Root Justifications for Ontology Repair

Kodylan Moodley!?, Thomas Meyer' 2, and Ivan José Varzinczak!?

1 CSIR Meraka Institute, Pretoria, South Africa
{kmoodley, tmeyer, ivarzinczak} Qcsir.co.za
2 School of Computer Science, University of KwaZulu-Natal, South Africa

Abstract. In recent years, there has been significant progress in devel-
oping tools for debugging and repairing Description Logic (DL)-based
ontologies with erroneous consequences. However, these tools place more
emphasis on explaining why the consequences follow from the ontology
rather than on eliminating them. Another shortcoming in existing tools
is that there is no common approach for eliminating or handling different
types of erroneous consequences in the ontology. By extending existing
principles in ontology repair, our goal is to define one such a common
approach. We have implemented a Protégé plugin to demonstrate our
approach and we evaluate it against the traditional ones.

1 Introduction

An ontology (also referred to as a terminology, knowledge base) is an entity used
to represent some domain (field of knowledge). To be more specific, an ontol-
ogy precisely depicts some representation of the domain. Usually the building
blocks of an ontology include categories (concepts), relations (roles) and objects
(individuals).

If we were to consider the domain of a university, we could use concept
names such as Lecturer, Student and Module, and role names such as teaches and
enrolledFor, and combine these constructs to form sentences which describe the
domain, like “A Lecturer is someone who teaches a Module” or “A Student is
someone who enrolledFor a Module”. An ontology can be viewed as a set of such
sentences or as a taxonomy in which the concepts are classified as more general
(super-concepts) or more specific (sub-concepts) in relation to one another. For
example the sentence “Every Student is a Person” means that the Person concept
is more general than the Student concept.

There are many different formalisms for representing ontologies. Description
Logics (DLs) are a family of such formalisms. They are widely accepted as an
appropriate class of knowledge representation languages to formalize and reason
about ontologies [1].

DL reasoners, which are tools for performing standard reasoning tasks with
ontologies such as satisfiability and consequence checking, have grown increas-
ingly powerful and sophisticated in the last decade [15, 12]. Quite often dur-
ing the development of ontologies, ontology developers make modelling errors.
These errors can introduce unwanted consequences in the ontology. The process

of identifying, explaining and eliminating these unwanted consequences is known
as ontology debugging and repair or simply ontology repair.

The identification of unwanted consequences in DL ontologies is taken care
of by the algorithms implemented in DL reasoners. The remaining steps, of ex-
plaining why the unwanted consequences arise and devising ways to eliminate
them, can be divided into two main approaches namely Glass-boz [11, 6, 7] and
Black-box [5, 3, 16]. Glass-box approaches usually require non-trivial modifica-
tion of the reasoner while Black-box approaches, as the name suggests, treat the
reasoner as a “black-box” which basically answers ‘yes’ or ‘no’ to the question:
does consequence « follow from the ontology?

In this paper, we focus on the Black-box approach and extend the principles
introduced in a previous work [8]. We present an improved implementation of
the Black-box ontology repair method discussed there and we also provide some
experimental results comparing the performance of our approach to that of the
standard Black-box approach to ontology repair. The standard approach has
been applied mostly to the specific ontology errors called unsatisfiable concepts
but have not been extended for other errors. Furthermore, this approach deals
with the unsatisfiable concepts by finding an advantageous sequence in which to
eliminate them. Therefore, it does not eliminate all the unsatisfiabilities simul-
taneously.

The outline for the rest of this paper is as follows. After some logical prelim-
inaries (Section 2), we briefly summarize existing work. In Section 4, we present
our method for eliminating a set of errors from the ontology, based on the no-
tion of root justifications [8, 9]. In Section 5, we discuss the implementation of
a Protégé? plugin which demonstrates our approach to ontology repair. In this
section we also discuss some experimental results comparing the performance
of the plugin to the standard approach for debugging ontology errors. Finally,
we conclude with a summary of our contributions and open questions for future
investigation.

2 Description Logics

In this paper we work in the Description Logic ALC [1], however, all we shall
say in the sequel can in principle be stated for any description logic.

The language of ALC is built upon a (finite) set of atomic concept names
Ne and a (finite) set of role names Ng, where N N Ng = 0, together with the
constructors M, -, and 3 and the distinguished concept T. An atomic concept is
denoted by A, and a role name by r. Complex concepts are denoted by C, D, ...
and constructed as follows:

C:=A|T|CnC|-C|3rC

Concepts built with the constructors U, and V as well as the concept L are
defined in terms of the others in the usual way. We let £ denote the set of all
ALC concepts.

3 http://protege.stanford.edu

http://protege.stanford.edu

The semantics is the standard set theoretic Tarskian one. An interpretation
is a structure Z = (AZ,.7), where AZ is a non-empty set called the domain, and
Zis an interpretation function mapping concept names A to subsets of AT , and

mapping role names r to binary relations on AZ:
AT Cc AT, TT = AT, T C AT x AT
We extend - to interpret complex concepts as follows:
(~C)F = AT\ %, (cnD)* =cTnDr,
(@r.C)F ={a € AT | (a,b) € T and b € C7}

Given C,D € L, C C D is a subsumption statement which can be read ”C
is subsumed by D”. C = D is an abbreviation for both C C D and D C C. A
TBox T is a finite set of subsumption statements. We use the Greek symbols «,
0 etc. to refer to subsumption statements and, following in the tradition of the
DL community, we call them azioms.

We say Z satisfies C C D (denoted Z I C C D) if and only if C* C DZ.
T IF C = D if and only if C* = D. C C D is entailed by a TBox 7, denoted
7 | C C D, if and only if every Z which satisfies all elements of 7, also satisfies
C C D. Given a Thox 7, and a basic concept A, Tis A-unsatisfiable if and only
if for all models Z of T, AT =).

A DL ontology consists of both a TBox and ABox [1], only a TBox or only
an ABox. This decision depends on the specific application of the ontology.

3 Ontology Debugging and Repair

In this section we discuss the standard Black-box technique for eliminating errors
in the ontology based on existing work.

3.1 Debugging

The process of creating and maintaining ontologies is a dynamic one. At any
given stage during development, the ontology has a set of consequences which
follow from it. It is up to the ontology engineer (ontology developer) and domain
expert (expert on the topic which the ontology is representing) to decide which of
these consequences are desired and which are not. The undesired consequences
are indications of modelling errors which were introduced during ontology de-
velopment and these consequences are thus referred to as errors in the ontology.

Explanation is a service which focuses on explaining why selected conse-
quences follow from an ontology. Given an ontology O with some axiom « such
that O |= «, there exists an explanation which indicates why « follows from
O. The most widely used explanation is a set of justifications (also known as
minAs [2] and MUPSes [11]) for the entailment. A justification for O = « is a
minimal subset of O from which « logically follows.

Ezxample 1. Consider the following ontology:

o_JLCCA 2.CC -A
T 3. FCCn-A4FCC

We represent O as the set {1,2, 3,4} with the understanding that each num-
ber represents an axiom in @. One can see that O is F-unsatisfiable: O = F C L.
Two justifications for this entailment are {1,3} and {1,2,4} O

Justifications are useful for many reasons. They allow for the pinpointing of
the causes of modelling errors. In Example 1 they show that Axioms 1 and 3 may
not both occur in O without O being F-unsatisfiable. Similarly, for Axioms 1,
2, and 4. In practice it is frequently the case that justifications are significantly
smaller than the Thox as a whole.

We now describe a basic Black-box algorithm (naive pruning algorithm [13])
for computing a single justification for an ontology error. It works by removing
axioms from the ontology, one at a time, while monitoring how this affects the
entailment under consideration.

For example, if we are computing a justification for the C-unsatisfiability
of O, we want to find the minimal subset of O such that this subset is C-
unsatisfiable. Therefore, we remove one axiom from O, to get O’ C O, then
we check if @ is C-unsatisfiable. If this is the case, we can proceed to remove
another axiom from O. If it is not, then we have to add the axiom back to the
ontology and continue to remove a different axiom. This is repeated for all the
axioms in 0.

The set of axioms remaining in the ontology, after this process, constitutes a
justification for the C-unsatisfiability of O. Algorithm 1 below gives the pseudo-
code for such a method:

Algorithm 1: naive pruning algorithm (Single justification)

Input: Ontology O and concept C such that O is C-unsatisfiable
Output: Justification J for O being C-unsatisfiable
J = 0O,
foreach a € J do

if J\{a} is C-unsatisfiable then

| J = J\{a};

end
end
return J;

N O A W N

Although the algorithm is correct, one can see that it is also computationally
intensive. This is because it uses the same number of entailment/satisfiability
checks as there are axioms in the ontology. Limiting the number of checks is
crucial in Black-box methods. This is especially true for ontologies with a large

number of axioms. The computational complexity for concept satisfiability in
ALC is PSPACE [14].

The naive pruning algorithm provides a method for computing a single justi-
fication but in order to obtain a complete explanation for the unsatisfiability of a
concept one has to determine all its justifications. The most well known method
to do this is a variant of Reiter’s [10] hitting set algorithm. It assumes that we
have a method for computing a single justification (for example the naive pro-
cedure presented above). This method is used to generate a justification tree for
the unsatisfiability of the concept w.r.t. O.

A justification tree, T'7, is a set of nodes V7 and edges £7. Each node
j € V7 has a label j.label which is a justification for the unsatisfiability of a
concept, say C, with respect to the ontology O. Each edge e € £4 has label
e.label € U~.labeleTj j.label, i.e., e.label is an axiom of some justification. The
function P(j), the path function, returns the set of edge labels (representing
axioms) on the path from the root node to node j.

To construct a justification tree T'7 in a breadth-first fashion, the following
rules are applied.

(i) The first step is to generate a root node j,,0¢ for T'7 which is labelled with a
Justification for the unsatisfiability of C'. This justification can be generated
with respect to the ontology O using any method for computing a single
justification (for example, Algorithm 1 presented above).

(ii) If a node j in the justification tree is labelled with a justification J, then for
each axiom « € J, a successor node j, is attached to j via an edge e, which
is labelled with «.

(iii) Each successor node j, in the justification tree is labelled with a justifica-
tion J’ for C. J' is generated using the same method as in the first rule.
However the difference now is that J’ is computed with respect to the on-
tology O\P(j,) and not O. If however, it turns out that O\ P(j,) does not
contain a justification for C' it means that O\P(j,) is not C-unsatisfiable
and therefore we label j, with ‘v’ indicating a terminating node with no
SUCCESSOrs.

Construction of the justification tree continues until all leaves of the tree are
terminating nodes. The distinct nodes in the final tree represent the set of all
justifications for the unsatisfiability of the concept w.r.t. O [4, Theorem 4].

3.2 Repair

Recall Example 1. One can consider justifications {1,3} and {1,2,4} as reasons
for the F-unsatisfiability of O. To eliminate the unsatisfiability, one has to nullify
all its reasons. For example, suppose we remove Axiom 3 from O. This would
nullify the justification {1,3} for the unsatisfiability because both Axioms 1
and 3 are to be present for the unsatisfiability to hold. However, even if this
justification is nullified, there is still another “reason” for the unsatisfiability to
hold, i.e., the justification {1,2,4}. Therefore the common strategy is to remove

a single axiom from each justification thereby nullifying each “reason” for the
unsatisfiability to hold and thus eliminating this unsatisfiability.

For example, if we remove the set {2,3} from O then the unsatisfiability
of F is eliminated. The resulting ontology O\{2,3} is a repair 8] for the F-
unsatisfiability of O and the set {2, 3} is a diagnosis [10] for the F-unsatisfiability
of O. A key requirement of computing repairs (diagnoses) is to find mazimal
repairs (minimal diagnoses).

In this case of a set of unsatisfiable concepts, C, in the ontology, the issues
we then want to address are (i) finding the causes of the unsatisfiabilities, and
(#) repairing the ontology O by replacing it with an ontology O’ which is C-
satisfiable for every C € C.

Kalyanpur et al. [6] discuss an approach for eliminating this set of unsatisfi-
able concepts in the ontology. This approach separates the unsatisfiable concepts
into root unsatisfiable concepts and derived unsatisfiable concepts. Intuitively, a
root unsatisfiable concept is a concept whose unsatisfiability is not caused by
that of another concept in the ontology. A derived unsatisfiable concept is one
which is not root unsatisfiable.

Example 2. Consider the following ontology:

1.CCA
O=<¢2.CC-A
3.FCC

O is F-unsatisfiable and C-unsatisfiable. One cause for the F-unsatisfiability
of O is the set of axioms {1,2,3}. One cause for the C-unsatisfiability of O is
the set of axioms {1,2}. One can see that {1,2} C {1,2,3} and therefore the
C-unsatisfiability of O causes the F-unsatisfiability of O. F' is thus a derived
unsatisfiable concept w.r.t. O. C is a root unsatisfiable concept w.r.t. O because
there is no other unsatisfiable concept in O which causes C' to be unsatisfiable.
O

A useful property of a root unsatisfiable concept, C, is that if one repairs
the unsatisfiability of C' then all other concepts in the ontology whose unsatis-
fiability is caused by that of C' are automatically repaired [6]. This principle is
demonstrated in the following example.

Ezample 3. Considering the ontology in Example 2:

We know that a justification for the C-unsatisfiability of O is {1,2}. If Ax-
iom 1 or Axiom 2 is removed from O we find that O becomes C-satisfiable.
That is, O\{1} and O\{2} are both C-satisfiable. In addition to this, we find
that O\{1} and O\{2} are also both F-satisfiable. Therefore resolving the un-
satisfiability of C' (root unsatisfiable concept) also resolves the unsatisfiability
of F' (derived unsatisfiable concept). a

Using the property described in Example 3, one can resolve a set of un-
satisfiable concepts in some ontology as follows. Initially one identifies all the

root unsatisfiable concepts in the set. The unsatisfiabilities of these concepts
are then eliminated using the repair procedure described above (eliminating ax-
ioms from the ontology which cause the unsatisfiabilities). After this, one has
to re-compute/re-identify which of the remaining concepts in the set are root
unsatisfiable (some concepts which were derived unsatisfiable may become root
unsatisfiable after the initial repair).

This process has to be repeated until there are no more unsatisfiable con-
cepts in the set. The drawbacks to this repair strategy are that (¢) it is only
applicable to one type of ontology error (unsatisfiable concepts) and (i7) it does
not eliminate the entire set of unsatisfiable concepts simultaneously. Rather, it
uses an iterative approach as described above.

4 Repair using Root Justifications

In this section, we discuss our approach to ontology repair. This approach can be
applied to a set of unwanted azioms. We start by observing that the most promi-
nent types of ontology error (unsatisfiable concepts and ontology inconsistency)
can be generalized to some unwanted axiom.

For example, when a concept A is unsatisfiable w.r.t. an ontology O, A C L
is an unwanted axiom in O. Removing A C 1 from O will make A satisfiable.
When the ontology is inconsistent, then T C L is the unwanted axiom. Remov-
ing such an axiom delivers a consistent ontology as output. Therefore, concept
unsatisfiability and ontology inconsistency can both be reduced to the presence
of unwanted axioms in the ontology.

Thus, the key differences from the method discussed in the previous section
are (i) We are dealing with other types of errors as well, not just unsatisfiable
concepts and (#) We are eliminating a set of such errors simultaneously.

We first define some terminology that will be used in the remainder of this
section. Given an ontology O and and some unwanted axiom ayy, a justification
J for O E ay is a ay-justification for O. The set of all ay-justifications for O
is denoted by Jo(ay). Given an ontology O and a set of unwanted axioms U,
the set Jo(U) = U, ey Jo(av). Using this terminology we characterize a root
justification as follows.

Definition 1 (U-root justification). Given an ontology O and a set of un-
wanted axioms U, a set RJ is a U-root justification for O if and only if it is
a ay-justification for O for some ay € U (i.e. RJ € Jo(U)), and there is no
J € Jo(U) such that J C RJ. We denote the set of all U-root justifications for
O byRIoU).

In the work by Kalyanpur et al. [6] on root and derived unsatisfiable con-
cepts, root justifications are used (implicitly) as a means to identify the root and
derived unsatisfiable concepts. For our approach to ontology repair, the notion
of a root justification is central and thus we highlight this principle here.

Ezample 4. For Example 1, let i = {F C L,C C L}. We have already seen that
Jo(F C 1) = {{1,3},{1,2,4}}. Tt is easy to see that Jo(C C 1) = {{1,2}}
and therefore that Jo(U) = {{1,3},{1,2,4},{1,2}}. Therefore, according to
Definition 1, the set of U-root justifications for O is RT o (U) = {{1,2},{1,3}}.
O

We now show how root justifications can be computed for a set of unwanted
axioms. Given an ontology O and a set of unwanted axioms U, the following
algorithm computes a single root justification RJ € RT o (U):

Algorithm 2: (Single root justification)

Input: Ontology O, unwanted axiom set U (U] > 1)
Output: U-root justification, RJ, for O
Uses: entailed Axioms(O, U), which returns {a € U | O |= a}
RJ := O;
foreach a € RJ do

if |entailedAzioms(RJ\{a}, U)| > 1 then

| RJ:= RJ\{a};

end
end
return RJ;

N O R W N

The key difference between Algorithm 2 and the naive pruning algorithm
is that we are now considering the entailment of all unwanted axioms in a set
(in procedure entailedAzioms(.)), rather than just a single axiom. It is clear
that Algorithm 2 terminates for all finite inputs of O and U. This follows from
Line 2 of the algorithm which shows that the loop only considers the axioms
in the finite set RJ. We now give an example to demonstrate how Algorithm 2
computes a root justification for a set of unwanted axioms.

Ezample 5. Consider an ontology O with ten axioms, i.e., O = {1,...,10}. Let O
have a set of unwanted axioms: U = {v1,72,73}. Let us assume that Jo(v1) =
{{17 2, 3}7 {47 5}}7 Jo(12) = {{17 3}} and Jo(y3) = {{47 9, 7}7 {67 7, 8}} There-
fore Jo(U) = {{1,2,3},{4,5},{1,3},{4,5,7},{6,7,8}} and the set of all U-root
justifications for O is RT o (U) = {{4,5},{1,3},{6,7,8}}.

We now show how Algorithm 2 computes one of these root justifications. We
begin with the input O with ten axioms {1, ...,10} and the unwanted axiom set
U = {y1,72,73} such that O = ay for each ay € U. The algorithm starts by
assigning the set of axioms in O to the initial set RJ which will constitute the U-
root justification when the algorithm terminates. At this point, RJ = {1, ...,10}.
In Lines 3 and 4, the algorithm loops through each axiom « in RJ, removing
a from RJ if and only if RJ\{a} entails at least one axiom from U. When
Axioms 1, 2 and 3 are removed it is still the case that RJ | {vy1,7v3}. This
is because the justification {4,5} still holds for O |= 7, and the justifications

{4,5,7} and {6,7,8} still hold for O [73. Through similar reasoning, after
removing Axioms 4 and 5 we find that RJ |= {y3}. At last, when we remove
Axiom 6 from RJ we find that RJ does not entail any of the unwanted axioms
in U. Therefore, Axiom 6 remains in RJ. The same holds for Axioms 7 and 8.
Finally, after removing Axioms 9 and 10, it is the case that RJ = {y3} and the
result is that RJ = {6,7,8} constitutes a U-root justification for O. O

Of course, Algorithm 2 is computationally intensive because we only consider
a single axiom at a time in the ontology and for each consideration we require
between 1 and |U| entailment tests. We use a more optimized version of this
algorithm in practice (based on a sliding window technique [4]). Details of this
algorithm [9] can be found in the reference provided.

In order to ensure that we are able to generate all the repairs for an unwanted
axiom set in an ontology, it is necessary to know all the root justifications for
the unwanted axiom set. We have given a brief description of a variant of Re-
iter’s Hitting Set Algorithm which computes all the “regular” justifications for a
single entailment [4]. This variant algorithm can also be used (with some slight
modifications) to compute all root justifications for a set of unwanted axioms.
The algorithm [9] can be found in the reference provided.

The significance of root justifications is that they can be used to generate
precisely the U-repairs for O.

Definition 2 (U-repair). A subset R of O is a U-repair for O if and only if
R¥E ay for every ay € U, and for every R’ for which R C R C O, R' E ay for
some ay €U.

We denote the set of U-repairs for O by Reo(U). For Example 1 it can be
verified that R7o({C C L,F C 1}) = {{1,3},{1,2}} and thus Rpo({C C
1,FC 1}) = {{2,3,4},{1,4}}. The above U-repairs can be generated from
U-diagnoses.

Definition 3 (U-diagnosis). A subset D of O is a U-diagnosis for O if and
only if DN RJ # 0 for every RJ € RT o(U). D is a minimal U-diagnosis for O
if and only if there is no U-diagnosis D' (for O) such that D' C D.

The set of minimal U-diagnoses for O is denoted by Do (U). We then have
the following theorem showing that the U-repairs for O can be obtained from
the U-diagnoses for O:

Theorem 1. Ro(U) ={O\D | D e Dp(U)}.

For Example 1 we have already seen that R7o({CC L,FC 1}) = {{1,3},{1,2}}.
From this it follows that Do ({CC L,F C 1}) = {{1},{2,3}} and therefore, as
indicated by Theorem 1, that Ro({CC L,FC L})={{2,3,4},{1,4}}.

10

5 Implementation and Evaluation

We have implemented a Protégé 4 plugin for computing root justifications for
sets of unwanted axioms (http://krr.meraka.org.za/software/ontorepair).
We have extended it to also compute the U-repairs. We have performed some
preliminary experiments to compare this approach for ontology repair with the
nalve sequential approach described in Section 3.2.

In this section we present and analyse the results of these experiments. We
use three sample ontologies of varying size, structure, and application. There are
three test cases, one for each ontology and in each case we select four different
unwanted axiom sets from the ontology. Each test case has four experiments
(one for each unwanted axiom set). In each experiment, we perform a control
computation. This control computation uses the naive approach to identify all
regular justifications for each axiom in the unwanted axiom list. We record the
timing for this as well as the total number of regular justifications computed.

Thereafter we compute all root justifications for the unwanted axiom list
and record the same data of timing and total number of root justifications com-
puted. The results of the latter approach are then compared to the results of
the control computation. The x-axis of the performance graphs represents time
in milliseconds. All the experiments were conducted on an Intel(R) Core(TM)2
Duo processor (2.66 GHz) running Ubuntu 8.04 with 3.2GB of memory.

The results depicted in Figures 1, 2 and 3 show that OntoRepair generally
performs much better than the naive approach in the cases where the total
number of root justifications for the unwanted axiom set is less than the total
number of regular justifications for all the axioms in the set. The only notable
exception is Axiom set 1 in Test case 2. In the cases where the total number of
root justifications is the same as the total number of regular justifications the
OntoRepair approach performs worse than the naive approach (Axiom sets 2
and 4 in Test case 1 and Axiom set 3 in Test case 3).

The overall best performance by the OntoRepair approach is observed in Test
case 2. This is also the only test case in which the number of root justifications is
less than the number of regular justifications in all the experiments. The overall
worst performance was observed in Test case 3 where there are two out of four
instances in which the number of root justifications and regular justifications are
equal. Possibly the main reason for the performance being worse in this case is
that we have to keep track of the entailment of each of the axioms in the set
when computing a single root justification, whereas we only have to keep track
of the entailment of one axiom when computing a single regular justification.
We call this overhead inherent in computing root justifications the root-of-set
overhead. Recall also that an entailment check is computationally expensive and
many such checks (depending on the size of the ontology) are needed to compute
a (regular or root) justification.

The worst performance in a single experiment is for Axiom set 4 in Test
case 1. The reason for this is likely a combination of three things: (a) root-of-set
overhead (the number of root justifications are equal to the number of regular
justifications), (b) the justifications for the axioms in Axiom set 4 are similar,

http://krr.meraka.org.za/software/ontorepair

11

Mo. of Justifications

12
10—
M No. of Root
: Justifications
E No. of Regular
I l Jistifications

AxiomList1 Axiomlit2 AxiomLet3 Axiomlistd
Unwanted axiom lists

o M OE @ @

Performance
8000

7000

000 — |
S000
B Computing Root
4000 - | Justifications (ne)
B Computing Regular
3000 | Justifications (ne)
2000 1
| |
o

AxiomList1 Axiomlet2 AxiemLet3 Axiomlietd
Unwanted axiom lists

Fig.1. Results for Test Case 1.

meaning that they share a significant amount of axioms, and (c) the number
of axioms in some justifications is large. In particular, one axiom in Axiom
set 4 in this test case, has four justifications, each of which has at least eleven
axioms. Factors (b) and (c) can cause a considerable performance hit because if
two justifications share a significant amount of axioms (or if they have a large
amount of axioms) then more entailment checks are required because computing
both justifications requires a fine-grained look at which axioms are unique to
each justification.

The best performance in a single experiment is for Axiom set 3 in Test case 2.
The most likely reasons for this are that (a) the number of root justifications
are far less than the number of regular justifications, and (b) the justifications
for the axioms in Axiom set 3 do not share many axioms.

In conclusion, the performance of OntoRepair depends on the kinds of axioms
contained in the unwanted axiom set. This is because the specific axioms in the
set influence the justifications which are computed and thus also the number of
root justifications for the set versus the number of regular justifications for the

12

Mo, of Justifications
30

25

20 |
M Mo. of Root
15+ Justifications
H Mo. of Reqular
10 ‘ Jistifications
0 -

AxiomList1 AxiomLet2 Axiomlit3 AxiomLstd
Unwanted axiom lists

i

Performance
3000

2300

2000 |
W Computing Root
1500 Justifications (e}
M Computing Regular
1000 Justifications (nme)
500 - |
o I |

AxiomLet1 AxiomLst2 Axiomlist3 AxiomListd
Unwanted axiom lists

Fig. 2. Results for Test Case 2.

axioms in the set. Nine out of twelve of our experiments show instances where
the number of root justifications is less than the number of regular justifications.
This frequency justifies the use of OntoRepair which provides improved overall
performance (over the naive approach) in all these instances. However, there is
scope for optimizing the computation of root justifications in OntoRepair to be
comparable to the performance of the naive approach, for those cases in which
the number of root and regular justifications are equal. Finally, it is important to
mention that since the empirical analysis was conducted on the basis of just three
examples, the results are unlikely to be statistically significant and conclusive.

6 Conclusion

We have presented an alternative approach for ontology repair using the notion
of root justifications. As we have seen, this approach may be used to eliminate
a set of unwanted axioms from a particular ontology. We have implemented a
Protégé 4 plugin, OntoRepair, to demonstrate this repair strategy. Some pre-

13

Mo, of Justifications
16

14+ |
12+ 1
M Mo. of Root
: | Justifications
H Mo. of Reqular
I Justifications

AxiomList1 AxiomLEt2 Axiomlitd AxiomLstd
Unwanted axiom lists

(=T S S]

Performance

4500 |
4000 |
3500 |
3000 W Computing Root
2300 | Justifications (ms)
el - trcatons ()
1500 — |
1000 |
-

0

AxiomLet1 AxiomList2 Axiomlet3d Axiomlstd
Unwanted axiom lists

Fig. 3. Results for Test Case 3.

liminary experiments show overall better performance than a naive approach to
ontology repair. However, there are some special cases in which the naive ap-
proach performs far better than the root justification approach and vice versa.
More experiments will be performed to characterize the circumstances in which
the root justification approach gains a clear advantage. Various performance
optimizations for the OntoRepair tool are also in the pipeline.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge, 2 edition, 2007.

[2] F. Baader, R. Penaloza, and B. Suntisrivaraporn. Pinpointing in the Description
Logic £L. In Proc. KI, pages 52—-67. Springer, 2007.

[3] M. Horridge, B. Parsia, and U. Sattler. Explaining inconsistencies in OWL on-
tologies. In Proc. SUM, pages 124-137. Springer-Verlag, 2009.

[4] A. Kalyanpur. Debugging and repair of OWL ontologies. PhD thesis, University
of Maryland, 2006.

14

[5]

[12]

[13]

[14]
[15]

[16]

A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In Proc. ISWC, pages 267280, 2007.

A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes
in OWL ontologies. Web Semantics: Science, Services and Agents on the World
Wide Web, 3(4):268-293, 2005.

T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable termi-
nologies for the description logic ALC. In Proc. AAAI 2006.

T. Meyer, K. Moodley, and I. Varzinczak. First steps in the computation of root
justifications. In Proc. ARCOE, 2010.

K. Moodley. Debugging and repair of Description Logic ontologies. Master’s
thesis, University of KwaZulu-Natal, 2011.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57-95, 1987.

S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. IJCAI, pages 355—-360. Morgan Kaufmann
Publishers, 2003.

E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz. Pellet: A prac-
tical OWL-DL reasoner. Journal of Web Semantics, 5(2), 2007.

B. Suntisrivaraporn, G. Qi, Q. Ji, and P. Haase. A modularization-based approach
to finding all justifications for OWL DL entailments. In Proc. ASWC, pages 1-15,
2008.

S. Tobies. Complezity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System de-
scription. In Proc. IJCAR, pages 292-297. Springer-Verlag, 2006.

H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debug-
ging OWL-DL ontologies: A heuristic approach. In Proc. ISWC, pages 745-757.
Springer, 2005.

	Root Justifications for Ontology Repair
	Introduction
	Description Logics
	Ontology Debugging and Repair
	Debugging
	Repair

	Repair using Root Justifications
	Implementation and Evaluation
	Conclusion

