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ABSTRACT tlement time-series data. Both the no-change and simulated
Human settlement expansion is one of the most pervasivd'ange datasets are then used to determine a set of parmeter
forms of land cover change in the Gauteng province of Soutfl @n off-line optimization phase after which the algoritien
Africa. A method for detecting new settlement development§un in an operational and unsupervised manner for the entire
in areas that are typically covered by natural vegetation usStudy area. . _ _
ing 500 m MODIS time-series satellite data is proposed. The The autocorrelation function (ACF), in the temporal con-
method is a per pixel change alarm that uses the temporal affXt: have been used selectively in remote sensing [3]sbut i
tocorrelation to infer a change metric which yields a chang&n0stly appliedin the spatial context[4]. In this study teent
or no-change decision after thresholding. Simulated chang?©ral ACF of a pixel's time-series was considered. An ACF
data was generated and used to determine a threshold durifi@ fime-series that is stationary behaves differentiynfen
a preliminary off-line optimization phase. After optimtizn ACF of a time-series t.hat is non-stationary due to land cover
the method was evaluated on examples of known land cov&h@nge. By determining suitable detection parametergusin
change in the study area and experimental results indicate®@y @ no-change database (as explained above), it will be

92% change detection accuracy with a 15% false alarm rateShown that real land cover change can be detected reliably in
a semi-supervised fashion.

The goal of this study was to detect new human settle-
ment formation in the Gauteng province of South Africa using

MODIS time-series data with minimal operator assistance.

Remote sensing satellite data provide researchers witlft an el'he new proposed method exploits the non-stationary prop-
fective way to monitor and evaluate land cover changes. In

: ; . L erty that is typically associated with a time-series thatarn
most cases two spatially registered high resolution images : . .
quired at two different instances are compared and based &9es land cover change by using a time-series ACF.
a change metric and threshold selection method, each pixel
is classified as either belonging to the change or no-change 2. DATA DESCRIPTION
class. Such a comparison of only two images is not always
reliable, as similar land cover types can appear signifigant 2.1. Study Area

different at various stages of the natural growth seasopal C the Gauteng province is located in northern South Africa and

cle [1]. To mitigate this problem, the temporal frequency ofpecqyse of a high level of urbanization it has seen significan

medium resolution remote sensing data acquisitions shmild |, ,man settlement expansion during the 2001 and 2008 pe-
high enough to distinguish change events from natural phg;oq A total area of approximately 17000 Rrwas consid-

nological cycles. The Moderate-resolution Imaging Sgectr 4 qq being centred arouad°07'29.62"S, 28°05'40.40"E.
radiometer (MODIS) data product used in this study utilizes ’

daily Terra and Aqua satellite overpasses to produce a 500

resolution composite image every 8 days, and as such oﬁerg.‘]lz' MODI S Data

high enough temporal frequency of the remote sensing datehe time-series for all seven MODIS land bands, as well

for change detection through time-series analysis [2]. as NDVI derived from 8 daily composite, 500m, MCD43
In this paper, a semi-supervised approach is propose@RDF-corrected, MODIS data [5] was used for the period

The semi-supervised nature of the method is attributedeo thy001/01 to 2008/01.

fact the training database requirement is limited to noagea

examples which are numerous and can be obtained in largg, | No-Change Data

numbers as opposed to change examples that are rare at a re-

gional scale [1]. A land cover change was then simulated usA dataset of no-change pixel time-series=964) consisting

ing no-change examples of typical natural vegetation atxd seof natural vegetationi=592) and settlement.E£372) pixels,

1. INTRODUCTION



—— ACF of a no-change pixel time-series (Band 4) ’ ‘-Q-Band 1
o8 - - - ACF of a change pixel time-series (Band 4]

0.851 ——Band 2
—+Band 3
08 H ——Band 4

~0.8F 4

L L L L L Il Il 1 Il L 1 M
1 year 2 years 3years 4years 5 years 6 years 7 years 40 80 120 160 200 240 280 320 360
T[Years] Time Lag (Days)

Fig. 1. Autocorrelation of a change and no-change pixel'sFig. 2. Overall change detection accuracy for each band and
MODIS band 4 time-series. time-lag combination for a maximum time-lag of up to 360
days.

were identified by means of visual interpretation of high res

olution Landsat and SPOT images in 2000 and 2008 respephase to determine the appropriate parameters (band, dag an
tively. threshold selection). Second, the method is run in an unsu-
pervised manner using the parameter set that was determined
during the aforementioned off-line optimization phasee3é

two stages will be discussed in further detail in the follogyi

A simulated change dataset{592) was generated by lin- Sections.

early blending a time-series of a pixel covered by naturgt ve

etation with that of a settlement pixel time-series. Theltes 3.1.1. Off-line optimization phase
ing simulated change database had a uniformly spread change
date between 2001/01 and 2008/01. The blending period w
found not to influence the method’s performance, and a repr
sentative blending period of 6 months was chosen. The sim- b
ulated change data was used together with a subset of the no- Xn,n€{l,2,...,N}be{l2.. 8} @)
change datasen£482) in an off-line optimization phase to where X! is the observation from spectral bahdt timen
determine the detection parameters (section 3). and.V is the number of time-series observations available. It
should be noted that band 8 in (1) refers to computed NDVI.
It is assumed thaV is equal for all seven bands.

2.2.2. Smulated Change Data

sume that the time-series for any given band of MODIS is
@_xpressed as:

2.2.3. Real Change Data

Examples of confirmed settlement developments during th&he normalized ACF for time-seriés” = [X?, X3, ..., X¥]
study period were also obtained by means of visual interpresan then be expressed as:

tation of high resolution Landsat and SPOT images in 2000 b R b

and 2008 respectively. All settlements identified in 2008ave RM(r) = El(Xy — 1) (Xnyr — )] 2)
referenced back to 2000 and all the new settlement polygons var(X?) ’

were mapped and the corresponding MODIS pixelsl81) wherer is the time-lag and® denotes the expectation. The
were so identified. The real change pixels and remaining pixmean ofX’ is given asu® and the variance, which is used
els of the no-change dataset482) were used in an unsuper- for normalization, is given asar(X?). Figure 1 shows the
vised operational mode to test the change detection cityabil typical ACF of an actual change and no-change pixel’s time-

of the method. series. It is clear that the no-change pixel has a symmeétrica
form relative to theR’(7) = 0 axis, whereas the change pixel
3 METHODOLOGY shows a strong non-symmetrical property. The reason fer thi
is the stationarity requirement of the ACF in (2). The mean
3.1. Temporal ACF method and variance of the time-series & in (2) is required to re-

main constant through time to determine the true ACF of the
The temporal ACF method uses a two stage approach. Firstlfme-series. The inconsistency of the mean and variance typ
the simulated change dataset together with the no-changeally associated with a change pixel's non-stationaryetim
dataset (Section 2.2.2) is used in an off-line optimizatiorseries thus becomes apparent when analyzing the ACF of the



Table 1. Confusion Matrix, overall accuracyXy) and opti-
mal threshold {*) showing the best land cover change detec-old (§) for the case of real change detection using the MODIS
tion performance during the off-line optimization phasmgs
MODIS band 4 550 nm with a lag of 96 days

Table2. Confusion Matrix, overall accuracgX,) and thresh-

band 4 (550 nm) with a lag of 96 days as determined during
the off-line optimization phase

Simulated No Real No
change Change o* O change Change 0 Oa
(n=592) | (n=482) (n=181) | (n=482)
Change 75.17% | 14.73% | 0.16 | 80.22% Change 92.27% | 15.35% | 0.16 | 88.46%
Detected Detected
No Change o No Change o
Detected 24.83% 85.27% Detected 7.73% 84.65%

time-series. The change metric is thus simply equivalent tdetermine the separation between the ACF of the change and
the temporal correlation of a specific babhyidt a specific lag

(1)

for the change and no-change case respectively. The value
the optimal thresholds¢*) also needs to be determined. The

R(r) = &°.

It is clear, however, that the distribution &f in the case of
change and no-change,will vary for different values @nd
b. The aim is thus to determine the valueofindb in 6%
that will result in the most separable distributions betwéke

3)

aim is to determine the time-lag), band/s §) and thresh-

old (6) which provide the best separation between the ACF o

no-change dataset for each band at each lag. The Bayesian
decision error was calculated based on the distributioh®f t
inferred change metrié> = [RS(7), R} (7), ..., Rb ()] for
the change and no-change dataset and the overall accuracy
was computed. The overall accuracy of the ACF change de-
tection method, for each band and lag is presented in figure 2.
It is evident that Band 4 (550 nm) shows the best separation
between the no-change and simulated change datasets for the
?*de area. The lag that shows the highest separability is 96
ays. Table 1 shows the confusion matrix when running the
algorithm on the simulated change dataset and using the opti
%nal parameters obtained in the off-line optimization stage

change and no-change pixel time-series taken from the simu-
lated change and no-change datasets respectively.

3.1.2. Operational phase

4.2. Real change detection

After the band, lag and optimal threshold selection was com-

pleted, the performance of the proposed method was vatidate

After the off-line optimization phase is complete, the fesu using the test dataset described in section 2.2.3. Tablm2 su

ing parameters are used to run the algorithm in an unsupearizes the performance of the method using the parameters

vised manner for the entire area of interest. A pixel is latel Obtained during the off-line optimization phase. For compa

as having changed by evaluating the following, ison, the performance of the NDVI differencing method [1]
using an optimal threshold: (/alue) for the same dataset is

if Rb(7) >4 shown in Table 3.

if RY(7) <6

true

Change = { false

whereR®(7) is the ACF of band evaluated at lag andJ is 5. DISCUSSION
the decision threshold. The valuenfb andd, was provided )
in the the aforementioned off-line optimization phase. Thelhe performance of the false alarm rate for both the off-line

results obtained for both the off-line optimization phase a OPtimization (14.73%) and operational phasgl5.35%) is
Operational phase are presented in section 4. very similar with a difference of less than one percent. The

change detection accuracy on the other hand for the off-
line optimization(75.17%) and operational phag62.27%)

is considerably different (Tables 1 and 2). It might seem
counter intuitive that the simulated change is more difficul

to detect than real change examples, but this does make sense
when considering the timing of the change. The mean start of
The right sided normalized ACF for bamhdan be expressed change date of the real change dataset is 2004 with a standard
asR®(t) = [R*(0), R®(1), ..., R®(N)]. The task at hand is to deviation of two years. The simulated change date on the

4. RESULTS

4.1. Optimal band and lag selection using a simulated
change dataset



Table 3. Confusion Matrix, overall accuracy)(y) and thresh- ~ Table 4. O 4 performance for different start of change dates
old (z) for the case of real change detection using the NDVI

differencing method [1]. Mean start of
Oa

change
Real NG 2001/06 70.67%
Change Change z O4 2002/06 83.57%
(n=181) | (n=964) 2003/06 85.33%
Change 2004/06 85.43%

75.14% 23.96% 1.7 75.59%

Detected 0 ‘ ’ 2005/06 84.92%
Ngggggge 94.86% | 76.04% 2006/06 81.74%
2007/06 76.66%

other hand, was distributed uniformly over the entire dat§jme-series ACF of bandl at lagr is computed per pixel and
range of the time-series. Therefore, when the change occugdmpared to the threshold)(to yield a change or no-change
in the center of the time-series, the non-stationarity & th gecision. This approach requires no significant pre-fiigri
time-series will be at a maximum and will decrease as therative annual differencing or spatial analysis. Thehnelt
change date moves towards the beginning or end of the timgyas effectively used to determine the location of new settle
series. The performance of the simulated change detectigent developments in the Gauteng province of South Africa.

is shown for different start years (Table 4). It is clear thaty change detection accuracy of 92% with a 15% false alarm
the ACF change detection method is slightly compromised,ie was achieved.

when change occurs in the first or last year with no significant
decrease in the performance for the others years.
Combining multiple bands in this study did not signifi-

cantly improve on the separability ach?eved using only ban 1] R. S. Lunetta, J. F. Knight, J. Ediriwickrema, J. G. Lyon,
4. This does not suggest that band 4 is the best for all types and L. D. Worthy, “Land-cover change detection using

of land r? over chang;aﬁ '1OCV\|/:eV?{’th{) ou(; Zt?.dy area andhland d multi-temporal MODIS NDVI data,’Remote Sensing of
cover change case, the ALF of thé band 4 ime-Series SNoWed - g oyment, vol. 105, no. 2, pp. 142-154, Nov. 2006.

the highest separability between the no-change and sietllat
change datasets. Multiple band combinations could also bg] W. Kleynhans, J. C. Olivier, K. J. Wessels, B. P. Salmon,
used to improve the separability at the cost of increased com  F. van den Bergh, and K. Steenkamp, “Improving land
putational complexity in cases where no single band givesad  cover class separation using an extended Kalman filter on
equate separability. MODIS NDVI time series data,]lEEE Geoscience and

The proposed Temporal ACF method was also compared Remote Sensing Letters, vol. 7, no. 2, pp. 381-385, Apr.
to the NDVI differencing method [1]. The optimal threshold 2010.
(z value) for this method was used for a fair comparison of the
two methods and was determined iteratively by evaluating
range of possible realizations of The NDVI differencing
method was found not to be very successful, having a change
detection accuracy df5.14% and false alarm 023.19% for

the study area. [4] D. Jupp, A. Strahler, and C. Woodcock, “Autocorrelation
and regularization in digital images i. basit theohgEE
6. CONCL USION Geoscience and Remote Sensing, vol. 26, no. 4, pp. 463—
473, Jul. 1988.
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