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APPLICATION OF A NONPARAMETRIC APPROACH TO ANALYZE 

pCO2 DATA FROM THE SOUTHERN OCEAN 

 

ABSTRACT 

In this paper we discuss the application of a classical nonparametric inference 

approach to analyse pCO2 measurements from the Southern Ocean, which is a 

novel method to analysing data in this area, as well as comparing results with the 

regular parametric approach. pCO2 is the difference between atmospheric and 

ocean partial pressure of CO2.  Oceans are estimated to absorb about 40% of 

anthropogenic carbon dioxide emissions and can act as both a carbon sink as well 

as a carbon source. The Southern Ocean, which comprises a large part of world 

oceans, thus plays a crucial role in the balance of atmospheric CO2.  However, the 

region south of Africa is largely unanalysed due to data from the region being only 

very recent. In this paper we analyse in situ measurements of ΔpCO2 data obtained 

from the Antarctic to Cape Town leg of the SANAE 49 trip during February 02 – 22, 

2010. We use a nonparametric approach to understand the behaviour of the 

distribution of the in situ ΔpCO2 measurements as analysis reveals that the 

distribution of the data is not unimodal, indicating that traditional parametric methods 

may not capture its distribution well.  

 

KEYWORDS: Southern Ocean; Carbon cycle; ΔpCO2; Nonparametric; Gaussian 
kernel. 

 

1  INTRODUCTION 

This paper presents an analysis of recent, in situ data from the SANAE49 ship leg 6 

that consists of the ship‟s journey from the Antarctic to Cape Town during February 

02– 22, 2010. Carbon Dioxide (CO2) is widely regarded as being the gas most 

responsible for global warming. It is suggested that due to CO2 emissions by man 

(anthropogenic CO2 emissions), the levels of CO2 in the atmosphere have climbed to 

more than 30% higher than they were before the industrial revolution. (Barnola, 

1999; Keeling & Whorf, 2000) The clearing of forests and the harvesting of wood 

also reduces carbon-bearing vegetation (i.e. vegetation which extract and retain 

carbon dioxide to use in the manufacturing of their food), and have been equally 
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responsible for the increase in the atmospheric carbon dioxide levels (Sarmiento & 

Gruber, 2002; Houghton, 2001). 

 

Bakker et al. (1997) suggest that the increased atmospheric CO2 levels account for 

approximately 60% of the emissions made by the burning of fossil fuels. This is due 

to the retention of CO2 by the plants and soils, as well as the ocean, referred to as 

natural carbon sinks (Sermiento & Gruber, 2002). Some sources suggest that the 

oceanic sinks represent retention of about 17% - 39% of the CO2 produced by the 

burning of fossil fuels by humans. (Sarmiento & Sundquist, 1992; Schimel et al., 

1995; Siegenthaler & Sarmiento, 1993; Tans et al., 1990) Therefore a model 

allowing us a deeper understanding of the air-sea carbon flux cycle is very crucial. 

 

The Southern Ocean (particularly the area South of South Africa and North of 

Antarctica) represents an area of very little research in comparison to the Northern 

oceans due to difficult sampling conditions, as well as limited times that data is able 

to be collected. Statistical methods used to analyse oceanic CO2 data has. 

Telszewski et al. (2009) proposed the usage of self organising neural networks   to 

estimate the pCO2 distribution in the North Atlantic Ocean. The results offer a viable 

and accurate model, especially in the summer months, however a major 

disadvantage of using neural networks is the lack of a simple interpretation which 

could be communicated to non-statistical professionals. Takhashi et al. (2002) 

indicate that the area between 40°S and 60°S of the Equator (which is the area 

described between Antarctica and South Africa) represents areas of strong oceanic 

CO2 sinks. The partial pressure of Carbon Dioxide (pCO2) can be described as the 

pressure of the gas phase CO2 (above the water) that would occur when no more 

CO2 is dissolved by the water (i.e. the reaction is at an equilibrium point). This pCO2 

acts as a proxy for the concentration of CO2 in the water (or atmosphere when 

dealing with atmospheric pCO2) and is explained by a combination of physical, 

climatological and bio-geochemical factors. Low pCO2 levels in the water, combined 

with high wind speeds, increase the CO2 uptake by these waters. In fact, it is 

suggested that the ocean south of 50°S, which encompasses only approximately 

10% of the global oceanic area, is responsible for about twenty percent of the 

oceanic uptake of CO2. (Takahashi et al. 2002) 
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This paper presents new information obtained from in situ measurements during 

2009/10 in the form of a statistical analysis of the carbon flux in the Southern Ocean 

between Antarctica and Cape Town. The aim is to develop a model that can capture 

the distribution of the ΔpCO2. Section 2 discusses the cleaning procedures used to 

obtain the data for analysis which we use. Section 3 then builds a nonparametric 

model on the clean data obtained from section 2. Finally section 4 discusses the 

results concludes. 

 

2  DATA 

The original data obtained from the SANAE49 ship travelling on leg six will 

henceforth be referred to as SANAE49L6. It consisted of 9215 rows of in situ 

measurements on 27 columns of variables. Measurements started on 12/02/2010 

(GPS time 00:04:48) and ended on 22/02/2010 (GPS time 23:55:54), travelling 

between (70.6245°S, 0.0001°W) and (34.073°S, 17.4585°E). “Spikes” in the data 

were identified graphically and manually removed from the data set after confirming 

that they were the result of some form of measurements error. The reduced dataset 

started on 13/02/2010 (GPS time 18:07:50) and ended on 21/02/2010 (GPS time 

18:30:53) travelling between (69.5998°S, 5.9036°W) and (37.0004°S, 12.918°W), 

and will be referred as SANAE49L6-ver2. 

 

To obtain atmospheric pCO2 measurements (which were more sparse) to the same 

scale as the water pCO2 measurements, Euclidean weighted averaging method was 

used. By this process, a value for the atmospheric pCO2 was imputed using the 

nearest above and below measurement, and a weighting inversely proportional to 

the distance. The atmospheric and water pCO2 values were then subtracted from 

one another to obtain the ΔpCO2 column, which indicates the air-sea CO2 flux. 

Negative values of ΔpCO2 indicate a source and positive values indicate a sink. The 

resultant data set, referred to as SANAE49L6-final, contained 6105 rows and ran 

between the same times and co-ordinates as SANAE49L6-ver2. Table 1 indicates 

the variables along with a short explanation in SANAE49L6-final that are relevant to 

our analysis. Figure 1 plots ΔpCO2 versus latitude co-ordinate of the measurement. 

This figure suggests an abrupt change in the ΔpCO2 measurements from positive to 

negative around 60°S of the equator, highlighting the need for a more in depth 

knowledge of the carbon flux in this area. 
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TABLE 1 

VARIABLE EXPLANATION FOR SANAE49L6-FINAL 

Variable Explanation

Date Date of Measurement (mm/dd/yyyy)
gps time Time of Measurement (hh:mm:ss)
latitude Latitude Measurement (Negative = South)
longitude Longitude Measurement (Negative = West)
Salinity Of the Water
O2(%%%%sat) Oxygen % Saturation (about right but not calibrated) 
O2(ppm) Oxygen (mg/l) (about right but not calibrated)
pH Of the Water (Not accurate but diagnostically useful in relative units)
Ch.conc Chlorophyll: Fluorescence Units (not calibrated) 
Intake.Temperature Outside Sea Surface Temperature
pCO2W(H2OSST) Water pCO2 corrected for H2O and SST
MLD Mixed Layer Depth (Meters)

 

 

 

 

NONPARAMETRIC MODELLING 

This section discusses using nonparametric kernel methods in order to estimate the 

density of the ∆pCO2 measurements which were obtained from the interpolated 
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atmospheric pCO2 measurements discussed in the previous section. The results are 

compared to parametric density estimation using a Normal (Gaussian) distribution to 

model the density of the ΔpCO2. 

 

Nonparametric Kernel density estimation using empirically determined and rule of 

thumb bandwidths and the Gaussian kernel (Li & Racine, 2007) was used in order to 

estimate the density function of the ΔpCO2 measurements. The Gaussian kernel was 

used with along with the bandwidth definitions that allowed for the most smooth 

resulting density function. Other kernels resulted in similar, but more volatile 

densities, indicating a worse, more variable, fit. Three methods for determining the 

bandwidths were used. Firstly a rule of thumb defined by Silverman (1986) for the 

Gaussian Kernel which takes a bandwidth of 0.9 times the minimum of the standard 

deviation and the interquartile range divided by 1.34 times the sample size to the 

negative one-fifth (This resulted in a bandwidth of 3.7). Secondly a variation of this 

rule of thumb was used suggested by Scott (1992), which uses a factor of 1.06 

instead of 0.9 (resulting in a bandwidth of 5.5). Finally biased cross validation was 

also used to determine an empirically optimum bandwidth (the resulting bandwidth 

was 4.35). A biased cross-validation method was used since it has a greater 

reliability than unbiased cross-validation (using the minimization of the sum of square 

errors), specifically when calculating an optimum smoothing parameter for density 

estimation (Scott & Terrell, 1987). Nonparametric density estimation is done using 

the function density in R which incorporates all the described methods for 

determining an optimum bandwidth, while parametric (Normal) density estimation is 

done by applying a Normal distribution using the mean of the observed ΔpCO2 

measurements as an estimate for the Normal mean and the standard deviation of 

the observed ΔpCO2 measurements as an estimate for the Normal standard 

deviation. 

 

The density and pnorm functions in R were used to provide estimated density 

functions of the observed ΔpCO2 measurements and then the fits of the estimated 

densities were assessed by comparing the estimated cumulative distribution function 

to the empirical distribution function of the data. The fits of the estimated distributions 

are assessed in the following section. 
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4  DISCUSSION AND CONCLUSION 

This section discusses the results of the nonparametric as well as the parametric 

density estimation in the previous section which are then compared. Finally a 

conclusion is made as to which of the 2 methods allows for the most accurate 

estimate of the ΔpCO2 density. Figure 2 shows the histogram of the ΔpCO2 

measurements indicating the density plot rather than the frequencies. Overlaid on the 

plot in red is the Normal (Gaussian) density and in purple, green and blue, the 

nonparametric Gaussian kernel estimated density functions, using the 3 different 

methods for determining an optimal bandwidth as described above, of the ΔpCO2 

measurements.  

 
 

 

As can be seen, the nonparametric density estimations seem to capture the functional 

form of the data density much better than the parametric Normal distribution. The 

normal plot does not capture the high density of values of ΔpCO2 that are slightly 

larger than 0, as well as over estimates the densities for values of ΔpCO2 that are 

above 50 and those between 0 and -50 units. Another feature not identified by the 

Normal density estimation is the increased density for values slightly larger than 100. 
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The nonparametric density estimation graphs, however, capture all these features and 

seem to follow the histogram of the measured values well. 

 

Figure 3 below provides a graphical goodness of fit test for the nonparametric density 

estimation process. The plot compares the cumulative density function (CDF) of the 

estimated densities for the parametric and nonparametric cases to the empirical CDF 

of the ∆pCO2 measurements. It is clear in the plot that the CDF’s for the 

nonparametric method are almost exactly the same as the empirical CDF, while the 

parametric (Gaussian) CDF seems to not capture the form of the data, specifically in 

the 3 areas discussed earlier as areas which most display the parametric density’s 

lack of fit. This indicates that the nonparametric density estimates represent good fits 

to the ∆pCO2 measurements, while the parametric density estimate does not capture 

the form of the data well enough and therefore constitutes a bad fit. 

 

 

 

 

The Kolmogorov-Smirnoff goodness-of-fit test was also conducted on the Normal 

(Gaussian) density estimation in order to provide a second, more quantifiable, 
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assessment of the lack of fit for the parametric density. This test was carried out using 

the ks.test function in the stats package of R. The test applies to the null hypothesis 

that the parametric (Gaussian) density is a good fit for the data versus the two-sided 

alternative that it does not fit. A summary of the results of the test is contained in table 

2 below. 

TABLE 2 

SUMMARY OF KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST 

Test Statistic (D) P-Value Decision 

0.1292 0 Reject the Null Hypothesis at any Significance Level 
 

The result of the test indicates that the null hypothesis that the parametric (Gaussian) 

density is a good fit for the data will be rejected at any significance level and therefore 

this provides additional evidence to support the claim that the parametric density 

estimation does not capture the density of the data well enough. 

 

The analyses presented in this paper corroborates the motivation that nonparametric 

density estimation provides a much better fit of the ΔpCO2 measurements than the 

Normal (Gaussian) distribution.The parametric density estimation approach seems to 

provide an inadequate fit for the data, as indicated by the Kolmogorov-Smirnov 

hypothesis test, and therefore it is suggested that nonparametric methods be used in 

modelling this univariate problem. This is due to the fact that the graphical goodness-

of-fit tests indicate that the nonparametric density estimation provides a better fit to 

the data. Nonparametric kernel methods also provide a model which is easier to 

interpret to persons who may not have a statistical background than black box 

methods such as a neural network. This analysis, therefore provides an alternative 

modelling approach to that suggested by Telszewski et al. (2009). Had a parametric 

approach been applied, it is clear that the density of the ΔpCO2 would be 

underestimated for mid-valued ΔpCO2 values and over estimated for higher and 

lower values of ΔpCO2 and then again underestimated in the boundary values of 

ΔpCO2. 

 

Possible future research directions to analysing this data are to incorporate covariate 

information such as temperature, salinity, pH and oxygen saturation, chlorophyll 

concentration and the measure of mixed layer depth. This would result in a 
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regression type setup, which could be subjected to both parametric and 

nonparametric modelling in order to determine the model that provides the „best‟ fit 

(closer fitting without over-fitting). Bayesian nonparametrics, such as process priors, 

is another approach which could be used in order to model the data. This would not 

only allow for more stochastic features in the modelling, but also be a more 

generalized model for data which may come from different regions. Finally, the use 

of a mixture distribution seems also to be a useful alternative and may provide more 

easily interpretable results. A further direction will be to analyse the sudden change 

in ΔpCO2 measurements from region of sink to a region of source around 60°S of 

the equator (Figure 1). 
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