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ABSTRACT

Images and video captured in real world situations gener-
ally have distorted digital pixel values. A variety of situa-
tions can cause these image degradations: sensor motion,
environmental conditions and random noise. A crucial
procedure in computer vision is the assessment and quan-
tification of digital image quality. A numerical score for
describing image quality is useful for a number of applica-
tions, some of which include improving the performance of
an image acquisition system and adaptive algorithms. We
present an intuitive quality metric for characterizing the
amount of blur in an image, through blind image assess-
ment, using the Haar discrete wavelet transform. Thus,
the method does not require a reference image or any prior
information. The novelty of our method lies in processing
the image derivative using the discrete wavelet transform
rather than directly processing image intensity values as is
traditionally done. We present late breaking results and
analysis for a small set of data. The proposed method
shows promise for a large number of avenues such as real-
time blur level assessment and image depth of focus esti-
mation.

Categories and Subject Descriptors

1.4.7 [Image Processing and Computer Vision|: Fea-
ture Measurement—Invariants
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1. INTRODUCTION

Image degradation is frequently experienced when us-
ing imaging technologies in the real world. Several factors
present during the acquisition process are largely uncon-
trolled and manifest in images as blur, noise or low con-
trast. An important step towards image enhancement and
scene understanding is that of image quality assessment
- what is the type and level of degradation in an image?
This question is not a trivial one. The assessment of image
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quality is useful for a number of reasons: i) quantifying
the performance of an acquisition or processing system,
ii) providing a numerical reference for algorithm or sys-
tem parameter selection and iii) scene understanding.

Three approaches are present in the literature for im-
age quality assessment. The most common method uses
a reference image to estimate description metrics. This is
known as full-reference image quality assessment. A sec-
ond approach is that of reduced-reference image quality
assessment which computes a metric using partial knowl-
edge of the reference image. In most real world situations
a reference image or partial information is unavailable for
image grading. Thus, it is required to compute an image
quality metric without the use of a reference image. This
is called blind (no-reference) image quality assessment and
is the subject of this paper. Avcibas et al. [1] provide a
comprehensive statistical evaluation of image quality met-
rics using full-reference.

The definition of image quality is highly subjective and
dependent on a cognitive process that is currently not eas-
ily modelled in computer vision. This cognitive process is
a product of years of observation, memory retention and
the emotional and mental development of the observer.
The human perception of “good” or “bad” images, in con-
junction with the cognitive process, is also determined by
the task at hand. As such image quality assessment at
an objective level is dependent on the application require-
ments and the criteria for assessment. For example, it
may be required to measure the focus of an optical sys-
tem. In this case, a "good” image is one that is in focus or
has a great depth of field. Thus, the image quality metric
will be objective and consistent for different images and it
will be defined by the user.

In this short paper, we focus on describing one com-
ponent of no-reference image quality assessment - quan-
tifying the level of blur (or defocus) in an image. The
proposed algorithm forms part of a method (in our cur-
rent research) to perform general image quality assessment
using the discrete wavelet transform. Within this frame-
work image blur, noise and information content are char-
acterized. Thus, using a single transform, several image
characteristics can be estimated at a low computational
cost making real-time assessment and correction of dis-
torted images possible. The ability to quantify and inter-
pret several factors in image quality, without a reference
image, also provides a good understanding of the environ-
ment and the acquisition hardware. The discrete wavelet
transform also provides multiscale spatial and frequency
decomposition. The frequencies can be resolved in space
and this is very useful for locating particular features of
interest in an image. For this reason, it is preferred over
other methods such as the Fourier transform.
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Figure 1: 2-Dimensional Discrete Wavelet Trans-
form Decomposition Process

Figure 2: Checker Test Pattern

We first provide general background on the field of no-
reference blur assessment in Section 2. In Section 3, the
method used for computing the blur metric is proposed.
Thereafter, the experimental analysis, discussion and con-
clusions are presented.

2. BACKGROUND

Cohen and Yitzhaky [3] present a metric for assessing
blur and noise impacts in images. In the frequency do-
main, blur impacts are measured using an average image
power spectrum model multiplied by a weighting function.
The resulting weighted spatial frequency spectrum shows
a decreasing slope in the presence of blur.

Nill and Bouzas presented a quality metric computed
using the image power spectrum with an incorporated hu-
man visual system model [9]. A Wiener filter is used to
model system noise. The metric can distinguish between
blur and noise only when separately added to the mea-
sured image. It is assumed that the original image power
spectrum is independent of content.

Marziliano et al. [8] propose a no-reference perceptual
blur metric. The method first locates vertical edges and
then it finds the start and end of each vertical edge by
looking at the closest local extrema locations (in the hor-
izontal directions). The width for a particular edge loca-
tion is computed as the difference between the start and
end positions of the edge. The global blur metric is the
average of all edge widths in the image. Robustness of

this method is dependent on having quality step edges in
the scene.

Gabarda and Cristobel propose computing the Rényi
entropy of a spatial/spatial-frequency distribution [4]. An
oriented pseudo-Wigner distribution is used for this pur-
pose. The variance of the entropy is computed as a func-
tion of directionality and used as a quality indicator. In
their experiments, the metric is able to correctly grade a
set of images according to the human perception of “good”
and “bad” (when blurred or corrupted by random noise).
Although this is useful, the computed score of a solitary
image will not provide the user with an understanding of
the actual image quality.

Li proposes several metrics for blind image assessment
[6]. These metrics are edge sharpness level, random noise
level and structural noise level. However, the results pre-
sented, though promising, are not conclusive since only a
single test image is shown. The next section explains the
method used in computing the proposed image quality
metric for blur.

3. PROPOSED METHOD

The proposed image blur metric is estimated through
an application of the Haar discrete wavelet [5] transform
on the image derivative and not on the image intensities
as is traditionally done. The following assumptions are
made when characterizing the image blur:

1. Within the scope of this paper, the input images
are deemed to be noise free. This is a normal as-
sumption since the test data set consists of natural
scenes with a low level of noise. Noise impacts will
be assessed in future work using the robust noise
estimation method of Chang et al. [2].

2. It is assumed that the image defocus can be esti-
mated through the processing of edge information.
The smoothing of an edge indicates blur while a
strong step edge indicates sharpness. Thus, the in-
put image should have a sufficient number of step
edges. The Haar wavelet transform is able to pro-
cess extremely smooth edges and determine the scale
at which they become step edges. Our method is
superior to that of Marziliano et al. [8] because we
analyse edge information at multiple scales and noise
is filtered out across scales by the wavelet transform.

The discrete wavelet transform is applied to a 2-dimensional

(2D) digital image f(x,y) by filtering across the rows and
then the columns of the result. This is followed by down-
sampling by a factor 2 to achieve the effect of scaling.
The transform decomposes the image into Low-Low (LL),
Low-High (LH), High-Low (HL) and High-High (HH) fre-
quency components at multiple scales. Figure 1 shows the
2D spatial decomposition at several scales.

When processing the image derivative, wavelet coeffi-
cients with significantly large magnitudes at a particular
scale will represent edge points in the image. The averag-
ing and differencing operation of the Haar wavelet high-
lights the scale at which an edge is most visible i.e. the
scale at which it becomes a step edge. If the energy is
computed for each scale, and normalized by the sum to-
tal energy, it can be seen that the scale with the largest
energy intuitively describes the dominant level of blur, or
edge width, in the image. The energy at each level rep-
resents the difference in energy between the current and
previous scale i.e. it is bandpass filtered.
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Figure 3: Checkerboard Energy Change for Different Blur Levels

We first compute the two first derivatives of the image,
dz(z,y) and dy(z,y), using the 2 well known vertical and
horizontal 3x3 Sobel operators for edge detection [10]. A
number of methods are available for computing the image
derivative [7] and this is left to the interested reader for
exploration. Thereafter, we transform d, and d, using the
Haar wavelet. For each scale s, the energies for HL and
LH in both d, and dy are summed. The total normalized
energy at scale s is represented by the following equation:

> c(z,y)?
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where F is the total energy computed as the sum of all
S e(z,y)? across all scales. In the above equation 3 ¢(z, y)*
is the sum of all wavelet coefficient squares at scale s.
These coefficients exist in either d, or d, and are either
from components HL or LH (and not LL or HH). More
details regarding the Haar wavelet transform and energy
functions can be found in standard texts [5].

To demonstrate the validity of the method, the wavelet
energies were computed for a test pattern of size 512x512
pixels (the checker board shown in Figure 2). The normal-
ized energies for various blur levels are shown in Figure
3. The checker board image was blurred using Gaussian
smoothing filters (with the radii in pixels as reported in
the Figures). As the level of blur increases, the peak in
the energies occurs at a higher scale i.e. the peak in the
graphs shifts to the right. This is a general trend observed
for all the test images. An important point to mention is
that maximizing the energy at the first or second scale,
by varying a camera’s lens and aperture settings, will pro-
duce the sharpest possible image for a scene if step edges
are present in the scene.

The image blur quality metric is then computed as fol-
lows:

S
b= 2""e, 2)
s=1

where S is the total number of scales used in the wavelet
decomposition process. The term 2°7! can best be de-
scribed as the size of a feature for a pixel at scale s. The

above equation computes the blur score for an image as a
sum of weighted feature sizes.

4. EXPERIMENTAL ANALYSIS AND DIS-
CUSSION

The experimental data set consisted of 20 natural grey
scale (8-bit) images of size 512x512 pixels. Some of the
images are shown in Figure 4. These images are noise
free and most of the foreground and background are in fo-
cus - this is important for consistency and integrity of the
experimental results. For the sake of consistency, it is as-
sumed that the images have the greatest sharpness when
in their original state. This was verified through a visual
inspection by the author. However, it must be mentioned
that in real world scenarios an acquired image may not
tend to be completely sharp due to varying lens and aper-
ture configurations that reduce the depth of focus. This,
and the effects of additive noise, will be assessed in future
work.

If a set of test images has different resolutions, the im-
ages should be scaled appropriately to achieve a standard
edge scale. For example, if a perfect step edge has a width
of 2 pixels, this should be ensured for all input images
in order to make the results consistent and comparable.
Thus, it is preferred that the edge scale be consistent.
This can be achieved quite easily by ensuring that the
test images are acquired using the same camera system
and settings or by visual inspection of the data. For com-
parison to the results in this paper, the data set can be
requested from the author. The results presented in this
paper are merely for a proof of concept.

The experiments conducted in this paper examine the
estimated blur metric and how it changes as the blur level
in the image is increased. The effects of blur are induced
using the circular symmetric 2D Gaussian smoothing func-
tion. For this study, we used five levels of blur. These
levels, in number of pixels for the blur radius, were in the
set {0, 5, 10, 15, 20, 25} where zero refers to the original
image.

Given the original images and their blurred variations,
the image blur score was computed for each image using
Equation 2 and 7 wavelet scales. The mean and standard
deviation was then computed for each blur level over 20
images. Figure 5 (showing error bars) and Table 1 sum-
marizes these results. It is quite apparent that for each
blur level up to radius 15 pixels, the means are signif-



Figure 4: Some Test Images for the Blur Assess-
ment
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Figure 5: Quality Metric over Different Scales

Table 1: Results for 20 Images

Blur Level | Mean | Std. Dev.
(pixels)

Original 7.46 0.92

5 11.30 0.86
10 14.74 0.91
15 17.50 0.96
20 19.80 1.02
25 21.72 1.07

icantly different with a fairly low standard deviation of
less than 1.0. For consecutive blur levels, there is minimal
overlap between the blur scores. Thus, one can perform a
coarse level blur estimation by computing the blur score
and looking at Table 1. For blur levels of 20 and 25 pixel
radii, there appears to be a significant overlap between
the ranges of the estimated scores. It is quite clear that
the inter-mean distance decreases as blur level increases.
From these observations, it can be concluded that the cur-
rent blur score is useful for Gaussian blur levels up to ra-
dius 15 pixels. The variations in quality scores for each
blur level can be attributed to subtle differences in depth
of focus and small amounts of noise in the images that
affects the wavelet energies.

In terms of computer execution, the average computa-
tion time for the metric is approximately 0.025 seconds
(40 frames-per-second). This includes a large number of
overheads such as image input, data conversion, memory
allocation and copying data to memory. Thus, real-time
blur assessment and quantification is highly possible when
using the proposed method.

The current work is very promising for blur estimation
in an image. Two important components will be under-
taken in our future work: i) analysis of the blur metric
across a larger range of blur degradations and ii) measure-
ment of the error when predicting the blur level in an im-
age using training data of natural scenes. The monotonic

behaviour of the blur quality metric will also be assessed
further through pattern classification. The implication is
that a function can be used to estimate the level of blur in
an image when provided with the blur score. Using basic
curve fitting through the means in Table 1, we achieved
0.81 and 0.77 root-mean-square error for a log and straight
line function respectively. Our future work will also use
the technique of Chang et al. [2], called BayesShrink, for
quantifying additive white noise in an image. In terms of
image processing, it will be worth examining ways to se-
lect useful edges for processing rather than processing all
edges in the image. The local analysis of image blur will
also provide a more accurate assessment and a coarse level
depth of focus description if scene and camera information
are incorporated.

S. CONCLUSION

The proposed method shows a fair consistency for quan-
tifying image blur in natural scenes. The quality metric
is descriptive and can be interpreted at a coarse level by
a human operator using the tabled results. The method
is effective for Gaussian blur up to radius 15 pixels when
using the reported dataset. If the blur level is greater than
15 pixels in radius, the metric is still useful for knowing the
extent of blurring. However, resolving the amount of blur
will not be possible. The technique used to compute the
image blur score is well established in the literature and,
thus, provides a firm grounding for the proposed method.
Execution times for computing the blur score are in the
order of 40 frames-per-second and this is very useful for
real time image assessment.
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