnard

Human Language Technologies Research Group
CSIR / University of Pretoria, Pretoria, 0001

ndavel @sir.co.za, ebarnard@ip. ac. za

Abstract

We define a novel g-to-p prediction algorithm that
utilises the concept of a ‘default phoneme’: a grapheme
which is realised as a specific phoneme significantly more
often than as any other phoneme. We find that this ap-
proach results in an algorithm that performs well across
a range from very small to large data sets. We evalu-
ate the algorithm on two benchmarked databases (Fonilex
and NETtalk) and find highly competitive performance
in asymptotic accuracy, initial learning speed, and model
compactness.

1. Introduction and background

The ability to predict the pronunciation of a written word
accurately is an important sub-component within many
speech processing systems. This task is typically ac-
complished through explicit pronunciation dictionaries or
grapheme-to-phoneme (g-to-p) rule sets. Both of these
resources can be difficult to obtain and resource-intensive
to develop when creating speech technology in a new lan-
guage. The dictionary creation process can be made more
efficient through the use of g-to-p rule-based bootstrap-
ping [1]: an audio-enabled process whereby g-to-p rules
are extracted from the current dictionary (however small)
and used to predict additional entries. Predicted entries
are subsequently presented to and verified by a human
verifier and the process is repeated until a dictionary of
sufficient size is obtained.

The efficiency of this process is influenced by the ef-
ficiency of the g-to-p rule extraction mechanism. G-to-p
rules are typically used to generalise from existing pro-
nunciation dictionaries when handling out-of-vocabulary
words; and to compress information when requiring a
pronunciation model in a memory-constrained environ-
ment. Such applications require a balance between the
need for small rule sets, fast computation and optimal ac-
curacy. During bootstrapping, a key requirement is learn-
ing speed, i.e. we are specifically interested in obtaining
a high level of generalisation given a very small training
set.

Various approaches to g-to-p rule extraction exist.
When considering data-driven approaches, formalisms
that have been used successfully for this task include

neural networks [2], decision trees [3], pronunciation-by-
analogy models [4]; various instance-based learning al-
gorithms such as Dynamically Expanding Context (DEC)
[5] and IB1-IG [6]; and the combination of methods and
additional information sources through meta-classifiers
[71.

The results when applying appropriate versions of
the different formalisms mentioned above are typically
comparable, with variations in performance for specific
tasks. Languages with irregular spelling systems such as
English and French perform well within analogy-based
frameworks, while instance-based learning is well suited
to languages with a more regular orthography, such as
Italian or Dutch. Results for different algorithms are
compared in greater detail in section 3.

In this paper, we describe a novel approach to the
g-to-p rule extraction problem (section 2) and evaluate
the new approach in comparison with benchmarked al-
gorithms (section 3). We demonstrate the learning curve
and asymptotic behaviour of the algorithm, and discuss
the implications of our results in the concluding section.

2. Approach

Grapheme-to-phoneme prediction algorithms rely on the
connection between the spoken and written form of a
language. The more modern the language, the stronger
this connection, the more regular the spelling system
of the language, and the stronger the concept of a ‘de-
fault phoneme’: a grapheme that is realised as a sin-
gle phoneme significantly more often than as any other
phoneme. Figure 1 and Figure 2 illustrate this phe-
nomenon for Flemish. When counting the number
of times a specific grapheme is realised as a specific
phoneme, most graphemes follow the trend depicted in
Figure 1. For the 'most conflicted” phones (h,j,n,u), the
trend is less strong, but also clearly discernable, as de-
picted in Figure 2. Similar trends are observable for lan-
guages with less regular spelling systems, with a larger
proportion of graphemes of these languages displaying
the behaviour depicted in Figure 2.

We use this information to define an algorithm that
uses greedy search to find the most general rule at any
given stage of the rule extraction process. When applying



80 |

% of samples

, \,\\\‘, =5 & =) 55
4 6 8 10
Most to least frequent g-to-p mapping observed

Figure 1: Default phone behaviour of graphemes d,s,t
and j in Flemish. Only the first 10 phonemic candidates
are displayed.

80 : R
70 + u = B
60 [ R
50 F-. ) R

40 F—2 i

% of samples

30 b

20 +

10 +

=}
.
L

0 2 4 6 8 10

Most to least frequent g-to-p mapping observed

Figure 2: Conflict phone behaviour of graphemes h,j,n,u
in Flemish. Only the first 10 phonemic candidates are
displayed.

these rules during g-to-p prediction, we use the reverse
rule extraction order. Explicitly ordering the rules pro-
vides flexibility during rule extraction, and ensures that
the default pattern acts as a back-off for the next rule de-
fined.

The framework we use is similar to that of most multi-
level rewrite rule sets. Each g-to-p rule consists of a pat-
tern:

(left context — g — right context) —p (1)

The pronunciation for a word is generated one grapheme
at a time. Each grapheme and its left and right context
as found in the target word are compared with each rule
in the ordered rule set; and the first matching rule is ap-
plied. Interestingly, while the rule application order of
DEC (the algorithm closest to ours) is ordered by context
size (largest rule first), our reverse rule extraction order
automatically reverts to context size ordering in the case
of DEC-based rule extraction.

Prior to rule extraction, grapheme-to-phoneme align-
ment is performed according to the Viterbi alignment pro-
cess described in [8]. During rule extraction, the rule set
for each grapheme is extracted separately. For any spe-
cific grapheme, applicable words are split into two sets
based on whether the current rule set predicts the pronun-
ciation of that grapheme accurately (Completed words) or
not (New words). Definition of a new rule moves words
from the New to the Completed set. Any words that are
currently in the Completed set and conflict with the new
rule, are moved back to the New set. The rule that will
cause the most net words to be moved from the New to
the Completed set is chosen first, irrespective of context
size. Conflict is only resolved in the Completed set; new
rules are allowed to conflict with words still in New. This
ensures that the rule set is built for the default pattern(s)
first.

Table 1: The relationship between a word and its sub-
pattern during rule extraction for grapheme e.

Word test

Word pattern | #t-e-st# — E

Sub-patterns | -e- — E,-e-s — Et-e- > Ejt-e-s — E
t-e-st — E, #t-e-s — E,-e-st# — E
#t-e-st — E t-e-st# — E #t-e-st#t — E

In order to implement this algorithm in a computa-
tionally efficient way, the following techniques are used:

e The large word sets are used to keep track of status,
but further manipulation utilises two sets of sub-
patterns: the Possible sub-patterns, indicating all
possible new rules, and consisting of all the sub-
patterns of each word pattern in New, excluding all
for which the left-hand side is an existing rule; and
the Caught set of sub-patterns, indicating all the
sub-patterns explicitly or implicitly covered by the
current rule set. The relationship between a word
and its sub-patterns is illustrated in Table 1. Hashes
denote word boundaries.

e Words are pre-processed and the word patterns rel-
evant to a single grapheme extracted and written
to file. All further manipulation considers a single
grapheme (and set of word patterns) at a time.

e The context size of the sub-patterns considered is
grown systematically: only sub-patterns up to size
max + win are evaluated, where max indicates
the current largest rule, and win is defined to en-
sure that any larger contexts that may be applicable
are considered, without requiring all patterns to be
searched.

e Both the Possible and Caught sets of sub-patterns
count the number of times a matching word pat-
tern is observed in the relevant word sets. The



next rule is chosen by finding the pattern for which
the matching count in Possible minus the conflict-
ing count in Caught is highest. (The conflicting
count is the number of times a matching left-hand
pattern is observed with a conflicting right-hand
phoneme.)

e Whenever a sub-pattern in Possible or Caught
reaches a count of zero, the sub-pattern is deleted
and not considered further, unless re-added based
on an inter-set move of a related word.

3. Evaluation

We use two corpora to evaluate the performance of the
algorithm:

e Fonilex, a publicly available pronunciation dictio-
nary of Dutch words as spoken in the Flemish part
of Belgium. We use the exact pre-aligned 173,874-
word dictionary as used in [7].

e NETtalk, a publicly available 20,008-word En-
glish pronunciation dictionary [9]. Hand-crafted
grapheme-to-phoneme alignments are included in
the dictionary.

In all experiments we perform 3-fold cross-validation
based on a 90% training and 10% test set. We report on
phoneme correctness?, phoneme accuracy? and word ac-
curacy®. Where there is uncertainty with regard to the
measure used in the benchmark result, word accuracy
provides the least ambiguous comparison.

3.1. Learningcurve

As we aim to use this algorithm for the bootstrapping
of pronunciation dictionaries, we are interested in the
performance of the algorithm with very small training
sets. We therefore evaluate word and phone accuracy
for different training dictionaries of sizes smaller than
3,000 words, using subsets from Fonilex. Figures 3 and
4 demonstrates the learning curve for the algorithm De-
fault&Refine in comparison with DEC. Each rule set is
evaluated against the full 17,387-word test set.

The algorithm performs well, achieving 50% word
accuracy (& 90% phoneme accuracy) at 600 words. DEC
requires an additional 1100 words before the same level
of accuracy is reached. Since the correction of incorrectly
predicted phonemes is the most labour-intensive aspect of
bootstrapping pronunciation dictionaries, this represents
a significant improvement to the process.

INumber of phonemes identifi ed correctly

2Number of correct phonemes - insertions, divided by thetotal num-
ber of phonemes in correct pronunciation

3Number of words completely correct

70

Default&Refine —+—
DEC - L

60

50

40 /
30 e

/ ?(,,
20 /
10 U

0 500 1000 1500 2000 2500 3000
Number of words in training dictionary

Word accuracy

Figure 3: Word accuracy during initial 3000 training
words

94 | Default&Refine ——
DEC —x— —
—
92 i T
5
I3}
& 88 p
o -
£ //
2 g6
2 K
[ /
o E
84 ¥
82
80
0 500 1000 1500 2000 2500 3000

Number of words in training dictionary

Figure 4: Phoneme accuracy during initial 3000 training
words

3.2. Asymptotic performance

A steep initial learning curve does not imply that the algo-
rithm will continue to perform well as the training data set
increases. In order to evaluate asymptotic behaviour, we
evaluate the accuracy of the algorithm when trained on
the full Fonilex training set, and use the results reported
by Hoste [7] as benchmark. Hoste compared various g-
to-p approaches using the Fonilex corpus, including:

e Instance learning based IB1-1G as a single classi-
fier.

e Cascading two separate IB1-IG classifiers (one
trained on Fonilex and one on Celex - a Dutch vari-
ant corpus).

e Combining these classifiers using various meta
classifiers including C5.0 (decision tree learning)
IB1-1G, IGTREE (an optimised version of IB1-I1G)
and MACCENT (a maximum entropy-based algo-
rithm).



e Using IB1-IG to create a meta-meta-classifier
trained on the results of the previous meta-
classifiers.

The different results obtained using a 156,487-word
training subset of Fonilex are compared in Table 2. The
Default&Refine single classifier performs better than the
single classifier and the meta-classifier variations re-
ported on; and achieves comparable accuracy to the meta-
meta-classifier, without utilising the additional Celex

data.

Table 2: Accuracy comparison for different algorithms
using the Fonilex corpus

Word Phoneme | Phoneme
accuracy | accuracy | correct
Single
IB1-IG [7] 86.37 - 98.18
DEC-grow [8] | 89.47 98.48 98.69
DEC-min [8] 90.44 98.53 98.75
Default&Refine | 92.07 98.79 98.89
Meta -
MACCENT [7] | 87.27 - 98.28
C5.0[7] 88.41 - 98.48
IGTREE [7] 91.33 - 98.85
IB1-IG [7] 91.55 - 98.89
Meta-Meta
IB1-1G [7] 92.25 - 98.99

With 3-fold cross-validation we observe a standard
deviation in phone accuracy of 0.13 for Default&Refine.
(In this table, the phoneme correctness reported in [4] for
DEC seems anomalously high, in relation to our own ex-
periments, those obtained in [5], and the reported word
accuracy.)

3.4. Sizeof therule set

While memory usage and the size of the rule set is typi-
cally not a concern during g-to-p bootstrapping, the size
of the rule set does affect the speed of the g-to-p predic-
tion algorithm. We therefore evaluate the growth in rule
set size at different stages of the learning process.

In Table 4 we compare the number and size of rules
for this algorithm with the rule set obtained via DEC and
find that the rule set size is significantly smaller for De-
fault&Refine. The latter algorithm provides both a more
accurate and more compact prediction model.

Table 4: Number and size of rules for DEC and De-
fault&Refine when trained on training dictionaries of
various sizes. The first column lists the number of
graphemes in a rule, and subsequent columns give the
number of rules of that size.

With 3-fold cross-validation we observe a standard

deviation in phone accuracy of 0.09 for Default&Refine.

3.3. Lessregular spelling systems

We were interested whether the algorithm would fail for
a language with a less regular spelling system, and evalu-
ated the asymptotic performance of the algorithm on the
NETtalk corpus, using results obtained by Anderson [3],
Torkkola [5] and Yvon [4] as benchmarks. The algorithm
performed surprisingly well, as shown in Table 3. The
SMPA algorithm employs pronunciation by analogy, and
is not suitable for training on small data sets.

Table 3: Accuracy comparison for different algorithms
using the NETtalk corpus

DEC Default&Refine

1000 10000 156486 | 1000 10000 156486
1 26 26 26 26 26 26
2 94 107 132 151 197 227
3 539 1194 1429 314 775 1221
4 324 2032 3750 190 1394 4430
5 140 1882 8796 18 603 5293
6 33 740 7938 1 142 2510
7 4 276 7002 1 18 816
8 1 72 4218 - 6 288
9 - 25 2683 - - 114
10 - 3 1574 - - 74
114 - 3 3165 - - 71

1161 6360 39270 | 701 3161 15070

4. Conclusion

Word Phoneme | Phoneme

accuracy | accuracy | correct
Trie [3] 51.7 - 89.8
Decision Tree [3] | 53.0 - 89.9
DEC [5] - - 90.8
DEC [4] 56.67 - 92.21
Default&Refine 58.45 90.39 91.31
SMPA [4] 63.96 - 93.19

The concept of a default phone suggests an interesting
algorithm for g-to-p prediction, based on the extraction
of a cascade of increasingly more specialized rules. This
algorithm has a number of attractive properties, includ-
ing rapid learning, good asymptotic accuracy, and the
production of compact rule sets. We are integrating it
into our bootstrapping system for dictionary creation [1],
where it will be of value in our quest to develop linguistic
resources for the languages of the developing world.



5. Acknowledgements

This work was supported by the CSIR Information So-
ciety Technologies Centre. We would like to thank Piet
Mertens for providing us with access to the Fonilex
database, and Veronique Hoste and Walter Daelemans
for providing us with access to their experimental Fonilex
data.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]

6. References

M. Davel and E. Barnard, “Bootstrapping for lan-
guage resource generation,” in Proceedings of the
14th Symposium of the Pattern Recognition Associa-
tion of South Africa, South Africa, 2003, pp. 97-100.

T.J. Sejnowski and C.R. Rosenberg, “Parallel net-
works that learn to pronounce english text,” Complex
systems, vol. 1, pp. 145-168, 1987.

O. Andersen, R. Kuhn, A. Lazarides, P. Dals-
gaard, J. Haas, and E. Noth, *“Comparison of
two tree-structured approaches for grapheme-to-
phoneme conversion.,” in Proceedings of the ICSLP,
Philadelphia, 1996, vol. 3, pp. 1700-1703.

F. Yvon, “Grapheme-to-phoneme conversion using
multiple unbounded overlapping chunks,” in Pro-
ceedings of Conference on New Methods in Natural
Language Processing (NeMLaP), Ankara, Turkey,
1996, pp. 218-228.

K. Torkkola, “An efficient way to learn english
grapheme-to-phoneme rules automatically,” in Pro-
ceedings of the International Conference on Acous-
tics and Speech Signal Processing (ICASSP), Min-
neapolis, 1993, vol. 2, pp. 199-202.

Walter Daelemans, Antal van den Bosch, and Jakub
Zavrel, “Forgetting exceptions is harmful in language
learning,” Machine Learning, vol. 34, no. 1-3, pp.
11-41, 1999.

Erik Tjong Kim Sang Veronique Hoste, Wal-
ter Daelemans and Steven Gillis, “Meta-learning for
phonemic annotation of corpora,” in Proceedings of
the ICML-2000, Stanford University, USA, 2000.

M. Davel and E. Barnard, “The efficient creation of
pronunciation dictionaries: Machine learning factors
in bootstrapping,” in Proceedings of the ICSLP, Jeju,
Korea, 2004.

T.J. Sejnowski and C.R. Rosenberg, “Parallel net-
works that learn to pronounce english text,” Complex
Systems, pp. 145-168, 1987.



