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ABSTRACT

Human settlement expansion is one of the most pervasive
forms of land cover change in the Gauteng province of South
Africa. A method for detecting new settlement developments
in areas that are typically covered by natural vegetation us-
ing 500 m MODIS time-series satellite data is proposed. The
method is a per pixel change alarm that uses the temporal au-
tocorrelation to infer a change metric which yields a change
or no-change decision after thresholding. Simulated change
data was generated and used to determine a threshold during
a preliminary off-line optimization phase. After optimization
the method was evaluated on examples of known land cover
change in the study area and experimental results indicate a
92% change detection accuracy with a 15% false alarm rate.

1. INTRODUCTION

Remote sensing satellite data provide researchers with an ef-
fective way to monitor and evaluate land cover changes. In
most cases two spatially registered high resolution imagesac-
quired at two different instances are compared and based on
a change metric and threshold selection method, each pixel
is classified as either belonging to the change or no-change
class. Such a comparison of only two images is not always
reliable, as similar land cover types can appear significantly
different at various stages of the natural growth seasonal cy-
cle [1]. To mitigate this problem, the temporal frequency of
medium resolution remote sensing data acquisitions shouldbe
high enough to distinguish change events from natural phe-
nological cycles. The Moderate-resolution Imaging Spectro-
radiometer (MODIS) data product used in this study utilizes
daily Terra and Aqua satellite overpasses to produce a 500 m
resolution composite image every 8 days, and as such offer a
high enough temporal frequency of the remote sensing data
for change detection through time-series analysis [2].

In this paper, a semi-supervised approach is proposed.
The semi-supervised nature of the method is attributed to the
fact the training database requirement is limited to no-change
examples which are numerous and can be obtained in large
numbers as opposed to change examples that are rare at a re-
gional scale [1]. A land cover change was then simulated us-
ing no-change examples of typical natural vegetation and set-

tlement time-series data. Both the no-change and simulated
change datasets are then used to determine a set of parameters
in an off-line optimization phase after which the algorithmis
run in an operational and unsupervised manner for the entire
study area.

The autocorrelation function (ACF), in the temporal con-
text, have been used selectively in remote sensing [3], but is
mostly applied in the spatial context [4]. In this study the tem-
poral ACF of a pixel’s time-series was considered. An ACF
of a time-series that is stationary behaves differently from an
ACF of a time-series that is non-stationary due to land cover
change. By determining suitable detection parameters using
only a no-change database (as explained above), it will be
shown that real land cover change can be detected reliably in
a semi-supervised fashion.

The goal of this study was to detect new human settle-
ment formation in the Gauteng province of South Africa using
MODIS time-series data with minimal operator assistance.
The new proposed method exploits the non-stationary prop-
erty that is typically associated with a time-series that under-
goes land cover change by using a time-series ACF.

2. DATA DESCRIPTION

2.1. Study Area

The Gauteng province is located in northern South Africa and
because of a high level of urbanization it has seen significant
human settlement expansion during the 2001 and 2008 pe-
riod. A total area of approximately 17000 km2 was consid-
ered being centred around26◦07′29.62′′S,28◦05′40.40′′E.

2.2. MODIS Data

The time-series for all seven MODIS land bands, as well
as NDVI derived from 8 daily composite, 500 m, MCD43
BRDF-corrected, MODIS data [5] was used for the period
2001/01 to 2008/01.

2.2.1. No-Change Data

A dataset of no-change pixel time-series (n=964) consisting
of natural vegetation (n=592) and settlement (n=372) pixels,
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Fig. 1. Autocorrelation of a change and no-change pixel’s
MODIS band 4 time-series.

were identified by means of visual interpretation of high res-
olution Landsat and SPOT images in 2000 and 2008 respec-
tively.

2.2.2. Simulated Change Data

A simulated change dataset (n=592) was generated by lin-
early blending a time-series of a pixel covered by natural veg-
etation with that of a settlement pixel time-series. The result-
ing simulated change database had a uniformly spread change
date between 2001/01 and 2008/01. The blending period was
found not to influence the method’s performance, and a repre-
sentative blending period of 6 months was chosen. The sim-
ulated change data was used together with a subset of the no-
change dataset (n=482) in an off-line optimization phase to
determine the detection parameters (section 3).

2.2.3. Real Change Data

Examples of confirmed settlement developments during the
study period were also obtained by means of visual interpre-
tation of high resolution Landsat and SPOT images in 2000
and 2008 respectively. All settlements identified in 2008 were
referenced back to 2000 and all the new settlement polygons
were mapped and the corresponding MODIS pixels (n=181)
were so identified. The real change pixels and remaining pix-
els of the no-change dataset (n=482) were used in an unsuper-
vised operational mode to test the change detection capability
of the method.

3. METHODOLOGY

3.1. Temporal ACF method

The temporal ACF method uses a two stage approach. Firstly,
the simulated change dataset together with the no-change
dataset (Section 2.2.2) is used in an off-line optimization
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Fig. 2. Overall change detection accuracy for each band and
time-lag combination for a maximum time-lag of up to 360
days.

phase to determine the appropriate parameters (band, lag and
threshold selection). Second, the method is run in an unsu-
pervised manner using the parameter set that was determined
during the aforementioned off-line optimization phase. These
two stages will be discussed in further detail in the following
sections.

3.1.1. Off-line optimization phase

Assume that the time-series for any given band of MODIS is
expressed as:

Xb

n , n ∈ {1, 2, ..., N} b ∈ {1, 2, ..., 8}, (1)

whereXb
n is the observation from spectral bandb at timen

andN is the number of time-series observations available. It
should be noted that band 8 in (1) refers to computed NDVI.
It is assumed thatN is equal for all seven bands.

The normalized ACF for time-seriesXb = [Xb
1 , X

b
2, ..., X

b

N
]

can then be expressed as:

Rb(τ) =
E[(Xb

n − µb)(Xb
n+τ − µb)]

var(Xb)
, (2)

whereτ is the time-lag andE denotes the expectation. The
mean ofXb is given asµb and the variance, which is used
for normalization, is given asvar(Xb). Figure 1 shows the
typical ACF of an actual change and no-change pixel’s time-
series. It is clear that the no-change pixel has a symmetrical
form relative to theRb(τ) = 0 axis, whereas the change pixel
shows a strong non-symmetrical property. The reason for this
is the stationarity requirement of the ACF in (2). The mean
and variance of the time-series ofXb

n in (2) is required to re-
main constant through time to determine the true ACF of the
time-series. The inconsistency of the mean and variance typ-
ically associated with a change pixel’s non-stationary time-
series thus becomes apparent when analyzing the ACF of the



Table 1. Confusion Matrix, overall accuracy (OA) and opti-
mal threshold (δ∗) showing the best land cover change detec-
tion performance during the off-line optimization phase using
MODIS band 4 550 nm with a lag of 96 days

Simulated
change
(n=592)

No
Change
(n=482)

δ∗ OA

Change
Detected

75.17% 14.73% 0.16 80.22%

No Change
Detected

24.83% 85.27%

time-series. The change metric is thus simply equivalent to
the temporal correlation of a specific band (b) at a specific lag
(τ )

Rb(τ) = δbτ . (3)

It is clear, however, that the distribution ofδbτ in the case of
change and no-change,will vary for different values ofτ and
b. The aim is thus to determine the value ofτ and b in δbτ
that will result in the most separable distributions between δbτ
for the change and no-change case respectively. The value of
the optimal threshold (δb∗τ ) also needs to be determined. The
aim is to determine the time-lag (τ ), band/s (b) and thresh-
old (δ) which provide the best separation between the ACF of
change and no-change pixel time-series taken from the simu-
lated change and no-change datasets respectively.

3.1.2. Operational phase

After the off-line optimization phase is complete, the result-
ing parameters are used to run the algorithm in an unsuper-
vised manner for the entire area of interest. A pixel is labeled
as having changed by evaluating the following,

Change =

{

true if Rb(τ) > δ

false if Rb(τ) < δ

whereRb(τ) is the ACF of bandb evaluated at lagτ andδ is
the decision threshold. The value ofτ , b andδ, was provided
in the the aforementioned off-line optimization phase. The
results obtained for both the off-line optimization phase and
operational phase are presented in section 4.

4. RESULTS

4.1. Optimal band and lag selection using a simulated
change dataset

The right sided normalized ACF for bandb can be expressed
asRb(τ) = [Rb(0), Rb(1), ..., Rb(N)]. The task at hand is to

Table 2. Confusion Matrix, overall accuracy (OA) and thresh-
old (δ) for the case of real change detection using the MODIS
band 4 (550 nm) with a lag of 96 days as determined during
the off-line optimization phase

Real
change
(n=181)

No
Change
(n=482)

δ OA

Change
Detected

92.27% 15.35% 0.16 88.46%

No Change
Detected

7.73% 84.65%

determine the separation between the ACF of the change and
no-change dataset for each band at each lag. The Bayesian
decision error was calculated based on the distribution of the
inferred change metricδbτ = [Rb

0(τ), R
b
1(τ), ..., R

b
α(τ)] for

the change and no-change dataset and the overall accuracy
was computed. The overall accuracy of the ACF change de-
tection method, for each band and lag is presented in figure 2.
It is evident that Band 4 (550 nm) shows the best separation
between the no-change and simulated change datasets for the
study area. The lag that shows the highest separability is 96
days. Table 1 shows the confusion matrix when running the
algorithm on the simulated change dataset and using the opti-
mal parameters obtained in the off-line optimization stage.

4.2. Real change detection

After the band, lag and optimal threshold selection was com-
pleted, the performance of the proposed method was validated
using the test dataset described in section 2.2.3. Table 2 sum-
marizes the performance of the method using the parameters
obtained during the off-line optimization phase. For compar-
ison, the performance of the NDVI differencing method [1]
using an optimal threshold (z value) for the same dataset is
shown in Table 3.

5. DISCUSSION

The performance of the false alarm rate for both the off-line
optimization (14.73%) and operational phase(15.35%) is
very similar with a difference of less than one percent. The
change detection accuracy on the other hand for the off-
line optimization(75.17%) and operational phase(92.27%)
is considerably different (Tables 1 and 2). It might seem
counter intuitive that the simulated change is more difficult
to detect than real change examples, but this does make sense
when considering the timing of the change. The mean start of
change date of the real change dataset is 2004 with a standard
deviation of two years. The simulated change date on the



Table 3. Confusion Matrix, overall accuracy (OA) and thresh-
old (z) for the case of real change detection using the NDVI
differencing method [1].

Real
change
(n=181)

No
Change
(n=964)

z OA

Change
Detected

75.14% 23.96% 1.7 75.59%

No Change
Detected

24.86% 76.04%

other hand, was distributed uniformly over the entire date
range of the time-series. Therefore, when the change occurs
in the center of the time-series, the non-stationarity of the
time-series will be at a maximum and will decrease as the
change date moves towards the beginning or end of the time-
series. The performance of the simulated change detection
is shown for different start years (Table 4). It is clear that
the ACF change detection method is slightly compromised
when change occurs in the first or last year with no significant
decrease in the performance for the others years.

Combining multiple bands in this study did not signifi-
cantly improve on the separability achieved using only band
4. This does not suggest that band 4 is the best for all types
of land cover change. However, for our study area and land
cover change case, the ACF of the band 4 time-series showed
the highest separability between the no-change and simulated
change datasets. Multiple band combinations could also be
used to improve the separability at the cost of increased com-
putational complexity in cases where no single band gives ad-
equate separability.

The proposed Temporal ACF method was also compared
to the NDVI differencing method [1]. The optimal threshold
(z value) for this method was used for a fair comparison of the
two methods and was determined iteratively by evaluating a
range of possible realizations ofz. The NDVI differencing
method was found not to be very successful, having a change
detection accuracy of75.14% and false alarm of23.19% for
the study area.

6. CONCLUSION

In this paper, a simple but effective method was proposed as
a land cover change detection alarm. The simplicity of the
algorithm is achieved by using a two step approach. Firstly,
in an off-line optimization phase, the time-series ACF of
all seven MODIS land bands of a no-change and simulated
change dataset is used to determine the band (b), lag (τ ) and
threshold (δ) value that shows the highest separability be-
tween the two datasets. Second, in the operational phase, the

Table 4. OA performance for different start of change dates

Mean start of
change

OA

2001/06 70.67%

2002/06 83.57%

2003/06 85.33%

2004/06 85.43%

2005/06 84.92%

2006/06 81.74%

2007/06 76.66%

time-series ACF of bandb at lagτ is computed per pixel and
compared to the threshold (δ) to yield a change or no-change
decision. This approach requires no significant pre-filtering,
iterative annual differencing or spatial analysis. The method
was effectively used to determine the location of new settle-
ment developments in the Gauteng province of South Africa.
A change detection accuracy of 92% with a 15% false alarm
rate was achieved.
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