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Abstract. Description logics are a well-established family of knowledge
representation formalisms in Artificial Intelligence. Enriching descrip-
tion logics with non-monotonic reasoning capabilities, especially prefer-
ential reasoning as developed by Lehmann and colleagues in the 90’s,
would therefore constitute a natural extension of such KR formalisms.
Nevertheless, there is at present no generally accepted semantics, with
corresponding syntactic characterization, for preferential consequence in
description logics. In this paper we fill this gap by providing a natu-
ral and intuitive semantics for defeasible subsumption in the description
logic ALC. Our semantics replaces the propositional valuations used in
the models of Lehmann et al. with structures we refer to as concept mod-
els. We present representation results for the description logic ALC for
both preferential and rational consequence relations. We argue that our
semantics paves the way for extending preferential and rational conse-
quence, and therefore also rational closure, to a whole class of logics that
have a semantics defined in terms of first-order relational structures.

1 Introduction

The preferential and rational consequence relations first studied by Lehmann
and colleagues [8, 10] play a central role in non-monotonic reasoning, not least
because they provide the foundation for the determination of the important
notion of rational closure. Although they can be applied directly to a large
variety of knowledge representation languages, these constructions suffer from
the limitation that they are largely propositional in nature, whereas many logics
of interest for Artificial Intelligence have more structure.

One of the main obstacles in moving beyond the propositional setting has
been the lack of a formal semantics which appropriately generalizes the pref-
erential and ranked models of Lehmann et al. The first tentative exploration
of preferential predicate logics by Lehmann et al. didn’t fly primarily because
propositional logic was sufficiently expressive for the non-monotonic reasoning
community at the time, and first-order logic introduced too much complexity [9].
But this changed with the surge of interest in description logics as knowledge
representation formalism and their many applications in AI.



Description logics (DLs) [1] are decidable fragments of first-order logic, and
are ideal candidates for the kind of extension to preferential reasoning we have
in mind: the notion of subsumption present in all DLs is a natural candidate
for defeasibility, while at the same time, the restricted expressivity of DLs en-
sures that attempts to introduce preferential reasoning are not hampered by the
complexity of full first-order logic. The aim of this paper is therefore to extend
the work of Lehmann et al. [8, 10] beyond propositional logic without moving to
full first-order logic. We restrict our attention to the description logic ALC here,
but the results are broadly applicable to other DLs, as well as other similarly
structured logics such as logics of action and logics of knowledge and belief [3].

The rest of the paper is structured as follows. After some DL preliminaries
(Section 2), we give a brief account of preferential and rational consequence
in the propositional case (Section 3). In Section 4, which is the heart of the
paper, we define the semantics for both preferential and rational subsumption
for ALC and present representation results for both. Importantly, these are with
respect to the corresponding propositional properties. From this we conclude that
our semantics forms the foundation of a semantics for preferential and rational
consequence for a whole class of DLs and related logics. In Section 5 we show
that the notions of propositional preferential entailment and rational closure can
be ‘lifted’ to the case for DLs, specifically ALC. In Section 6 we discuss related
results. We conclude with Section 7 in which we also discuss future work.

2 Description Logics

The language of ALC is built upon a finite set of atomic concept names NC

(together with the distinguished concept >), and a finite set of role names NR,
using the constructors u (concept conjunction), ¬ (complement), and ∃ (existen-
tial restriction). An atomic concept is denoted by A, possibly with subscripts,
and a role name by r, possibly with subscripts. Complex concepts are denoted
by C,D, . . . and are constructed according to the rule

C ::= A | > | C u C | ¬C | ∃r.C

Concepts built with the constructors t and ∀, and the special concept ⊥ are
defined in terms of the others in the usual way. We let L denote the set of all
ALC concepts.

The semantics of ALC is the standard set theoretic Tarskian semantics. An
interpretation is a structure I = 〈∆I , ·I〉, where ∆I is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ∆I , and mapping role names r to binary relations rI over ∆I×∆I :

AI ⊆ ∆I , rI ⊆ ∆I ×∆I ,>I = ∆I , ⊥I = ∅

Given an interpretation I = 〈∆I , ·I〉, ·I is extended to interpret complex
concepts in the following way:

(¬C)
I

= ∆I \ CI , (C uD)
I

= CI ∩DI ,

(∃r.C)
I

= {a ∈ ∆I | for some b, (a, b) ∈ rI and b ∈ CI}



Given C,D ∈ L, C v D is a subsumption statement, and it is read as “C is
subsumed by D”. C ≡ D is an abbreviation for both C v D and D v C. An
(ALC) TBox T is a finite set of subsumption statements.

An interpretation I satisfies C v D (denoted I 
 C v D) if and only if
CI ⊆ DI . I 
 C ≡ D if and only if CI = DI . C v D is (classically) entailed
by a TBox T , denoted T |= C v D, if and only if every interpretation I which
satisfies all elements of T , also satisfies C v D.

For more details on description logics in general, and the description logic
ALC in particular, the reader is referred to the DL handbook [1].

3 Propositional Preferential and Rational Consequence

In this section we give a brief introduction to propositional preferential and
rational consequence, as initially defined by Kraus et al. [8]. A propositional
defeasible consequence relation |∼ is defined as a binary relation on formulas
α, β, γ, . . . of an underlying (possibly infinitely generated) propositional logic
equipped with a standard propositional entailment relation |=. |∼ is said to be
preferential if it satisfies the following set of properties:

(Ref) α |∼ α (LLE)
α ≡ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ
α |∼ β ∧ γ

(RW)
α |∼ β, β |= γ

α |∼ γ
(Or)

α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(CM)
α |∼ β, α |∼ γ
α ∧ β |∼ γ

The semantics of (propositional) preferential consequence relations is in terms
of preferential models; these are partially ordered structures with states labeled
by propositional valuations. We shall make this terminology more precise in
Section 4, but it essentially allows for a partial order on states, with states lower
down in the order being more preferred than those higher up. Given a preferential
model P, a pair α |∼ β is in the consequence relation defined by P if and only if
the minimal states (according to the partial order) of all those states labeled by
valuations that are propositional models of α, are also labeled by propositional
models of β. The representation theorem for preferential consequence relations
then states [8]:

Theorem 1 (Kraus et al.). A defeasible consequence relation is a preferential
consequence relation if and only if it is defined by some preferential model.

If, in addition to the preferential properties, |∼ also satisfies the following Ra-
tional Monotony property, it is said to be a rational consequence relation:

(RM)
α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked prefer-
ential models, i.e., preferential models in which the preference order is modular :



Definition 1. Given a set S, ≺ ⊆ S× S is modular if and only if ≺ is a partial
order on S, and there is a ranking function rk : S 7→ N such that for every
s, s′ ∈ S, s ≺ s′ if and only if rk(s) < rk(s′).

The representation theorem for rational consequence relations then states [10]:

Theorem 2 (Lehmann and Magidor). A defeasible consequence relation is
a rational consequence relation if and only if it is defined by some ranked model.

4 Semantics for DL Preferential Subsumption

Description logics are ideal candidates for extending propositional preferential
consequence since the notion of subsumption in DLs lends itself naturally to
defeasibility [2, 7, 4]. The basic idea is to reinterpret defeasible consequence of the
form α |∼ β as defeasible subsumption of the form C @∼D, and classical entailment
|= as DL subsumption v. For example, if M v ¬F is read as “meningitis is not
fatal”, then M @∼ ¬F can be read as “meningitis is usually not fatal”. The above
properties of preferential consequence are then immediately applicable.

Definition 2. A subsumption relation @∼ ⊆ L × L is a preferential subsump-
tion relation if and only if it satisfies the properties (Ref), (LLE), (And), (RW),
(Or), and (CM), with propositional entailment replaced by classical DL subsump-
tion. @∼ is a rational subsumption relation if and only if in addition to being a
preferential subsumption relation, it also satisfies the property (RM).

Since DLs have a standard first-order semantics, the obvious generalization
from a technical perspective is to replace the propositional valuations in pref-
erential models with first-order interpretations. Intuitively, this also turns out
to be a natural generalization of the propositional setting, with the notion of
normal first-order interpretation characterizing a given concept replacing the
propositional notion of normal worlds satisfying a given proposition. Formally,
our semantics is based on the notion of a concept model, which is analogous to
that of a Kripke model in modal logic [5]:

Definition 3 (Concept Model). A concept model is a tuple M = 〈W,R,V〉
where W is a set of possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆W×W,
1 ≤ i ≤ |NR|, and V : W 7→ 2NC is a valuation function.

Observe that the valuation function V can be viewed as a propositional val-
uation with propositional atoms replaced by concept names. From the definition
of satisfaction in a concept model below it is then clear that, within the con-
text of a concept model, a world occurring in that concept model is a proper
generalization of a propositional valuation.

Definition 4 (Satisfaction). Given M = 〈W,R,V〉 and w ∈W:

• M , w 
 >;
• M , w 
 A iff A ∈ V(w);



• M , w 
 C uD iff M , w 
 C and M , w 
 D;
• M , w 
 ¬C iff M , w 6
 C;
• M , w 
 ∃ri.C iff there is w′ ∈W s.t. (w,w′) ∈ Ri and M , w′ 
 C.

Let U denote the set of all pairs (M , w) where M = 〈W,R,V〉 is a concept
model and w ∈ W. Worlds are, loosely speaking, interpreted DL objects. And
while this correspondence holds technically (from the correspondence between
ALC and multimodal logic K [14]), a possible worlds reading of the meaning
of a concept is also more intuitive in the current context, since this leads to a
preference order on rich first-order structures, rather than on interpreted objects.
This is made precise below.

Let S be a set, the elements of which are called states. Let ` : S 7→ U be a
labeling function mapping every state to a pair (M , w) where M = 〈W,R,V〉
is a concept model such that w ∈ W. Let ≺ be a binary relation on S. Given
C ∈ L, we say that s ∈ S satisfies C (written s |≡ C) if and only if `(s) 
 C,

i.e., M , w 
 C. We define Ĉ = {s ∈ S | s |≡ C}. Ĉ is smooth if and only if each

s ∈ Ĉ is either ≺-minimal in Ĉ, or there is s′ ∈ Ĉ such that s′ ≺ s and s′ is
≺-minimal in Ĉ. We say that S satisfies the smoothness condition if and only if
for every C ∈ L, Ĉ is smooth.

We are now ready for our definition of preferential model.

Definition 5 (Preferential Model). A preferential model is a triple P =
〈S, `,≺〉 where S is a set of states satisfying the smoothness condition, ` is a
labeling function mapping states to elements of U , and ≺ is a strict partial
order on S, i.e., ≺ is irreflexive and transitive.

These formal constructions closely resemble those of Kraus et al. [8] and of
Lehmann and Magidor [10], the difference being that propositional valuations
are replaced with elements of the set U .

Definition 6 (Preferential Subsumption). Let C,D ∈ L and P = 〈S, `,≺〉
be a preferential model. C is preferentially subsumed by D in P (noted C @∼PD)

if and only if every ≺-minimal state s ∈ Ĉ is such that s ∈ D̂.

We are now in a position to prove one of the central results of this paper.

Theorem 3. A defeasible subsumption relation is a preferential subsumption
relation if and only if it is defined by some preferential model.

The significance of this is that the representation result is proved with respect
to the same set of properties used to characterize propositional preferential con-
sequence. We therefore argue that preferential models, as we have defined them,
provide the foundation for a semantics for preferential (and rational) subsump-
tion for a whole class of DLs and related logics. We do not claim that this is
the appropriate notion of preferential subsumption for ALC, but rather that it
describes the basic framework within which to investigate such a notion. In order
to obtain a similar result for rational subsumption, we restrict ourselves to those
preferential models in which ≺ is a modular order on states (cf. Definition 1):



Definition 7 (Ranked Model). A ranked model Pr is a preferential model
〈S, `,≺〉 in which ≺ is modular.

Since ranked models are preferential models, the notion of rational subsump-
tion is as in Definition 6. We can then state the following result:

Theorem 4. A defeasible subsumption relation is a rational subsumption rela-
tion if and only if it is defined by some ranked model.

5 Rational Closure

One of the primary reasons for defining non-monotonic consequence relations of
the kind we have presented above is to get at a notion of defeasible entailment :
Given a set of subsumption statements of the form C @∼D or C v D, which other
subsumption statements, defeasible and classical, should one be able to derive
from this? It can be shown that hard subsumption statements C v D can be en-
coded as defeasible subsumptions of the form Cu¬D @∼⊥ [10, Section 2]. For the
remainder of this paper we shall therefore concern ourselves only with finite sets
of defeasible subsumption statements, and refer to these as defeasible TBoxes,
denoted T . We permit ourselves the freedom to include classical subsumption
statements of the form C v D in a defeasible TBox, with the understanding
that it is an encoding of the defeasible subsumption statement C u ¬D @∼⊥.

Our aim in this section is to show that the results for the propositional
case [10] with respect to the question above can be ‘lifted’ to ALC. We provide
here appropriate notions of preferential entailment and rational closure. It must
be emphasized that the results obtained in this section rely heavily on similar
results obtained by Lehmann and Magidor [10] for the propositional case, and
the semantics for preferential and rational subsumption presented in Section 4.
Similar to the results of that section, our claim is not that the versions of pref-
erential and rational closure here are the appropriate ones for ALC. In fact, our
conjecture is that they are not, due to their propositional nature. However, we
claim that they provide the appropriate springboard from which to investigate
more appropriate versions, for ALC, as well as for other DLs and related logics.

The version of rational closure defined here provides us with a strict gen-
eralization of classical entailment for ALC TBoxes in which the expressivity of
ALC is enriched with the ability to make defeasible subsumption statements.
For example, consider the defeasible ALC TBox:

T = {BM v M,VM v M,M @∼ ¬F,BM @∼ F}, (1)

where BM abbreviates the concept BacterialMeningitis, M stands for Meningi-
tis, VM for viralMeningitis, and F abbreviates FatalDisease. One should be able
to conclude that viral meningitis is usually non-fatal (VM @∼ ¬F). On the other
hand, we should not conclude that fatal versions of meningitis are usually bac-
terial (F uM @∼ BM), nor, for that matter, that fatal versions of meningitis are
usually not bacterial ones (F uM @∼ ¬BM).



Armed with the notion of a preferential model (cf. Section 4) we define pref-
erential entailment for ALC as follows.

Definition 8. C @∼D is preferentially entailed by a defeasible TBox T if and
only if for every preferential model P in which E @∼PF for every E @∼ F ∈ T ,
it is also the case that C @∼PD.

Firstly, we can show that preferential entailment is well-behaved and coincides
with preferential closure under the properties of preferential subsumption (i.e.,
the intersection of all preferential subsumption relations containing a defeasible
TBox). More precisely, if T is a defeasible TBox, the set of defeasible subsump-
tion statements preferentially entailed by T , viewed as a binary relation on L,
is a preferential subsumption relation. Furthermore, a defeasible subsumption
statement is preferentially entailed by T if and only if it is in the preferential
closure of T .

From this it follows that if we use preferential entailment, the meningitis
example can be formalized by letting T be as in Equation 1. However, VM @∼ ¬F is
not preferentially entailed by T above (we cannot conclude that viral meningitis
is usually not fatal) and preferential entailment is thus too weak. Hence we move
to rational subsumption relations.

The first attempt to do so is to use a definition similar to that employed for
preferential entailment: C @∼D is rationally entailed by a defeasible TBox T if
and only if for every ranked model Pr in which E @∼Pr

F for every E @∼ F ∈ T ,
it is also the case that C @∼Pr

D. However, this turns out to be exactly equiva-
lent to preferential entailment [10, Section 4.2]. Therefore, if the set of defeasible
subsumption statements obtained as such is viewed as a binary relation on con-
cepts, the result is a preferential subsumption relation and is not, in general, a
rational consequence relation.

The above attempt to define rational entailment is thus not acceptable, as
shown by Lehmann and Magidor. Instead, in order to arrive at an appropriate
notion of (rational) entailment we first define a preference ordering on rational
subsumption relations, with relations further down in the ordering interpreted
as more preferred.

Definition 9. Let @∼ 0 and @∼ 1 be rational subsumption relations. @∼ 0 is prefer-
able to @∼ 1 (written @∼ 0 � @∼ 1) if and only if

• there is C @∼D ∈ @∼ 1 \ @∼ 0 s.t. for all E s.t. E t C @∼ 0¬C and for all F s.t.
E @∼ 0F , we also have E @∼ 1F ; and

• for every E,F ∈ L, if E @∼ F is in @∼ 0\ @∼ 1, then there is an assertion G @∼H
in @∼ 1 \ @∼ 0 s.t. G t E @∼ 1¬E.

Space considerations prevent us from giving a detailed motivation for� here,
but it is essentially the motivation for the same ordering for the propositional
case provided by Lehmann and Magidor [10]. Given a defeasible TBox T , the
idea is now to define rational entailment as the most preferred (with respect
to �) of all those rational subsumption relations which include T .



Lemma 1. Let T be a finite defeasible TBox and let R be the class of all rational
subsumption relations which include T . There is a unique rational subsumption
relation in R which is preferable to all other elements of R with respect to �.

This puts us in a position to define an appropriate form of (rational) entail-
ment for defeasible TBoxes:

Definition 10. Let T be a defeasible TBox. The rational closure of T is the
(unique) rational subsumption relation which includes T and is preferable (with
respect to �) to all other rational subsumption relations including T .

It can be shown that VM @∼ ¬F is in the rational closure of T (we can conclude
viral meningitis is usually not fatal), but that neither F u M @∼ BM nor F u
M @∼ ¬BM is.

We conclude this section with a result which can be used to define an algo-
rithm for computing the rational closure of a defeasible TBox T . For this we
first need to define a ranking of concepts with respect to T which, in turn, is
based on a notion of exceptionality. A concept C is said to be exceptional for a
defeasible TBox T if and only if T preferentially entails > @∼ ¬C. A defeasible
subsumption statement C @∼D is exceptional for T if and only if its antecedent
C is exceptional for T .

It turns out that checking for exceptionality can be reduced to classical sub-
sumption checking.

Lemma 2. Given a defeasible TBox T , let T v be its classical counterpart in
which every defeasible subsumption of the form D @∼ E in T is replaced by D v E.
C is exceptional for T if and only if > v ¬C is classically entailed by T v.

Let E(T ) denote the subset of T containing statements that are exceptional
for T . We define a non-increasing sequence of subsets of T as follows: E0 = T ,
and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k such that for all
j ≥ k, Ej = Ej+1. From this we define the rank of a concept with respect to T :
rT (C) = k − i, where i is the smallest integer such that C is not exceptional
for Ei. If C is exceptional for Ek (and therefore exceptional for all Es), then
rT (C) = 0. Intuitively, the lower the rank of a concept, the more exceptional it
is with respect to the TBox T .

Theorem 5. Let T be a defeasible TBox. The rational closure of T is the set of
defeasible subsumption statements C @∼D such that either rT (C) > rT (C u¬D),
or rT (C) = 0 (in which case rT (C u ¬D) = 0 as well).

From this result one can construct a (näıve) decidable algorithm to check
whether a given defeasible subsumption statement is in the rational closure of a
defeasible TBox T . Also, if checking for exceptionality is assumed to take con-
stant time, the algorithm is quadratic in the size of T . Given that exceptionality
reduces to subsumption checking in ALC which is ExpTime-complete, it imme-
diately follows that checking whether a given defeasible subsumption is in the
rational closure of T is an ExpTime-complete problem. This result relates to a
result by Casini and Straccia [4] which we refer to again in the next section.



6 Related Work

Quantz and Ryan [12, 13] were probably the first to consider the lifting of non-
monotonic reasoning formalisms to a DL setting. They propose a general frame-
work for Preferential Default Description Logics (PDDL) based on an ALC-like
language by introducing a version of default subsumption and proposing a se-
mantics for it. Their semantics is based on a simplified version of standard DL
interpretations in which all domains are assumed to be finite and the unique
name assumption holds for object names. In that sense, their framework is much
more restrictive than ours, as we do not make these assumptions here. They fo-
cus on a version of entailment which they refer to as preferential entailment, but
which is to be distinguished from the version of preferential entailment that we
have presented in this paper. In what follows, we shall refer to their version as
Q-preferential entailment.

Q-preferential entailment is concerned with what ought to follow from a set of
classical DL statements, together with a set of default subsumption statements,
and is parameterised by a fixed partial order on (simplified) DL interpretations.
They prove that any Q-preferential entailment satisfies the properties of a pref-
erential consequence relation and, with some restrictions on the partial order,
satisfies Rational Monotony as well. Q-preferential entailment can therefore be
viewed as something in between the notions of preferential consequence and pref-
erential entailment we have defined for DLs. It is also worth noting that although
the Q-preferential entailments satisfy the properties of a preferential consequence
relation, Quantz and Ryan do not prove that Q-preferential entailment provides
a characterisation of preferential consequence.

Britz et al. [2] and Giordano et al. [7] use typicality orderings on objects in
first-order domains to define versions of defeasible subsumption for ALC. Both
approaches propose specific non-monotonic consequence relations, and hence
their semantic constructions are special cases of the more general framework
we have provided here. In contrast, we provide a general semantic framework
which is relevant to all logics with a possible worlds semantics. This is because
our preference semantics is not defined in terms of orders on interpreted DL ob-
jects relative to given concepts, but rather in terms of a single order on relational
structures. Our semantics for defeasible subsumption yields a single order at the
meta level, rather than ad hoc relativized orders at the object level.

Casini and Straccia [4] recently proposed a syntactic operational characteri-
zation of rational closure in the context of description logics, based on classical
entailment tests only, and thus amenable to implementation. Their work is based
on that of Lehmann and Magidor [10], Freund [6] and Poole [11], and represents
an important building block in the extension of preferential consequence to de-
scription logics. However, this work lacks a semantics, and we can only at present
conjecture that the rational closure produced by their algorithm coincides with
the notion of the rational closure of a defeasible TBox presented in this paper.

Finally, Britz et al. [3] present the modal counterpart of our notions of pref-
erential reasoning and rational closure, illustrated by examples from epistemic
reasoning and reasoning about actions.



7 Conclusion and Future Work

The main contribution of this paper is the provision of a natural and intuitive
formal semantics for preferential and rational subsumption for the description
logic ALC. We claim that our semantics provides the foundation for extending
preferential reasoning in at least three ways. Firstly, as we have seen in Section 5,
it allows for the ‘lifting’ of preferential entailment and rational closure from the
propositional case to the case for ALC. Without the semantics such a lifting
may be possible in principle, but will be very hard to prove formally. Secondly, it
paves the way for defining similar results for other DLs, as well as other similarly
structured logics, such as logics of action and belief [3]. And thirdly, it provides
the tools to tighten up the versions of preferential and rational subsumption for
ALC presented in this paper in order to truly move beyond the propositional.
The latter point is the obvious one to pursue first when it comes to future work.
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