
Preferential Reasoning for Modal Logics

Katarina Britz Thomas Meyer Ivan Varzinczak

Centre for Artificial Intelligence Research

CSIR Meraka Institute and University of KwaZulu-Natal, South Africa

Abstract

Modal logic is the foundation for a versatile and well-established class of knowledge representation
formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capa-
bilities such as preferential reasoning as developed by Lehmann and colleagues would therefore
constitute a natural extension of such KR formalisms. Nevertheless, there is at present no gener-
ally accepted semantics, with corresponding syntactic characterization, for preferential consequence
in modal logics. In this paper we fill this gap by providing a natural and intuitive semantics for
preferential and rational modal consequence. We do so by placing a preference order on possible
worlds indexed by Kripke models they belong to. We also prove representation results for both
preferential and rational consequence, which paves the way for effective decision procedures for
modal preferential reasoning. We then illustrate applications of our constructions to modal logics
widely used in AI, notably in the contexts of reasoning about actions, knowledge and beliefs. We
argue that our semantics constitutes the foundation on which to explore preferential reasoning in
modal logics in general.
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1 Introduction and Motivation

Consider the following scenario depicting a nuclear power station: In a partic-
ular power plant there is an atomic pile and a cooling system, both of which
can be either on or off. An agent is in charge of detecting hazardous situations
and preventing the plant from malfunctioning (Figure 1).

It is common knowledge that situations in which the pile is on are usually
not hazardous. However, in more specific contexts, say when the pile is on but
the cooling system is down, one would expect it to be a hazardous situation.
One may then also want to draw conclusions like “if a situation is hazardous,
then it is usually the case that the effect of switching the pile off brings about
a non-hazardous situation”; or “if the pile is on and the cooling system is off,
then usually the surveillance agent knows that a malfunction is imminent”; or
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Fig. 1. The nuclear power station and its controlling agent.

“situations in which the pile is on usually ought to be non-hazardous”; or even
the more complex “if the agent believes that there is danger, then usually he
must perform the action of switching the pile off”.

All of these are examples of defeasible inferences. The first two examples
are instances of propositional defeasible consequence and are adequately dealt
with within the framework for preferential reasoning developed by Lehmann
and colleagues in the 90’s [16,19]. For the last four examples, however, it is a
different story: Firstly, for their specification we need a logical language that
is richer than the propositional one: They require, respectively, the ability
to express the effects and preconditions of actions; an agent’s knowledge and
beliefs; regulations or obligations; and combinations thereof. Well established
formalisms for dealing with these notions in the AI literature are mostly vari-
ants of modal logic: The examples above illustrate applications of dynamic
logic [13], epistemic logic [10], and deontic logic [21].

Secondly, it turns out that research on preferential reasoning has really only
reached maturity in a propositional context, whereas many logics of interest,
like the ones mentioned above, have more structure in both syntax and se-
mantics. If one wants to be able to capture the forms of reasoning exemplified
above, then one has to move beyond propositional preferential consequence.

There has by now been quite a substantial number of attempts to incor-
porate defeasible reasoning in logics other than propositional logic. After a
first tentative exploration of preferential predicate logics by Lehmann and
Magidor [18], some more recent investigations have attempted to define no-
tions of defeasibility in deontic logics [22], and of defeasible subsumption for
description logics [3,12,5]. Nevertheless, a generally accepted semantics for
preferential reasoning in modal logics, with a corresponding syntactic charac-
terization, does not yet exist.

In the present paper we aim at filling this gap by providing a generalization
of classical preferential consequence to an important family of modal logics —
we present the semantic foundation, prove the required representation results,
point out computational consequences and benefits, and suggest applications
of modal preferential reasoning. The good balance between expressivity and
computational properties of modal logics makes them good candidates for
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the type of extension of preferential reasoning that we have in mind — with
(propositional) modal logic one can express more than with classical proposi-
tional logic without being hampered by the undecidability of many first-order
based languages.

The remainder of this paper is organized as follows: In Section 2 we briefly
recap the seminal work by Lehmann and colleagues on propositional prefer-
ential and rational consequence. We then present an account of modal prefer-
ential reasoning in Section 3. Importantly, our representation results are with
respect to the corresponding propositional properties or rules, and methods
employed in a propositional non-monotonic setting therefore translate seam-
lessly to a modal context. This includes reasoning tasks such as computing
the preferential or rational closure of a defeasible knowledge base [19]. Our
modal semantics therefore forms the foundation of preferential consequence for
a whole class of modal-based formalisms, which we illustrate with some case
studies, namely modal logics of action (Section 4) and knowledge (Section 5).
After discussing some related work (Section 6), we conclude in Section 7.

2 Propositional Preferential Reasoning

Here we give a brief outline of propositional preferential and rational conse-
quence, as initially defined by Kraus et al. [16]. A propositional defeasible
consequence relation |∼ is defined as a binary relation on formulas of an un-
derlying (possibly infinitely generated) propositional logic. |∼ is said to be
preferential if it satisfies the following set of properties (below α, β, . . . de-
note propositional formulas, and |= and ≡ denote, respectively, propositional
entailment and logical equivalence):

(Ref) α |∼ α (And)
α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ, β |∼ γ

α ∨ β |∼ γ

(LLE)
α ≡ β, α |∼ γ

β |∼ γ
(RW)

α |∼ β, β |= γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ β |∼ γ

The semantics of (propositional) preferential consequence relations is in
terms of preferential models ; these are partially ordered structures with states
labeled by propositional valuations. We shall make this terminology more
precise in the upcoming section on modal preferential consequence, but it
essentially allows for a partial order on states, with states lower down in
the order being more preferred than those higher up. Given a preferential
model P, a pair α |∼ β is in the consequence relation defined by P if and only
if the most preferred α-states are also β-states. The representation theorem
for preferential consequence relations then states:
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Theorem 2.1 (Kraus et al. [16]) A defeasible consequence relation is a
preferential consequence relation if and only if it is defined by some prefer-
ential model.

If, in addition to the properties of preferential consequence, |∼ also sat-
isfies the following Rational Monotony property, it is said to be a rational
consequence relation:

(RM)
α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked mod-
els, i.e., preferential models in which the preference order is modular :

Definition 2.2 Given a set S, ≺ ⊆ S × S is modular if and only if ≺ is a
partial order and there is a ranking function rk : S −→ N such that for every
s, s′ ∈ S, s ≺ s′ if and only if rk(s) < rk(s′).

The representation theorem for rational consequence relations then states:

Theorem 2.3 (Lehmann & Magidor [19]) A defeasible consequence rela-
tion is a rational consequence relation if and only if it is defined by some
ranked model.

3 Modal Preferential Consequence

We work in a set of atomic propositions P (together with the distinguished
atom ⊥), using the logical connectives ∧, ¬, and a set of modal operators 2i,
1 ≤ i ≤ n. Propositions are denoted by p, q, . . ., and formulas by α, β, . . .,
constructed in the usual way. With L we denote the set of all formulas of the
modal language. The semantics is the standard possible-worlds one:

Definition 3.1 A Kripke model is a tuple M = 〈W,R,V〉 where W is a set of
possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆W×W is an accessibility
relation on W, 1 ≤ i ≤ n, and V : W −→ 2P is a valuation function.

Satisfaction, validity and (global) entailment are defined in the usual way [2].

In what follows we present the semantic foundation of preferential reason-
ing for modal and multi-modal logics. We interpret the defeasible consequence
relation |∼ as a relation on formulas of a given underlying modal language.

Definition 3.2 A defeasible consequence relation |∼ ⊆ L×L is a preferential
consequence relation if and only if it satisfies the properties (Ref), (LLE),
(And), (RW), (Or), and (CM), with propositional entailment replaced by
modal entailment in the corresponding modal system. |∼ is rational if and
only if in addition to being preferential it also satisfies the property (RM).
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We propose replacing the propositional valuations in preferential models
with model-world pairs, also sometimes referred to as pointed Kripke models.
Given a particular class (set) of Kripke models M as in Definition 3.1, let
UM denote the set of all pairs (M , w), where M = 〈W,R,V〉 is a Kripke
model in M and w ∈ W. As alluded to above, our semantics replaces the
propositional valuations used in the preferential models of Lehmann et al.
with structures over the set UM. We make this more precise now. (We shall
follow the notation and terminology defined by Lehmann and colleagues. For
more details, the reader is referred to the papers by Kraus et al. [16] and
Lehmann and Magidor [19].)

Let S be a set, the elements of which are called states. Let M be a given
class of Kripke models, and ` : S −→ UM be a labeling function mapping
every state to a pair (M , w) where M = 〈W,R,V〉 is a Kripke model such
that w ∈ W. Let ≺ ⊆ S× S. Given α ∈ L, we say that s ∈ S satisfies α
if and only if `(s) 
 α, i.e., M , w 
 α, where `(s) = (M , w). We define
α̂ = {s ∈ S | `(s) 
 α}. We say that α̂ is smooth if and only if each s ∈ α̂ is
either ≺-minimal in α̂, or there is s′ ∈ α̂ such that s′ ≺ s and s′ is ≺-minimal
in α̂. We say that S satisfies the smoothness condition if and only if for every
α ∈ L, α̂ is smooth. We can now define modal preferential models:

Definition 3.3 Let M be a class of Kripke models. A preferential model is
a triple P = 〈S, `,≺〉 where S is a set of states satisfying the smoothness
condition, ` is a labeling function mapping states to elements of UM, and ≺
is a strict partial order on S.

These formal constructions closely resemble those of Kraus et al. [16] and of
Lehmann and Magidor [19], the difference being that propositional valuations
are replaced with elements of the set UM. In Section 4 we provide an extended
example including an instance of a modal preferential model.

Definition 3.4 Given α, β ∈ L and a preferential model P = 〈S, `,≺〉, the
consequence relation defined by P is denoted |∼P and is defined by: α |∼P β

if and only if every ≺-minimal state s ∈ α̂ is such that s ∈ β̂.

We say that a modal preferential model P satisfies the defeasible state-
ment α |∼ β if and only if α |∼P β holds.

We are now in a position to state one of our central results:

Theorem 3.5 A modal defeasible consequence relation is a preferential con-
sequence relation if and only if it is defined by some preferential model.

Proof. The proof is outlined in Appendix A. 2

The significance of this is that the representation result is proved with
respect to the same set of properties used to characterize propositional pref-
erential consequence. We therefore argue that our definition of preferential
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models provide the foundation for a semantics for preferential (and rational)
consequence for a whole class of multi-modal logics. We do not claim that
this is the appropriate notion of preferential consequence for all modal logics,
but rather that it describes the basic framework within which to investigate
such notions.

In order to obtain a similar result for rational consequence, we restrict
ourselves to those preferential models in which ≺ is a modular order on states
(cf. Definition 2.2):

Definition 3.6 A ranked model Pr is a preferential model 〈S, `,≺〉 in which
the strict partial order ≺ on S is modular.

Since ranked models are preferential models, the notion of rational conse-
quence is as in Definition 3.4. We can then state the following result:

Theorem 3.7 A defeasible consequence relation is a rational consequence re-
lation if and only if it is defined by some ranked model.

Proof. The proof is outlined in Appendix B. 2

One of the primary reasons for defining non-monotonic consequence rela-
tions of the kind we have presented above is to obtain a semantic notion, with
corresponding proof-theoretic decision procedure, of defeasible entailment [19]:
Given a set of defeasible statements of the form α |∼ β, where |∼ is now viewed
as a connective in an enriched modal language, which other defeasible state-
ments should one be able to derive from this?

Definition 3.8 A modal defeasible knowledge base K|∼ is a finite set of state-
ments α |∼ β, where α, β ∈ L.

A preferential model P satisfies a defeasible knowledge baseK|∼ if and only
if P satisfies every statement in K|∼, i.e., for every α |∼ β ∈ K|∼, α |∼P β.

We define modal preferential entailment in the obvious way:

Definition 3.9 α |∼ β is preferentially entailed by K|∼ if and only if α |∼P β
for every preferential model P satisfying K|∼. The set of defeasible statements
preferentially entailed by K|∼ is called the modal preferential closure of K|∼.

The modal preferential closure of K|∼ coincides with the intersection of all
preferential consequence relations containing K|∼, and is a preferential conse-
quence relation. Modal rational entailment can be defined in a similar way:

Definition 3.10 α |∼ β is rationally entailed by K|∼ if and only if α |∼Pr β
for every ranked model Pr satisfying K|∼.

However, as in the propositional case [19], the obvious definition of modal
rational closure based on modal rational entailment does not produce an ap-
propriate result.
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Theorem 3.11 Given a defeasible knowledge base K|∼, the set of defeasible
statements rationally entailed by K|∼ is exactly the preferential closure of K|∼.

Proof. The proof is similar to the propositional case [19, Theorem 4.2]. 2

The main consequence of this result is that modal rational entailment does
not, in general, produce a consequence relation which is rational.

The argument to define and construct a viable notion of rational closure
is analogous to that given by Lehmann and Magidor [19] in the propositional
case. First, we define a preference ordering on consequence relations, with
relations further down in the ordering interpreted as more preferred.

Definition 3.12 Let K|∼ be a defeasible knowledge base. The preference
order� generated byK|∼ is a binary relation on the set of rational consequence
relations containing K|∼, defined as follows: |∼0 is preferable to |∼1 (written
|∼0 � |∼1) if and only if

• there is (α, β) ∈ |∼1 \ |∼0 such that for all γ such that γ ∨α |∼0 ¬α and for
all δ such that γ |∼0 δ, we also have γ |∼1 δ; and

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion ρ |∼ ν
in |∼1 \ |∼0 such that ρ ∨ γ |∼1 ¬γ.

Given a defeasible knowledge base K|∼, the idea is to define modal ra-
tional closure as the most preferred (with respect to �) of all the rational
consequence relations containing K|∼. This leads to the following important
definition of modal rational closure for defeasible knowledge bases:

Definition 3.13 Let K|∼ be a defeasible knowledge base, let KR be the class
of rational consequence relations containing K|∼, and let � be the preference
ordering on KR generated by K|∼. If � has a (unique) minimum element |∼,
then the modal rational closure of K|∼ is defined as |∼.

Clearly then, if the modal rational closure exists, it is a rational conse-
quence relation. In order to provide the conditions for the existence of modal
rational closure, we first need to define a ranking of formulas with respect
to K|∼ which, in turn, is based on a notion of exceptionality. The ranking of
formulas can also be used to define an algorithm for computing the modal
rational closure, when it exists (see below and the discussion in Section 6).

A formula α is said to be exceptional for a defeasible knowledge base K|∼ if
and only if K|∼ preferentially entails > |∼ ¬α. A defeasible statement α |∼ β
is exceptional for K|∼ if and only if its antecedent α is exceptional for K|∼.

It turns out that checking for exceptionality can be reduced to classical
modal entailment checking.

Lemma 3.14 Given a defeasible knowledge base K|∼, let K→ be its classical
counterpart in which every defeasible statement of the form γ |∼ δ in K|∼ is
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replaced by γ → δ. The formula α is exceptional for K|∼ if and only if ¬α is
globally entailed by K→: i.e., if and only if K→ |= ¬α.

Proof. The proof is similar to the propositional case [19, Corollary 5.22]. 2

Let E(K|∼) denote the subset of K|∼ containing statements that are ex-
ceptional for K|∼. We define a non-increasing sequence of subsets of K|∼ as
follows: E0 = K|∼, and for i > 0, Ei = E(Ei−1). Clearly there is a smallest
integer k such that for all j ≥ k, Ej = Ej+1. From this we define the rank of a
formula with respect to K|∼ as follows: rK|∼(α) = k− i, where i is the smallest
integer such that α is not exceptional for Ei. If α is exceptional for Ek (and
therefore exceptional for all Es), then rK|∼(α) = 0. Intuitively, the lower the
rank of a formula, the more exceptional it is with respect to the defeasible
knowledge base K|∼.

Theorem 3.15 Let K|∼ be a finite defeasible knowledge base. The rational
closure of K|∼ exists and is the set R|∼ of defeasible statements α |∼ β such that
either rK|∼(α) > rK|∼(α∧¬β), or rK|∼(α) = 0 (in which case rK|∼(α∧¬β) = 0).

Proof. The proof is outlined in Appendix C. 2

Observe from Lemma 3.14 that the determination of the rank of a formula can
be reduced to classical (global) entailment checking for the modal logic under
consideration. It is therefore easy to construct a (näıve) decidable algorithm
to determine whether a given defeasible statement is in the modal rational
closure of a finite defeasible knowledge base K|∼.

Recent work by Casini and Straccia [5] in the context of description logics
makes it possible to improve on this algorithm, from an implementation point
of view. Casini and Straccia proposed a syntactic operational characteriza-
tion of rational closure for the description logic ALC, but without providing a
semantic counterpart. The algorithm draws on work by Lehmann and Magi-
dor [19], Freund [11] and Poole [23], is based on performing a number of clas-
sical entailment checks (for ALC), and is easily amenable to implementation.
From their description it is clear that the number of classical entailment checks
needed is quadratic in the size of the knowledge base under consideration.

The significance of their work for us is that their algorithm can readily
be adjusted to determine the modal rational closure of a defeasible knowl-
edge base K|∼, with rational closure membership checking being reduced to a
number of modal global entailment checks that is quadratic in the size of K|∼.
For the modal logics we consider here, determining membership of the modal
rational closure is therefore no harder than global entailment checking.

In what follows we analyze applications of our constructions to some classes
of modal logics commonly used in AI. A further application area, in the context
of the description logic ALC, was recently explored by the present authors [4].
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4 Preferential Reasoning about Actions

There is in the AI literature a fair number of modal-based formalisms for
reasoning about actions and change [8,7,26,9]. These are essentially variants
of the multi-modal logic K, in which the modal operators are determined by a
(finite) set of actions A = {a1, . . . , an}: For each a ∈ A, there is associated a
modal operator [a]. Formulas of the form [a]α are used to specify the effects
of actions and they read as “after every execution of action a, the formula α
holds”. The operator 〈a〉 is mostly used to specify the executability of actions:
〈a〉> reads as “there is a possible execution of action a”.

In our nuclear power plant example, P = {p, c, h}, where p stands for
“the atomic pile is on”, c for “the cooling system is on”, and h for “hazardous
situation”. As for the actions, we have A = {f,m}, where f stands for “flipping
the pile switch”, and m for “malfunction”. One possible specification of such
a scenario is given by the following knowledge base:

K = {(p ∧ ¬c)↔ h, h→ 〈m〉>, p→ [f]¬p, 〈f〉>}

(We note that specifying a solution to the frame problem is beyond the scope of
this paper. Instead, we refer the reader to the solutions provided by the above-
mentioned frameworks which can, in principle, be integrated into the present
formalism in a straightforward way.) K basically says that “a hazardous situ-
ation is one in which the pile is on and the cooler off”, “a hazardous situation
may lead to a malfunction”, “if the pile is on, then flipping switches it off”, and
“one can always flip the pile switch”. We can then conclude K |= p → [f]¬h,
K |= [m]⊥ → (¬p ∨ c), and K 6|= [m]〈f〉¬p ∨ [f]h.

Recalling our discussion in the Introduction, with such a specification one
cannot reason with exceptionalities given by statements of the form “a situa-
tion in which the pile is on is usually not hazardous” and “a situation in which
the pile is on and the cooling system is off is usually hazardous”. Thanks to our
constructions from the previous section, we can move to a defeasible version
of a modal logic of actions in which one can capture defeasible consequences.

As an example, assume we are given M = {M1,M2}, where M1 and M2

are as depicted in Figure 2.

M1 :
cw2 w3

p, cw1 p, h w4

mf f

f

f

M2 :
cw2 w3

p, cw1 p, h w4

mf

f

m
f f

Fig. 2. Models depicting the behavior of actions in our nuclear power station scenario.
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Hence UM = {(Mi, wj) | i ∈ {1, 2}, j ∈ {1, 2, 3, 4}}. Assume S = {si |
1 ≤ i ≤ 8}, and let a labeling function ` be such that `(s1) = (M1, w1),
`(s2) = (M2, w1), `(s3) = (M1, w2), `(s4) = (M1, w3), `(s5) = (M2, w3),
`(s6) = (M2, w2), `(s7) = (M1, w4), and `(s8) = (M2, w4). The order ≺ is
given by: s1 ≺ s3, s2 ≺ s3, s3 ≺ s4, s3 ≺ s5, s4 ≺ s6, s5 ≺ s6, s6 ≺ s7, and
s6 ≺ s8. Figure 3 below depicts the preferential model P = 〈S, `,≺〉.

P :

s7 : (M1, w4), s8 : (M2, w4)

s6 : (M2, w2)

s4 : (M1, w3), s5 : (M2, w3)

s3 : (M1, w2)

s1 : (M1, w1), s2 : (M2, w1) m
os

t
pr

ef
er

re
d

←−
−−
−−
−−
−−
−

Fig. 3. Preferential model for the nuclear power plant scenario.

The rationale of this partial order is as follows: The utility company selling
the electricity generated by the power plant tries as far as possible to keep
both the pile and the cooling system on, ensuring that the pile can be easily
switched off (states s1 and s2); sometimes the company has to switch the pile
off for maintenance but then tries to keep the cooler running, preferably if
turning the pile on again does not cause a fault in the cooling system (state
s3); more rarely the company needs to switch off both the pile and the cooler,
e.g. when the latter needs maintenance (states s4 and s5); in an exceptional
situation, turning the pile on may interfere with the cooler switching it off
(state s6); and, finally, only in very exceptional situations would the pile be
on while the cooler is off, e.g. during a serious malfunction (states s7 and s8).

Let |∼P be the defeasible consequence relation defined by the model P
above (cf. Definition 3.4). Then we can check that c ∧ 〈f〉> |∼P [f]c (usually,
flipping the switch does not shut down the cooler); ¬p ∧ c |∼P [f]¬h (turning
the pile on, when the cooler is on, usually does not lead to a hazardous situ-
ation); > |∼P [m]⊥ (meltdowns are unlikely); p ∧ ¬c 6|∼P [m]¬h (it is not the
case that once a malfunction has taken place in a hazardous situation, one
is usually in a safe situation); and ¬p ∧ c 6|∼P 〈f〉〈m〉> (it is not usually the
case that turning the pile on may lead to a situation in which a malfunction
is possible).

Moreover, thanks to our representation result (Theorem 3.5), we know
that |∼P is a preferential consequence relation (actually it turns out to be a
rational consequence relation, since ≺ here is a modular partial order).

We started our example with a classical knowledge base, and then con-
structed a semantic rational consequence relation. This illustrated the seman-
tics well, but in practice we may rather start with a defeasible knowledge base
K|∼, from which we may draw defeasible conclusions. The semantics is then
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hidden from the user, as it forms part of the internal working of the reasoner.
In the next section we analyze an example of reasoning with a defeasible
knowledge base.

5 Epistemic Preferential Reasoning

Another family of modal logics that is of great interest from the standpoint of
AI is that of epistemic logics, which allow for reasoning about knowledge [10].

The language of basic epistemic logic contains a (finite) set of agents
A = {A1, . . . , An}. For each agent A ∈ A there is a knowledge operator
KA. Formulas are recursively defined in the usual way with {KA1 , . . . ,KAn}
as modal operators. A formula of the form KAα is used to specify agent A’s
knowledge about the world and it is read as “agent A knows that α is the
case”. For instance, KA1(α ∧KA2α) formalizes the fact that “agent A1 knows
both α and that agent A2 also knows α”.

The core of epistemic logic is the normal multi-modal logic Km. Hence, the
following version of axiom schema K is valid: KAα∧KA(α→ β)→ KAβ, i.e.,
“if A knows both α and α → β, then she also knows β”. Stronger epistemic
logics are obtained by adding additional schemata, expressing specific desired
properties of knowledge, to the basic system K. Since K is at the heart of
these logics, we shall suffice with it in our exposition below.

In our example, let us assume that we have two agents, say A and B. The
set P is as in the previous section, with the propositions p, c and h keeping
their previous intuition. We have the following defeasible knowledge base K|∼: h |∼ p ∧ ¬c, p ∧ ¬c ∧ ¬h |∼ ⊥, h |∼ KA(p ∧ ¬c), h ∧ p ∧ ¬c |∼ KBKA¬c,

KBp |∼ p ∧ c, KBp ∧KA¬p |∼ ¬p, KBp ∧KB¬c |∼ p ∧ ¬c


The intuition conveyed by K|∼ is as follows: Hazardous situations are

usually ones in which the pile is on and the cooler is off. The statement
p ∧ ¬c ∧ ¬h |∼ ⊥ encodes the ‘hard’ constraint p ∧ ¬c → h [19, p. 6]. Then
we have that in hazardous situations our agent A usually believes the pile is
indeed on and the cooler is off. In hazardous situations where the pile is on
and the cooler is off, agent B knows that agent A knows that the cooler is
down. Then B is usually right about his belief that the pile is on (unless A
believes the opposite, in which case it is off); moreover the cooler is also on
(unless he knows otherwise, in which case it is off).

From the defeasible knowledge base K|∼ we can preferentially derive the
defeasible statement h ∧ p ∧ ¬c |∼ KA¬c ∧ KBKA¬c: in hazardous situations
due to the pile being on while the cooler is off, usually agent A knows that the
cooling is down and B knows that A knows this is the case. Since we know
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that the preferential closure is a preferential consequence relation (cf. comment
after Definition 3.9), this can be derived by applying properties (RW), (CM)
and (And) to the defeasible statements in K|∼.

K|∼ does not entail KBp ∧ KB¬c ∧ ¬KAh |∼ h preferentially: situations in
which B knows both that the pile is on and the cooler is off, and in which
A does not know there is a hazard, are not usually hazardous. We (i.e., the
underlying reasoner) can easily construct a modal preferential model satisfying
K|∼ that does not satisfy the statement above. Let M be the Kripke model
in Figure 4.

cw2 w3

p, cw1 p, h w4

B

A

A B
A

A

B

A

Fig. 4. A Kripke model depicting knowledge of two agents in our nuclear power station scenario.

From M we construct a modal preferential model P = 〈S, `,≺〉, where
S = {s1, s2, s3, s4}, `(si) = (M , wi), 1 ≤ i ≤ 4, and s1 ≺ s2, s2 ≺ s3, and s3 ≺
s4. It can be checked that P satisfiesK|∼. However, KBp∧KB¬c∧¬KAh 6|∼P h.

It can be checked that KBp ∧ KB¬c ∧ ¬KAh |∼ h is in the modal rational
closure of the defeasible knowledge base K|∼.

6 Related Work

This paper builds on current work on ALC [4], in which rational closure for
ALC is studied in more detail.

Also in a DL setting, Britz et al. [3] and Giordano et al. [12] use typicality
orderings on objects in first-order domains to define defeasible subsumption
in ALC. Both approaches define rational consequence relations, but without
representation results. In contrast, we provide a general semantic framework
which, unlike these proposals, is relevant to all logics with a possible worlds
semantics. This is because our semantics for defeasible consequence yields
a single order on relational structures at the meta level, rather than ad hoc
relativized orders at the object level.

The notion of defeasibility in action theories has been dealt with in non-
modal frameworks for reasoning about actions [1,27]. Contrary to ours, their
work is not concerned with extending preferential reasoning to more expressive
logics. However, defeasible statements of the kind we studied here can be used
in reasoning about the qualifications of actions: In situations where α holds,
the action a is usually executable; but in the more specific context α′, a’s

12
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execution fails. In that sense, our framework also stands as an approach to
the qualification problem [20] and to the more general problem of revising
action domain descriptions [24,25].

As mentioned in Section 3, Casini and Straccia [5] recently proposed an
algorithm for determining rational closure in the context of description logics.
Their algorithm can be adjusted to determine the modal rational closure as
defined in Definition 3.13. From the description of this algorithm it follows
that, for the modal logics under consideration here, determining membership
of the modal rational closure is no harder than global entailment checking.
Furthermore, the algorithm can readily be extended to implement refinements
presented by presumptive reasoning [17], and inheritance networks [6]. We
are currently investigating further optimizations of the algorithm via suitable
definitions of modularity for defeasible knowledge bases [14,15].

7 Concluding Remarks

The contributions of this paper are as follows: (i) we filled an important gap
in the non-monotonic reasoning community by providing a natural and intu-
itive semantics for preferential reasoning in modal logics; (ii) we gave to our
semantics a corresponding syntactic characterization via our representation
results; (iii) we established the basis with which to ‘lift’ the propositional no-
tions of defeasible consequence and closure to modal logics in general, and (iv)
we illustrated how our constructions can be applied in two important families
of modal logic.

The simple modal logics that we have assessed here are the backbone of well
established formalisms for reasoning about actions, knowledge, obligations,
and combinations thereof. A proper understanding of preferential reasoning
for basic modal logic is therefore important for finding specific definitions
of defeasible reasoning in these logics. In that sense, we believe that the
results we develop here pave the way for extending preferential and rational
consequence, and hence also rational closure, to a whole class of logics for
knowledge representation and reasoning.
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A Proof Sketch for Theorem 3.5

Lemma A.1 (Soundness) For any preferential model P, the consequence
relation it defines is a preferential relation.

Let |∼ denote a preferential relation, i.e., |∼ satisfies the properties for
preferential reasoning from Section 2.

Definition A.2 A pair (M , w) ∈ U is normal for α ∈ L iff for every β ∈ L
s.t. α |∼ β, M , w 
 β.

Lemma A.3 Let |∼ satisfy (Ref), (RW), and (And), and let α, β ∈ L. All
normal (M , w) for α satisfy β iff α |∼ β.

Definition A.4 Let α, β ∈ L. α 6 β iff α ∨ β |∼ α.

We construct a preferential model as in Definition 3.3. Let P = 〈S, `,≺〉,
where:

• S = {〈M , w, α〉 | (M , w) ∈ U is normal for α ∈ L};
• `(〈M , w, α〉) = (M , w);

• 〈M , w, α〉 ≺ 〈M ′, w′, β〉 iff α 6 β and M , w 6
 β.

Lemma A.5 ≺ is a strict partial order on S.

Lemma A.6 For any α ∈ L, α̂ ⊆ S is smooth.

Lemma A.7 α |∼ β iff α |∼P β.

Proof Sketch for Theorem 3.5. Soundness is given by Lemma A.1. For
the only if part, let |∼ be a preferential consequence relation, and let P be
defined as above. We showed in Lemmas A.5 and A.6 that P is indeed a
preferential model. Lemma A.7 shows that P defines a consequence relation
that is exactly |∼. 2

B Proof Sketch for Theorem 3.7

Lemma B.1 (Soundness) If Pr is a ranked model, then the consequence
relation |∼Pr it defines is rational.

Let |∼ denote a rational relation, i.e., |∼ satisfies the properties for prefer-
ential reasoning from Section 2 plus (RM).

Definition B.2 α ∈ L is consistent w.r.t. |∼ iff α 6|∼ ⊥. Given Pr = 〈S, `,≺〉,
α is consistent w.r.t. |∼Pr iff α 6|∼Pr

⊥, i.e., iff there is s ∈ S s.t. s ∈ α̂.

Let C = {α ∈ L | α is consistent w.r.t. |∼}.
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Definition B.3 Given α, β ∈ C , α is not more exceptional than β, written
αRβ, iff α ∨ β 6|∼ ¬α. α is as exceptional as β, written α ∼ β, iff αRβ and
βRα.

That ∼ is an equivalence relation follows from the fact that R is reflexive
and transitive. With α we denote the equivalence class of α. The set of
equivalence classes of elements of C under ∼ is denoted by C . We write
α ≤ β iff αRβ, and α < β iff α ≤ β and α 6∼ β.

We construct a ranked model as in Definition 3.6. Let Pr = 〈S, `,≺〉,
where:

• S = {〈M , w, α〉 | (M , w) is normal for α ∈ L};
• `(〈M , w, α〉) = (M , w);

• 〈M , w, α〉 ≺ 〈M ′, w′, β〉 iff α < β.

Lemma B.4 ≺ is a modular partial order.

Lemma B.5 Let α ∈ L be consistent. α̂ ⊆ S is smooth.

Lemma B.6 α |∼ β iff α |∼Pr β.

Proof Sketch for Theorem 3.7. Soundness is given by Lemma B.1. For the
only if part, let |∼ be a rational consequence relation, and Pr be as defined
above. By Lemmas B.4 and B.5, Pr is a ranked model. Lemma B.6 shows
that Pr defines a consequence relation that is exactly |∼. 2

C Proof Sketch for Theorem 3.15

We first show thatR|∼ containsK|∼ and then thatR|∼ is a rational consequence
relation. The remainder of the proof is concerned with showing that if R|∼1
is a different rational consequence relation containing K|∼ , then R|∼ � R|∼1 ,
which proves that R|∼ is the modal rational closure of K|∼. This part of the
proof makes use of the ranks of formulas, but the crucial aspect is the use of
three ranked models Pr, P ′

r, and P ′′
r . Pr is a ranked model characterizing

R|∼1 , while P ′′
r is constructed from Pr, and P ′

r is constructed from P ′′
r . The

models P ′′
r and P ′

r are used to show that R|∼ � R|∼1 . 2
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