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Abstract
We propose a novel modal logic for specifying
agent domains where the agent’s actuators and sen-
sors are noisy, causing uncertainty in action and
perception. The logic draws both on POMDP the-
ory and logics of action and change. The develop-
ment of the logic builds on previous work in which
a simple multi-modal logic was augmented with
first-class observation objects. These observations
can then be used to represent the set of observa-
tions in a POMDP model in a natural way. In this
paper, a subset of the simple modal logic is taken
for the new logic, in which modal operators may
not be nested. The modal operators are then ex-
tended with notions of probability. It will be shown
how stochastic domains can be specified, including
new kinds of axioms dealing with perception and a
frame solution for the proposed logic.

1 Introduction and Motivation
In the physical real world, or in extremely complex engi-
neered systems, things are not black-and-white. We live in
a world where there can be shades of truth and degrees of be-
lief. Part of the problem is that agents’ actuators and sensors
are noisy, causing uncertainty in their action and perception.
In this paper, we propose a novel logic that draws on partially
observable Markov decision process (POMDP) theory and on
logics for reasoning about action and change, combining both
in a coherent language to model change and uncertainty.

Imagine a robot that is in need of an oil refill. There is
an open can of oil on the floor within reach of its gripper.
If there is nothing else in the robot’s gripper, it can grab the
can (or miss it, or knock it over) and it can drink the oil by
lifting the can to its ‘mouth’ and pouring the contents in (or
miss its mouth and spill). The robot may also want to confirm
whether there is anything left in the oil-can by weighing its
contents. And once holding the can, the robot may wish to
place it back on the floor. In situations where the oil-can is
full, the robot gets 5 units of reward for grabbing the can, and
it gets 10 units for a drink action. Otherwise, the robot gets
no rewards. Rewards motivate an agent to behave as desired.

The domain is (partially) formalized as follows. The robot
has the set of actions A = {grab, drink, weigh, replace}

with expected meanings. The robot can perceive observa-
tions only from the set Ω = {obsNil , obsLight , obsMedium ,
obsHeavy}. When the robot performs a weigh action (i.e., it
activates its ‘weight’ sensor) it will perceive either obsLight ,
obsMedium or obsHeavy ; for other actions, it will perceive
obsNil . The robot experiences its environs through three
Boolean features: P = {full , drank, holding} meaning re-
spectively that the oil-can is full, that the robot has drunk the
oil and that it is currently holding something in its gripper.

Given a formalization K of our scenario, the robot may
have the following queries:

• Is the probability of perceiving that the oil-can is light
0.7 when the can is not full, and have I drunk the
oil, and am I holding the can? Does (obsLight |
weigh)0.7(¬full ∧ drank ∧ holding) follow from K?

• If the oil-can is empty and I’m not holding it, is there
a 0.9 probability that I’ll be holding it after grabbing
it, and a 0.1 probability that I’ll have missed it? Does
(¬full ∧ ¬holding) → ([grab]0.9(¬full ∧ holding) ∧
[grab]0.1(¬full ∧ ¬holding)) follow from K?

In order for robots and intelligent agents in stochastic do-
mains to reason about actions and observations, they must
first have a model of the domain over which to reason. For
example, a robot may need to represent available knowledge
about its grab action in its current situation. It may need
to represent that when ‘grabbing’ the oil-can, there is a 5%
chance that it will knock over the oil-can. As another exam-
ple, if the robot has access to information about the weight
of an oil-can, it may want to represent the fact that the can
weighs heavy with a 90% chance in ‘situation A’, but that it
is heavy with a 98% chance in ‘situation B’.

Logic-based artificial intelligence for agent reasoning is
well established. In particular, a domain expert choosing
to represent domains with a logic can take advantage of the
progress made in cognitive robotics [Levesque and Lake-
meyer, 2008] to specify domains in a compact and transparent
manner. Modal logic is considered to be well suited to rea-
soning about beliefs and changing situations.

POMDP theory has proven to be a good general framework
for formalizing dynamic, stochastic systems. A drawback of
traditional POMDP models is that they cannot include infor-
mation about general facts and laws. Moreover, succinct ax-
ioms describing the dynamics of a domain cannot be writ-



ten in POMDP theory. In this work, we develop a logic that
will further our goal of combining modal logic with POMDP
theory. That is, here we design a modal logic that can rep-
resent POMDP problems specifically for reasoning tasks in
cognitive robotics (with domain axioms). The logic for ac-
tual decision-making will be developed in later work. To fa-
cilitate the correspondence between POMDPs and an agent
logic, we require observation objects in the logic to corre-
spond to the POMDPs’ set of observations. Before the in-
troduction of the Logic of Actions and Observations (LAO)
[Rens et al., 2010], no modal logic had explicit observations
as first-class elements; sensing was only dealt with via special
actions or by treating actions in such a way that they somehow
get hold of observations. LAO is also able to accommodate
models of nondeterminism in the actions and models of un-
certainty in the observations. But in LAO, these notions are
non-probabilistic.

In this paper we present the Specification Logic of Actions
and Observations with Probability (SLAOP). SLAOP is de-
rived from LAO and thus also considers observations as first-
class objects, however, a probabilistic component is added
to LAO for expressing uncertainty more finely. We have in-
vented a new knowledge representation framework for our
observation objects, based on the established approaches for
specifying the behavior of actions.

We continue our motivation with a look at the related work,
in Section 2. Section 3 presents the logic and Section 4 pro-
vides some of the properties that can be deduced. Section 5
illustrates domain specification with SLAOP, including a so-
lution to the frame problem. Section 6 concludes the paper.

2 Related Work
Although SLAOP uses probability theory, it is not for rea-
soning about probability; it is for reasoning about (proba-
bilistic) actions and observations. There have been many
frameworks for reasoning about probability, but most of them
are either not concerned with dynamic environments [Fa-
gin and Halpern, 1994; Halpern, 2003; Shirazi and Amir,
2007] or they are concerned with change, but they are not
actually logics [Boutilier et al., 2000; Bonet and Geffner,
2001]. Some probabilistic logics for reasoning about action
and change do exist [Bacchus et al., 1999; Iocchi et al., 2009],
but they lack some desirable attributes, for example, a solu-
tion to the frame problem, nondeterministic actions, or cater-
ing for sensing. There are some logics that come closer to
what we desire [Weerdt et al., 1999; Van Diggelen, 2002;
Gabaldon and Lakemeyer, 2007; Van Benthem et al., 2009],
that is, they are modal and they incorporate notions of prob-
ability, but they were not created with POMDPs in mind and
they don’t take observations as first-class objects. One non-
logical formalism for representing POMDPs [Boutilier and
Poole, 1996] exploits structure in the problems for more com-
pact representations. In (logic-based) cognitive robotics, such
compact representation is the norm, for example, specifying
only local effects of actions, and specifying a value related to
a set of states in only one statement.

On the other hand, there are three formalisms for specify-
ing POMDPs that employ logic-based representation [Wang

and Schmolze, 2005; Sanner and Kersting, 2010; Poole,
1998]. But for two of these, the frameworks are not logics per
se. The first [Wang and Schmolze, 2005] is based on Func-
tional STRIPS, “which is a simplified first-order language that
involves constants, functions, and predicate symbols but does
not involve variables and quantification”. Their representa-
tions of POMDPs are relatively succinct and they have the ad-
vantage of using first-order predicates. The STRIPS-like for-
malism is geared specifically towards planning, though, and
their work does not mention reasoning about general facts.
Moreover, in their approach, action-nondeterminism is mod-
eled by associating sets of deterministic action-outcomes per
nondeterministic action, whereas SLAOP will model nonde-
terminism via action effects—arguably, ours is a more natural
and succinct method. Sanner and Kersting [2010] is simi-
lar to the first formalism, but instead of Functional STRIPS,
they use the situation calculus to model POMDPs. Although
reified situations make the meaning of formulae perspicuous,
and reasoning with the situation calculus, in general, has been
accepted by the community, when actions are nondeterminis-
tic, ‘action histories’ cause difficulties in our work: The set
of possible alternative histories is unbounded and some histo-
ries may refer to the same state [Rens, 2010, Chap. 6]. When,
in future work, SLAOP is extended to express belief states
(i.e., sets of possible alternative states), dealing with dupli-
cate states will be undesirable.

The Independent Choice Logic [Poole, 1998] is relatively
different from SLAOP; it is an extension of Probabilistic Horn
Abduction. Due to its difference, it is hard to compare to
SLAOP, but it deserves mentioning because it shares its ap-
plication area with SLAOP and both are inspired by decision
theory. The future may tell which logic is better for certain
representations and for reasoning over the representations.

Finally, SLAOP was not conceived as a new approach to
represent POMDPs, but as the underlying specification lan-
guage in a larger meta-language for reasoning robots that
include notions of probabilistic uncertainty. The choice of
POMDPs as a semantic framework is secondary.

3 Specification Logic of Actions and
Observations with Probability

SLAOP is a non-standard modal logic for POMDP spec-
ification for robot or intelligent agent design. The spec-
ification of robot movement has a ‘single-step’ approach
in SLAOP. As such, the syntax will disallow nesting of
modal operators; sentences with sequences of actions, like
[grab][drink][replace]drank are not allowed. Sentences
will involve at most unit actions, like [grab]holding ∨
[drink]drank. Nevertheless, the ‘single-step’ approach is
sufficient for specifying the probabilities of transitions due to
action executions. The logic to be defined in a subsequent
paper will allow an agent to query the probability of some
propositional formula ϕ after an arbitrary sequence of ac-
tions and observations.



3.1 Syntax
The vocabulary of our language contains four sorts:

1. a finite set of fluents (alias propositional atoms) P =
{p1, . . . , pn},

2. a finite set of names of atomic actions A =
{α1, . . . , αn},

3. a finite set of names of atomic observations Ω =
{ς1, . . . , ςn},

4. a countable set of names Q = {q1, q2, . . .} of rational
numbers in Q.

From now on, denote Q ∩ (0, 1] as Q∩. We refer to elements
of A ∪ Ω ∪Q as constants. We are going to work in a multi-
modal setting, in which we have modal operators [α]q , one
for each α ∈ A, and predicates (ς | α)q and (ς | α)3, for
each pair in Ω× A.
Definition 3.1 Let α, α′ ∈ A, ς, ς ′ ∈ Ω, q ∈ (Q ∩ (0, 1]),
r, c ∈ Q and p ∈ P. The language of SLAOP, denoted
LSLAOP , is the least set of Φ defined by the grammars:

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | [α]qϕ | (ς | α)q | (ς | α)3 | α = α′ |

ς = ς ′ | Reward(r) | Cost(α, c) | ¬Φ | Φ ∧ Φ.

As usual, we treat ⊥,∨,→ and↔ as abbreviations.
We shall refer to formulae ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ as

static. If a formula is static, it mentions no actions and no
observations.

[α]qϕ is read ‘The probability of reaching a world in which
ϕ holds after executing α, is equal to q’. [α] abbreviates [α]1.
〈α〉ϕ abbreviates ¬[α]¬ϕ. (ς | α)q can be read ‘The proba-
bility of perceiving ς is equal to q, given α was performed’.
(ς | α)2 abbreviates (ς | α)1. (ς | α)3 is read ‘It is possible
to perceive ς’, given α was performed’.

The definition of a POMDP reward function R(a, s) may
include not only the expected rewards for being in the states
reachable from s via a, but it may deduct the cost of per-
forming a in s. To specify rewards and execution costs in
SLAOP, we require Reward and Cost as special predicates.
Reward(r) can be read ‘The reward for being in the current
situation is r units,’ and we read Cost(α, c) as ‘The cost for
executing α is c units.’

Let VA = {vα1 , vα2 , . . .} be a countable set of action vari-
ables and VΩ = {vς1, vς2, . . .} a countable set of observation
variables. Let ϕ|vαα1

∧ . . . ∧ ϕ|vααn be abbreviated by (∀vα)ϕ,
where ϕ|vc means ϕ with all variables v ∈ (VA ∪ VΩ) appear-
ing in it replaced by constant c of the right sort (action or ob-
servation). Quantification over observations is similar to that
for actions; the symbol ∃ is also available for abbreviation,
with the usual meaning.

3.2 Semantics
While presenting our semantics, we show how a POMDP, as
defined below, can be represented by a SLAOP structure.

A POMDP [Kaelbling et al., 1998] (for our purposes) is a
tuple 〈S,A, T ,R,Ω,O〉, where S is a finite set of states that
the agent can be in; A is a finite set of agent actions; T is the

state-transition function, representing, for each action, tran-
sition probabilities between states; R is the reward function,
giving the expected immediate reward gained by the agent,
for any state and agent action; Ω is a finite set of observations
the agent can experience of its environment; and O is the ob-
servation function, giving, for each action and the resulting
state, a probability distribution over observations, represent-
ing the agent’s ‘trust’ in its observations.

Our semantics follows that of multi-modal logic K. How-
ever, SLAOP structures are non-standard in that they are ex-
tensions of structures with the form 〈W,R〉, where W is a
finite set of worlds such that each world assigns a truth value
to each atomic proposition, and R is a binary relation on W .

Intuitively, when talking about some world w, we mean a
set of features (fluents) that the agent understands and that
describes a state of affairs in the world or that describes a
possible, alternative world. Let w : P 7→ {0, 1} be a total
function that assigns a truth value to each fluent. Let C be
the set of all possible functions w. We call C the conceivable
worlds.

Definition 3.2 A SLAOP structure is a tuple S =
〈W,R,O,N,Q,U〉 such that

1. W ⊆ C: the set of possible worlds
(corresponding to S);

2. R: a mapping that provides an accessibility rela-
tion Rα : W × W × Q∩ for each α ∈ A (cor-
responding to T ); Given some w− ∈ W , we re-
quire that

∑
(w−,w+,pr)∈Rα pr = 1; If (w−, w+, pr),

(w−, w+, pr′) ∈ Rα, then pr = pr′;

3. O: a nonempty finite set of observations
(corresponding to Ω);

4. N : Ω 7→ O is a bijection that associates to each name
in Ω, a unique observation in O;

5. Q: a mapping that provides a perceivability relation
Qα : O × W × Q∩ for each α ∈ A (correspond-
ing to O); Given some w+ ∈ W , we require that∑

(o,w+,pr)∈Qα pr = 1; If (ς, w+, pr), (ς, w+, pr′) ∈
Qα, then pr = pr′;

6. U : a pair 〈Re,Co〉 (corresponding to R), where Re :
W 7→ Q is a reward function and Co is a mapping that
provides a cost function Coα : W 7→ Q for each α ∈ A;

7. Observation-per-action condition: For all α ∈ A, if
(w,w′, prα) ∈ Rα, then there is an o ∈ O s.t.
(o, w′, pro) ∈ Qα;

8. Nothing-for-nothing condition: For all w, if there exists
no w′ s.t. (w,w′, pr) ∈ Rα for some pr, then
Coα(w) = 0.

A corresponds to A and Ω to Ω. Rα defines which worlds
w+ are accessible via action α performed in world w− and
the transition probability pr ∈ Q∩. Qα defines which obser-
vations o are perceivable in worlds w+ accessible via action
α and the observation probability pr ∈ Q∩. We prefer to
exclude relation elements referring to transitions that cannot
occur, hence why pr ∈ Q∩ and not pr ∈ Q ∩ [0, 1].



BecauseN is a bijection, it follows that |O| = |Ω| (we take
|X| to be the cardinality of set X). The value of the reward
function Re(w) is a rational number representing the reward
an agent gets for being in or getting to the world w. It must
be defined for each w ∈ W . The value of the cost function
Co(α,w−) is a rational number representing the cost of exe-
cuting α in the world w−. It must be defined for each action
α ∈ A and each w− ∈ W . Item 7 of Definition 3.2 implies
that actions and observations always appear in pairs, even if
implicitly. And item 8 seems reasonable; it states that any ac-
tion that is inexecutable in world w incurs no cost for it in the
world w.

Definition 3.3 (Truth Conditions) Let S be a SLAOP struc-
ture, with α, α′ ∈ A, ς, ς ′ ∈ Ω, q ∈ (Q ∩ (0, 1]) or Q∩ as
applicable, and r ∈ Q or Q as applicable. Let p ∈ P and
let ϕ be any sentence in LSLAOP . We say ϕ is satisfied at
world w in structure S (written S, w |= ϕ) if and only if the
following holds:

1. S, w |= p iff w(p) = 1 for w ∈W ;
2. S, w |= > for all w ∈W ;
3. S, w |= ¬ϕ iff S, w 6|= ϕ;
4. S, w |= ϕ ∧ ϕ′ iff S, w |= ϕ and S, w |= ϕ′;
5. S, w |= α = α′ iff α and α′ are identical;
6. S, w |= ς = ς ′ iff ς and ς ′ are identical;

7. S, w |= [α]qϕ iff
(∑

(w,w′,pr)∈Rα,S,w′|=ϕ pr
)

= q;

8. S, w |= (ς | α)q iff (N(ς), w, q) ∈ Qα;
9. S, w |= (ς | α)3 iff a q exists s.t. (N(ς), w, q) ∈ Qα;

10. S, w |= Reward(r) iff Re(w) = r;
11. S, w |= Cost(α, c) iff Coα(w) = c.

The definition of item 7 comes from probability theory, which
says that the probability of an event (ϕ) is simply the sum
of the probabilities of the atomic events (worlds) where the
event (ϕ) holds.

A formula ϕ is valid in a SLAOP structure (denoted S |=
ϕ) if S, w |= ϕ for every w ∈ W . We define global logical
entailment (denoted K |=GS ϕ) as follows: for all S, if S |=∧
ψ∈K ψ then S |= ϕ.

4 Some Properties
Remark 4.1 Item 7 of Definition 3.2, the observation-per-
action condition, implies that if S, w |= 〈α〉ϕ then S, w′ |=
ϕ→ (∃vς)(vς | α)3, for some w,w′ ∈W .

Remark 4.2 Item 8 of Definition 3.2, the nothing-for-nothing
condition, implies that |=SLAOP (∀vα) ¬〈vα〉> →
Cost(vα, 0).

In the terminology of probability theory, a single world
would be called an atomic event. Probability theory says that
the probability of an event e is simply the sum of the proba-
bilities of the atomic events (worlds) where e holds. We are
interested in noting the interactions of any two sentences of
the form [α]qϕ being satisfied in the same world. Given the
principle of the sum of atomic events, we get the following
properties.

Proposition 4.1 Assume an arbitrary structure S and some
w in S. Assume S, w |= [α]qθ ∧ [α]q′ψ. Then

1. if q = q′ then no deduction can be made;
2. if q 6= q′ then S, w |= 〈α〉¬(θ ↔ ψ);
3. if q > q′ then S, w |= 〈α〉¬(θ → ψ);
4. if q + q′ > 1 then S, w |= 〈α〉(θ ↔ ψ);
5. S, w |= [α]¬(θ ∧ ψ)→ [α]q+q′(θ ∨ ψ);
6. if q = 1 then S, w |= [α](ψ → θ) and

S, w |= [α]q′(θ ∧ ψ);
7. S, w |= [α]q> is a contradiction if q < 1;
8. S, w |= [α]1−q¬ϕ iff S, w |= [α]qϕ and q 6= 1;
9. S, w |= ¬[α]1−q¬ϕ iff S, w |= ¬[α]qϕ and q 6= 1.

Proof:
Please refer to our draft report [Rens and Meyer, 2011].
Q.E.D.

It is worth noting that in the case when q > q′ (item 3),
S, w |= 〈α〉¬(θ ∧ ψ) is also a consequence. But 〈α〉¬(θ →
ψ) logically implies 〈α〉¬(θ ∧ ψ).

Consider item 8 further: Suppose [α]q∗ϕ where q∗ = 1 (in
some structure at some world). Then, in SLAOP, one could
represent S, w |= [α]1−q∗¬ϕ as ¬〈α〉¬ϕ. But this is just
[α]ϕ (≡ [α]q∗ϕ). The point is that there is no different way to
represent [α]ϕ in SLAOP (other than syntactically). Hence,
in item 8, we need not cater for the case when q = 1.
Proposition 4.2 |=SLAOP ([α]qθ ∧ ¬[α]qψ) → ¬[α](θ ↔
ψ).
Proof:
Let S be any structure and w a world in S. Assume S, w |=
[α]qθ ∧ ¬[α]qψ. Assume S, w |= [α](θ ↔ ψ). Then be-
cause S, w |= [α]qθ, one can deduce S, w |= [α]qψ. This
is a contradiction, therefore S, w 6|= [α](θ ↔ ψ). Hence,
S, w |= ([α]qθ ∧ ¬[α]qψ)→ ¬[α](θ ↔ ψ). Q.E.D.
Proposition 4.3 Assume an arbitrary structure S and an ar-
bitrary world w in S. There exists some constant q such that
S, w |= [α]qϕ if and only if S, w |= 〈α〉ϕ.
Proof:
Assume an arbitrary structure S and an arbitrary world w in
it. Then
S, w |= [α]qϕ for some constant q
⇔ ∃q .

(∑
(w,w′,pr)∈Rα,S,w′|=ϕ pr

)
= q

⇔ Not: ∃q .
(∑

(w,w′,pr)∈Rα,S,w′|=ϕ pr
)

= 0

⇔ Not: ∃q .
(∑

(w,w′,pr)∈Rα,S,w′|=¬ϕ pr
)

= 1

⇔ Not: S, w |= [α]¬ϕ
⇔ S, w |= 〈α〉ϕ. Q.E.D.

We are also interested in noting the interactions of any two
percept events—when sentences of the form (ς | α)qϕ are
satisfied in the same world. Only two consequences could be
gleaned, given Definition 3.3, item 8:
Proposition 4.4 Assume an arbitrary structure S and some
w in S.

1. If S, w |= (ς | α)q ∧ (ς ′ | α)q′ and ς is the same obser-
vation as ς ′, then q = q′;



2. If S, w |= (ς | α)q ∧ (ς ′ | α)q′ and ς is not the same
observation as ς ′, then q + q′ ≤ 1.

Proof:
Directly from probability theory and algebra. Q.E.D.
Proposition 4.5 Assume an arbitrary structure S and an ar-
bitrary world w in it. There exists some constant q such that
S, w |= (ς | α)q if and only if S, w |= (ς | α)3.
Proof:
Let N(ς) = o. Assume an arbitrary structure S and an arbi-
trary world w in S. Then
S, w |= (ς | α)q for some constant q
⇔ ∃q . (o, w, q) ∈ Qα
⇔ S, w |= (ς | α)3. Q.E.D.

The following is a direct consequence of Proposi-
tions 4.3 and 4.5.
Corollary 4.1 |=SLAOP [α]qϕ → 〈α〉ϕ and |=SLAOP (ς |
α)q → (ς | α)3.

Further Properties of Interest
Recall that R−α = {(w,w′) | (w,w′, pr) ∈ Rα}. We now
justify treating [α]1 as [α] of regular multi-modal logic.
Proposition 4.6 [α]1 is the regular [α]. That is, S, w |=
[α]1ϕ if and only if for all w′, if wR−αw

′, then S, w′ |= ϕ, for
any structure S and any world w in S.
Proof:
S, w |= [α]1ϕ
⇔
(∑

(w,w′,pr)∈Rα,S,w′|=ϕ pr
)

= 1

⇔ ∀w′ . if ∃pr . (w,w′, pr) ∈ Rα then S, w′ |= ϕ
⇔ ∀w′ . if wR−αw

′ then S, w′ |= ϕ. Q.E.D.
Proposition 4.7 〈α〉 has normal semantics. That is, S, w |=
〈α〉ϕ if and only if there exist w′, pr such that (w,w′, pr) ∈
Rα and S, w′ |= ϕ.
Proof:
S,w |= 〈α〉ϕ
⇔ S, w |= ¬[α]¬ϕ
⇔ S, w |= ¬[α]1¬ϕ
⇔ S, w 6|= [α]1¬ϕ
⇔
(∑

(w,w′,pr)∈Rα,S,w′|=¬ϕ pr
)
6= 1

⇔ ∃w′, pr . (w,w′, pr) ∈ Rα and S, w′ 6|= ¬ϕ
⇔ ∃w′, pr . (w,w′, pr) ∈ Rα and S, w′ |= ϕ. Q.E.D.

5 Specifying Domains with SLAOP
We briefly describe and illustrate a framework to formally
specify—in the language of SLAOP—the domain in which
an agent or robot is expected to live. Let BK be an agent’s
background knowledge (including non-static formulae) and
let IC be its initial condition, a static formula describing
the world the agent finds itself in when it becomes active.
In the context of SLAOP, we are interested in determining
BK |=GS IC → ϕ, where ϕ is any sentence.

The agent’s background knowledge may include static law
axioms which are facts about the domain that do not change.
They have no predictable form, but by definition, they are
not dynamic and thus exclude mention of actions. drank →
¬full is one static law axiom for the oil-can scenario. The
other kinds of axioms in BK are described below.

5.1 The Action Description
In the following discussion, Wϕ is the set of worlds in which
static formula ϕ holds (the ‘models’ of ϕ). A formal descrip-
tion for the construction of conditional effect axioms follows.
For one action, there is a set of axioms that take the form

φ1 → ([α]q11ϕ11 ∧ . . . ∧ [α]q1nϕ1n);

φ2 → ([α]q21ϕ21 ∧ . . . ∧ [α]q2nϕ2n); · · · ;

φj → ([α]qj1ϕj1 ∧ . . . ∧ [α]qjnϕjn),

where the φi and ϕik are static, and where the φi are con-
ditions for the respective effects to be applicable, and in any
one axiom, each ϕik represents a set Wϕik of worlds. The
number qik is the probability that the agent will end up in a
world in Wϕik , as the effect of performing α in the right con-
dition φi. For axioms generated from the effect axioms (later
in Sec. 5.1), we shall assume that ϕik is a minimal disjunc-
tive normal form characterization of Wϕik . The following
constraints apply.

• There must be a set of effect axioms for each action α ∈
A.

• The φi must be mutually exclusive, i.e., the conjunction
of any pair of conditions causes a contradiction. How-
ever, it is not necessary that Wϕi1 ∪ . . . ∪Wϕin = C.

• A set of effects ϕi1 to ϕin in any axiom i must be mutu-
ally exclusive.

• The transition probabilities qi1, . . . , qin of any axiom i
must sum to 1.

The following sentence is an effect axiom for the grab ac-
tion: (full ∧ ¬holding) → ([grab]0.7(full ∧ holding) ∧
[grab]0.2(¬full ∧ ¬holding) ∧ [grab]0.1(full ∧ ¬holding)).

Executability axioms of the form φk → 〈α〉>must be sup-
plied, for each action, where φk is a precondition convey-
ing physical restrictions in the environment with respect to α.
The sentence ¬holding → 〈grab〉> states that if the robot is
not holding the oil-can, then it is possible to grab the can.

A set of axioms must be generated that essentially states
that if the effect or executability axioms do not imply exe-
cutability for some action, then that action is inexecutable.
Hence, given α, assume the presence of an executability clo-
sure axiom of the following form: ¬(φ1 ∨ . . . ∨ φj ∨ φk) →
¬〈α〉>. The sentence holding → ¬〈grab〉> states that if the
robot is holding the oil-can, then it is not possible to grab it.

Now we show the form of sentences that specify what does
not change under certain conditions—conditional frame ax-
ioms. Let φi → ([α]qi1ϕi1 ∧ . . . ∧ [α]qinϕin) be the i-th
effect axiom for α. For each α ∈ A, for each effect axiom
i, do: For each fluent p ∈ P, if p is not mentioned in ϕi1 to
ϕin, then (φi ∧ p)→ [α]p and (φi ∧¬p)→ [α]¬p are part of
the domain specification.

For our scenario, the conditional frame axioms of grab are

(full ∧ ¬holding ∧ drank)→ [grab]drank;

(full ∧ ¬holding ∧ ¬drank)→ [grab]¬drank;

(¬full ∧ ¬holding ∧ drank)→ [grab]drank;

(¬full ∧ ¬holding ∧ ¬drank)→ [grab]¬drank.



Given frame and effect axioms, it may still happen that the
probability to some worlds cannot be logically deduced. Sup-
pose (for the purpose of illustration only) that the sentence

[grab]0.7(full ∧ holding) ∧
[grab]0.3(full ∧ ¬holding ∧ drank). (1)

can be logically deduced from the frame and effect axioms in
BK. Now, according to (1) the following worlds are reach-
able: (full ∧ holding ∧ drank), (full ∧ holding ∧ ¬drank)
and (full ∧ ¬holding ∧ drank). The transition probabil-
ity to (full ∧ ¬holding ∧ drank) is 0.3, but what are the
transition probabilities to (full ∧ holding ∧ drank) and
(full∧holding∧¬drank)? We have devised a process to de-
termine such hidden probabilities via uniform axioms [Rens
and Meyer, 2011]. Uniform axioms describes how to dis-
tribute probabilities of effects uniformly in the case sufficient
information is not available. It is very similar to what [Wang
and Schmolze, 2005] do to achieve compact representation.
A uniform axiom generated for (1) would be

[grab]0.35(full ∧ holding ∧ drank) ∧
[grab]0.35(full ∧ holding ∧ ¬drank) ∧
[grab]0.3(full ∧ ¬holding ∧ drank).

The following axiom schema represents all the effect con-
dition closure axioms. (¬(φ1∨ . . .∨φj)∧P )→ [A]P , where
there is a different axiom for each substitution of α ∈ A for
A and each literal for P . For example, (holding ∧ P ) →
[grab]P , where P is any p ∈ P or its negation.

5.2 The Perception Description
One can classify actions as either ontic (physical) or sensory.
This classification also facilitates specification of perceivabil-
ity. Ontic actions have intentional ontic effects, that is, ef-
fects on the environment that were the main intention of the
agent. grab, drink and replace are ontic actions. Sensory
actions—weigh in our scenario—result in perception, maybe
with (unintended) side-effects.

Perceivability axioms specify what conditions must hold
after the applicable action is performed, for the observation
to be perceivable. Ontic actions each have perceivability ax-
ioms of the form (obsNil | α)2. Sensory actions typically
have multiple observations and associated conditions for per-
ceiving them. The probabilities for perceiving the various ob-
servations associated with sensory actions must be specified.
The following set of perceivability axiom schemata does this:

φ11 → (ς1 | α)q11 ; φ12 → (ς1 | α)q12 ; · · · ;

φ1j → (ς1 | α)q1n ; φ21 → (ς2 | α)q21 ; · · · ;

φnk → (ςn | α)qkn ,

where {ς1, ς2, . . . , ςn} is the set of first components of all ele-
ments in Qα and the φi are the conditions expressed as static
formulae. The following constraints apply to these axioms.

• There must be a set of perceivability axioms for each
action α ∈ A.

• In the semantics section, item 7 of the definition of a
SLAOP structure states that for every world reachable

via some action, there exists an observation associated
with the action, perceivable in that world. The perceiv-
ability axioms must adhere to this remark.

• For every pair of perceivability axioms φ → (ς | α)q
and φ′ → (ς | α)q′ for the same observation ς , Wφ must
be disjoint from Wφ′ .

• For every particular condition φ,
∑
φ→(ς|α)q

q = 1. This
is so that

∑
N(ς):(N(ς),w+,pr)∈Qα pr = 1.

Some perceivability axioms for the oil-can scenario might be

(obsNil | grab)2;

(¬full ∧ drank ∧ holding)→ (obsLight | weigh)0.7;

(¬full ∧ drank ∧ holding)→ (obsHeavy | weigh)0.1;

(¬full ∧ drank ∧ holding)→ (obsMedium | weigh)0.2.

Perceivability axioms for sensory actions also state when
the associated observations are possible. The following set of
axioms states when the associated observations are impossi-
ble for sensory action weigh of our scenario.

((¬full ∧ drank ∧ ¬holding) ∨ (full ∧ ¬drank ∧
¬holding))→ ¬(lobsLight | weigh)3;

((¬full ∧ drank ∧ ¬holding) ∨ (full ∧ ¬drank ∧
¬holding))→ ¬(obsHeavy | weigh)3;

((¬full ∧ drank ∧ ¬holding) ∨ (full ∧ ¬drank ∧
¬holding))→ ¬(obsMedium | weigh)3.

The perceivability condition closure axiom schema is

¬(φ11 ∨ · · · ∨ φ1j)→ ¬(ς1 | α)3;

¬(φ21 ∨ · · · )→ ¬(ς2 | α)3; · · · ;

¬(· · · ∨ φnk)→ ¬(ςn | α)3,

where the φi are taken from the perceivability axioms. There
are no perceivability closure axioms for ontic actions, be-
cause they are always tautologies.

Ontic actions each have unperceivability axioms of the
form (∀vς)((vς | α)3 ↔ vς = obsNil). The axiom says
that no other observation is perceivable given the ontic ac-
tion. That is, for any instantiation of an observation ς ′ other
than obsNil , ¬(ς ′ | α)3 is a logical consequence.

For sensory actions, to state that the observations not asso-
ciated with action α are always impossible given α was exe-
cuted, we need an axiom of the form (∀vς)(vς 6= o1 ∧ vς 6=
o2 ∧ · · · ∧ vς 6= on)→ ¬(vς | α)3. For the oil-can scenario,
they are

(∀vς)(vς | grab)3 ↔ vς = obsNil ;

(∀vς)(vς | drink)3 ↔ vς = obsNil ;

(∀vς)(vς | replace)3 ↔ vς = obsNil ;

(∀vς)(vς 6= obsHeavy ∧ vς 6= obsLight ∧
vς 6= obsMedium)→ ¬(vς | weigh)3.

5.3 The Utility Function
A sufficient set of axioms concerning ‘state rewards’ and ‘ac-
tion costs’ constitutes a utility function.



There must be a means to express the reward an agent will
get for performing an action in a world it may find itself—
for every action and every possible world. The domain ex-
pert must supply a set of reward axioms of the form φi →
Reward(ri), where φi is a condition specifying the world in
which the rewards can be got (e.g., holding → Reward(5)
and drank → Reward(10)).

The conditions of the reward axioms must identify worlds
that are pairwise disjoint. This holds for cost axioms too:

The domain expert must also supply a set of cost axioms of
the form (φi∧〈α〉>)→ Cost(α, ci), where φi is a condition
specifying the world in which the cost ci will be incurred for
action α. For example,

(full ∧ 〈grab〉>)→ Cost(grab, 2);

(¬full ∧ 〈grab〉>)→ Cost(grab, 1);

(full ∧ 〈drink〉>)→ Cost(drink, 2);

(¬full ∧ 〈drink〉>)→ Cost(drink, 1);

〈replace〉> → Cost(replace, 0.8).

5.4 A Frame Solution
The method we propose for avoiding generating all the frame
and effect closure axioms, is to write the effect and exe-
cutability axioms, generate the uniform axioms, and then gen-
erate a set of a new kind of axioms representing the frame and
effect closure axioms much more compactly. By looking at
the effect axioms of a domain, one can define for each fluent
p ∈ P a set Cause+(p) of actions that can (but not nec-
essarily always) cause p (as a positive literal) to flip to ¬p,
and a set Cause−(p) of actions that can (but not necessar-
ily always) causes ¬p (as a negative literal) to flip to p.1 For
instance, grab ∈ Cause+(full), because in effect axiom
(full ∧ ¬holding)→
([grab]0.7(full ∧ holding) ∧
[grab]0.2(¬full ∧ ¬holding) ∧ [grab]0.1(full ∧ ¬holding)),

grab flips full to ¬full (with probability 0.2). The axiom
also shows that grab ∈ Cause−(holding) because it flips
¬holding to holding (with probability 0.7). The actions
mentioned in these sets may have deterministic or stochastic
effects on the respective propositions.

Furthermore, by looking at the effects axioms, Cond
functions can be defined: For each α ∈ Cause+(p),
Cond+(α, p) returns a sentence that represents the disjunc-
tion of all φi under which α caused p to be a negative literal.
Cond−(α, p) is defined similarly.

Suppose that Cause+(p) = {α1, . . . , αm} and
Cause−(p) = {β1, . . . , βn}. We propose, for any flu-
ent p, a pair of compact frame axioms with schema

(∀vα)p→
(vα = α1 ∧ ¬Cond+(α1, p))→ [α1]p ∧

...

(vα = αm ∧ ¬Cond+(αm, p))→ [αm]p ∧
(vα 6= α1 ∧ · · · ∧ vα 6= αm)→ [vα]p

1Such sets and functions are also employed by Demolombe,
Herzig and Varzinczak [Demolombe et al., 2003].

and

(∀vα)¬p→
(vα = β1 ∧ ¬Cond−(β1, p))→ [β1])¬p ∧

...

(vα = βm ∧ ¬Cond−(βm, p))→ [βm])¬p ∧
(vα 6= β1 ∧ · · · ∧ vα 6= βm)→ [vα])¬p.

Claim 5.1 The collection of pairs of compact frame axioms
for each fluent in P is logically equivalent to the collection of
all conditional frame axioms and effect closure axioms gen-
erated with the processes presented above.
Proof:
Please refer to our draft report [Rens and Meyer, 2011].
Q.E.D.

There are in the order of |A| · 2|Ω| · D frame axioms,
where D is the average number of conditions on effects per
action (the φi). Let N be the average size of |Cause+(p)| or
|Cause−(p)| for any p ∈ P. With the two compact frame
axioms (per fluent), no separate frame or effect closure ax-
ioms are required in the action description (AD). If we con-
sider each of the most basic conjuncts and disjuncts as a unit
length, then the size of each compact frame axiom is O(N),
and the size of all compact frame axioms in AD is in the or-
der of N · 2|P|. For reasonable domains, N will be much
smaller than |A|, and the size of all compact frame axioms is
thus much smaller than the size of all frame and effect closure
axioms (|A| · 2|P| · (D + 1)).

5.5 Some Example Entailment Results
The following entailments have been proven concerning the
oil-can scenario [Rens and Meyer, 2011]. BK oc is the back-
ground knowledge of an agent in the scenario. To save space
and for neater presentation, we abbreviate constants and flu-
ents by their initials.

BK oc |=GS (f ∧ d ∧ ¬h)→ [g]0.7(f ∧ d ∧ h):
If the can is full and the oil has been drunk, the probability of
successfully grabbing it without spilling oil is 0.7.

BK oc |=GS (f ∧ ¬d ∧ h)→ ¬[d]0.2(f ∨ ¬d ∨ ¬h):
If the robot is in a situation where it is holding the full oil-can
(and has not yet attempted drinking), then the probability of
having failed to drink the oil is not 0.2.
BK oc |=GS (∃vς)(vς | drink)2:

In any world, there always exists an observation after the
robot has drunk.

BK oc |=GS 〈d〉> ↔ h:
In any world, it is possible to drink the oil if and only if the
can is being held.

BK oc |=GS (f ∧ 〈d〉>)→ ¬Cost(d, 3):
Assuming it is possible to drink and the can is full of oil, then
the cost of doing the drink action is not 3 units.

6 Concluding Remarks
We introduced a formal language specifically for robots that
must deal with uncertainty in affection and perception. It is
one step towards a general reasoning system for robots, not
the actual system.



POMDP theory is used as an underlying modeling formal-
ism. The formal language is based on multi-modal logic and
accepts basic principals of cognitive robotics. We have also
included notions of probability to represent the uncertainty,
but we have done so ‘minimally’, that is, only as far as is
necessary to represent POMDPs for the intended application.
Beyond the usual elements of logics for reasoning about ac-
tion and change, the logic presented here adds observations as
first-class objects, and a means to represent utility functions.

In an associated report [Rens and Meyer, 2011], the frame
problem is addressed, and we provided a belief network ap-
proach to domain specification for cases when the required
information is available.

The computational complexity of SLAOP was not deter-
mined, and is left for future work. Due to the nature of
SLAOP structures, we conjecture that entailment in SLAOP
is decidable. It’s worth noting that the three latter frame-
works discussed in Section 2 [Wang and Schmolze, 2005;
Sanner and Kersting, 2010; Poole, 1998] do not mention de-
cidability results either.

The next step is to prove decidability of SLAOP entail-
ment, and then to develop a logic for decision-making in
which SLAOP will be employed. Domains specified in
SLAOP will be used to make decisions in the ‘meta’ logic,
with sentences involving sequences of actions and the epis-
temic knowledge of an agent. This will also show the sig-
nificance of SLAOP in a more practical context. Please refer
to our extended abstract [Rens, 2011] for an overview of our
broader research programme.
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