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Abstract

The valveless micropump holds great potential for the buting community in applications such as
drug delivery systems, blood glucose monitoring, and mahgrs.

In this paper, we investigate the characteristics of a pldiffuser/nozzle based micropump using de-
tailed computational fluid dynamics (CFD) analyses. Theificant parameters are determined using
the Buckingham-Pi theorem. In part based on this, the shapieeadiffuser and the nozzle of the
micropump, as well as the piezoelectric disc oscillati@gtrency, are selected for numerical investiga-
tion. The influences of the determined parameters on the #itsvaf the micropump are then studied
using three dimensional transient CFD analyses. The datatihhe CFD analyses are compared to ve-
locity profiles from Jeffery-Hamel flow predictions in a wedshaped channel. Significant similarities
are found between the CFD data and the Jeffery-Hamel vglpuaifiles, especially near the exit of the
diffuser where the flow is more developed.

Three different diffuser geometries are simulated at thliferent frequencies. The flow rate and

direction of flow are shown to be highly sensitive to inlet andlet diffuser shapes, with the absolute
flow rate varying by as much as 200% for the geometrical peations studied. Entrance losses at
both the diffuser inlet and nozzle inlet appear to dominagefiow resistance at extremely laminar flow
conditions with an average Reynolds numbefef,,q,. ~ 500.

1 Introduction

The first documented reports of a miniaturized pump or migngp date back to as early as 1975, e.g.
see Tay [1]. Realizing the potential of the micropump in isidieés such as heat transfer, biomedicine
and printing, researchers continued their investigatioteter years. In 1993, Stemme and Stemme [2]
designed and tested a valveless micropump based on the fttficegion properties of diffusers. The
design proposed by Stemme and Stemme was simple and offeradvtantage of low fabrication cost,



reduced wear, increased valve reliability and less claggihthe valves, which is prevalent in most
passive check valve models.

Literature abounds with studies that emphasize the impoetaf geometric effects of the diffuser on
the performance of micropumps, e.g. see Stemme and Stenjp@g2onet al.[3, 4], and Singhaét

al. [5]. Since the diffuser forms an integral part of the perfarme of the micropump, many different
geometries have previously been investigated. Among thesdr geometries studied are conical [2, 6],
pyramidal [3] and flat walled diffusers [3, 4]. The diffusexamnetry is for the most part dependent on
the type of fabrication processes available. However, utidesame conditions, flat walled diffusers
have been shown to be 10-80% shorter than conical diffusersifnilar efficiency [7]. Due to its
aforementioned qualities, the flatwalled diffuser is thiejeat of this study.

2 Diffuser and Nozzle Characteristics

The optimization of the diffuser is integral to the performa of the micropump, but little experimental
data and few analytical expressions exists that descrdsspre losses in the diffuser [8]. An exception
is Runstadleet al. [9], but the data is predominantly for turbulent flows and fostlaminar flow as

is the case for micro-diffusers. Numerical and experimamtsults presented in the literature is case
dependent. If however literature cases are combined with flam Runstadleet al. [9], this offers
valuable insight into diffuser behavior.

Diffuser operation can be classified into four modes as degin Figure 1(a), depending on the dif-
fuser geometry. The no-stall region occurs when flow is steaml viscous with no separation at the
diffuser walls and diffuser performance is relatively gaondhis region. Transitory-stall is reached
when flow is unsteady and pressure loss is a minimum. Bistabéely-stall flow occurs when the flow
flip-flops between the diffuser walls and performance is podhnis region. Flow is said to be in the jet
flow region when it separates completely from the diffuselfssend passes through at a near constant
cross-sectional area [7].

Minimum pressure loss as depicted in Figure 1(a) is illdsttg@raphically in Figure 1(b) as an experi-
mental study and provides information on the performandaetiiffuser element. Although intended
for very high Reynolds number flows, Figure 1(b) can be wdizo aid the design process and provide
an estimate of parameter influences. However, it should hghasised that the data presented in Fig-
ure 1(b) is at best a crude estimate and Wangl.[10] and Jianget al. [11] have provided data that
suggested major differences when the Reynolds number agiped Re< 100.

A measure of the efficiency for the micro-diffuser is a dimenkess coefficient, called the diffuser
pressure loss coefficielkf, [7], and is defined as [3, 4, 10, 11, 12]
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wherep is the fluid density}. is the characteristic velocity of the flow arg, is the pressure difference
over the diffuser.

Similarly, K, for a nozzle is defined as [5]
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(a) Stability map of a typical diffuser [9]. (b) Performance map of typical flat walled dif-

fuser [9].

Figure 1: Typical performance and stability maps for diffusers.

whereAp, = pressure difference over the length of the nozzle.

Pressure loss coefficients as defined in Equations (1) ancb(®)ist of three areas of pressure loss:
Apq.n, — pressure losses due to sudden contraction at the entrérbe diffuser, Ap; — pressure
losses due to viscous flow in the expanding cross-secti@h/Aan ., — pressure losses due to sudden
expansion at the exit of the diffuser.

The total pressure loss can then be written as
Apd,total = Apd,en + Apd + Apd,ew ) (3)
and using Equations (1) and (3), the total pressure los$icieet for a diffuser can be written as

Kd,total = Kd,en + Kd + Kd,e:c
APgen ~ Ap ADgea
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Hence, for a given diffuser geometry, the pressure losdicmeft can be estimated from the pressure
drop and the mean velocity at the neck of the diffuser. Howdkiese equations are largely simplified

and usually intended for use in conventional diffusers.réfoge determining the pressure drop inside
the diffuser orApg .t requires a numerical or experimental approach.

The diffuser efficiency),, for a nozzle-diffuser element is defined as the ratio of the fressure loss
coefficient for flow in the nozzle direction to that for the flomthe diffuser direction [5], i.e.
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Thus,n,, should be greater than one to provide a net flow rate in thas#iffdirection. If,, is equal
to one there is no net flow rate due to equal pressure drop mdiactions. Whem,,; is smaller than
one the net flow is in the nozzle direction.

3 Dimensional Analysis

The goal of the dimensional analysis is to determine a foneli relationship between the various
design parameters as depicted in Figure 2(b). Considerdhmmeters of the diffuser as given by
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(a) Geometry and parameters of Jeffery- (b) A flat walled diffuser / nozzle element.
Hamel flow.

Figure 2: Diffuser parameters for Jeffery-Hamel flow and BuckingharthBorem.

Figure 2(b), for which the functional relationship for thevil rate can be expressed as
Q:F<Ap7 fapu,u7L7 h? Wt7W67,rt7Te) ) (6)

where( is the mean averaged flow rat&p is the applied differential pressurg,is the excitation
frequencyy is the fluid viscosity,L is the total length of diffuser, is the depth of diffusefl/; is the
width of the throat of the diffusei}/. is the width of the diffuser exit;; is the inlet radii for the throat
of the diffuser, and, is the outlet radii for the exit of the diffuser.

The expression in (6) can be simplified using dimensionalyasi|a The method presented here was
proposed in 1914 by Buckingham [13], and is now known as thekBigham Pi-theorem. The theorem
states that when a problem is written as a functional relatip,Q; = f(Q1, Qo, ...., @,) in terms of

n dimensional variables, then these terms are physicakywaet in the problem and are inter-related
by an unknown dimensionally homogeneous set of equatidnsisithe number of fundamental di-
mensions required to describe thevariables, the remaining = n — r variables can be expressed
asp dimensionless and independent “Pi-groups”. Thus any fonat relationship of this form can be

reduced td ], = ¢ (IT,, [ Lo, - [ L)

For the problem as set out in (6) there will b& — 3 = 8 independent dimensionless groups. The
simplified equation will not be unique, and one possibilay this functional relationship is
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assuming that the applied pressuxg and the frequency of excitatiofiare properties of the piezo-
electric disk and not the geometry of the micropump thesamaters are not considered for this inves-
tigation. As the piezoelectric disk is not the focus of theearch presented, the remaining parameters
areW,, W., L, h, r, andr.,.



Using Figure 1(b) and data from [9], itis clear that the ogtiperformance for diffusers angles ranges
from 5° < 26 < 10°. From this an angle dt¢ = 7.5° and a dimension of;, = 80 um are selected
for the design (which conforms with manufacturing capéb#). From these specified values and
Figure 1(b), the maximur@, is found atL /1, = 13.75, which means an AR (area ratio) Bf. /W, =
2.7.

As the depth of the diffuser is a constant (planar diffuser) and fixed byhafacturing capabilities to
80 um, the remaining variable parameters of Equation (7) arékeéeradiir, and outlet radii-. of the
diffuser. The inlet and outlet radii of the diffuser are tlsedected for further investigation.

4 Jeffery-Hamel flow in a wedge shaped region

Diffuser and nozzle flow is presented here in polar coorém#&br a wedge shaped region. This work
presented here is one specific numerical solution to JeHamel flow, as presented by White [14].

When the flow is assumed to be purely radial the momentum iequest reduced to a third-order,
non-linear ordinary differential equation. The problertoagh a boundary value problem, is solved
numerically using Matlab’s Runge-Kutta initial value pleim solver i.eode45.

As depicted in Figure 2(a), the flow is considered in polarrdoatesr andd, generated by a line
source at the origin as presented by White [14]. The flow indiffeiser is considered to be purely
radial hence:y = 0 and bounded by the sidewallstat +a.

4.1 Analytical model derivation

The continuity equation in polar coordinates as given by [14
10
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If u, have a local maximum & = 0, then a nondimensionalization for the problem is
0
n=—, (9)
«
and
Uy
fn) =~ (10)

The momentum equation in polar coordinatesdpe= 0 is given by [14]
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Pressure is eliminated by cross differentiation and intoigy the variables from Equation (9) and (10).
The result is a third-order non-linear ordinary differah@gquation for the velocity profil¢ of the form

"+ 2Reaff +4a%f =0, (12)
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Figure 3: Three dimensional layout of the micropump model.

whereRe = u,ra/v is the characteristic Reynolds number for the flow preserfta is assumed to
be symmetric and a no slip boundary condition is appliedattdalls. As mentioned,,,.. is atd = 0.
The initial and boundary values can thus be summarized by

f(+1) = f(-1)=0,
f0)y=1, (13)
f)=0.

Equation (12), combined with initial and boundary valuesrir(13), is solved numerically using Mat-

lab’s Runge-Kutta solver i.ede45 as illustrated by [15]. Equation (12) is solved for a rangdief

values. Data from the CFD simulations are compared to theiqiesl Jeffery-Hamel velocity distri-

butions and are graphically illustrated in Figures 5(bl)&nd 7(b). The solutions are plotted for the
Rea value at the exit of the diffusers, where the flow is more deped.

5 Numerical simulations

A two-dimensional, steady state model of the micro-diffusas solved to test the mesh dependancy.
Mesh bi-section was used to refine the mesh and the optimurh setings were extrapolated to the
three-dimensional model.

The CFD solver used for all simulations is Fluent 6.3.26. Agsure based solver is chosen and the
SIMPLE pressure-velocity coupling scheme is selected Heranalysis. The second order upwind
numerical scheme is used for the momentum equation calwugat Small flow volumes is expected,
the absolute convergent criteria is therefore sét 01012 and the laminar viscous model is selected.
Fluid properties of water &0 °C is used for the fluid.

A three-dimensional model is simulated with three différgmet and outlet radii configurations as
depicted by Figure 4. All models are solved at an excitatreqdency of 1 kHz and the time step is
set toAt = 0.01 ms. The model has 400 000 cells and is solved on a daraitguting Linux cluster.
A model similar to the one depicted in Figure 3 is used in thenewical investigation. A sinusoidal
pressure at 1 kHz is applied to the pump chamber and the dlathetrates are calculated. Velocity
vectors are recorded on three depths in the diffuser, atd®5 1 m and S5um.

e Sharp edged diffuser/nozzle configuration

In this model the diffuser inlet and nozzle inlet edge hadesgpproachin§0° as depicted in
Figure 4(a). The resulting flow rates are plotted in Figui® Bd the comparison between the
predicted Jeffery-Hamel velocity profiles and the CFD datgpdotted in 5(b).
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Figure 4: (a) A two-dimensional diffuser model with sharp diffusedarozzle inlet radii. (b) A two-dimensional
diffuser model with rounded diffuser inlet edge and sharpziminlet edge. (c) A two-dimensional
diffuser model with rounded diffuser inlet edge and shaegemozzle inlet edge.
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Figure 5: Results for the sharp diffuser and nozzle inlet configurefsee Figure 4(a)).

¢ Round edged diffuser/nozzle configuration

This model has a rounded inlet edger= 40 um, for diffuser flow and a sharp inlet edge, angles
approaching0°, for the nozzle flow as depicted in Figure 4(b). The resulfloy rates are
plotted in Figure 6(a) and the comparison between the pestliteffery-Hamel velocity profiles
and the CFD data are plotted in 6(b).

e Round edged diffuser and sharpened edge nozzle configuratio

This model has a rounded inlet edge= 40 um, for diffuser flow and a sharpened inlet edge,
angles approaching80°, for the nozzle flow as depicted in Figure 4(c). The resulfiog
rates are plotted in Figure 7(a) and the comparison betweepredicted Jeffery-Hamel velocity
profiles and the CFD data are plotted in 7(b).

6 Results and Discussion

Considering Figures 5(a), 6(a) and 7(a), the nett flow ¢atan be calculated as
Q = Z Qoutlet — Z Qintet (14)

which means that if) < 0, the pump direction is in the diffuser direction. If howevgr> 0, the
pump direction is in the nozzle direction. The inlet and eutiurves of Figures 5(a), 6(a) and 7(a) are
integrated numerically and calculated as in Equation (14).
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Figure 6: Results for the rounded diffuser inlet model (see Figurg)4(b
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Figure 7: Results for the rounded diffuser inlet and sharpenend morldt configuration (see Figure 4(c)).

e Sharp edged diffuser/nozzle configuration

Analysing the data from Figure 5(a) with Equation (14) thét flew rate Q of the pump is
calculated as 367@l/min. As Q > 0, it shows the nett flow direction to be in the nozzle
direction. The flow rate is reversed from what was expectelis Tesult illustrates the high
entrance losses associated with very low Reynolds numbas f{Be,,,.., ~ 900). Even with
large flow separation from the sidewalls, the inlet lossgs, dominate the flow resistance at all
simulated frequencies.

From Figure 5(b) it is clear that the flow is never fully deyeta and large velocity gradients at
the diffuser wall contribute to large shear forces. Theggelahear forces contribute to the already
high flow resistance in the diffuser direction. It is also@ted that there is negligible black flow
in the diffuser and there is very little comparison to théekgtHamel velocity distribution. Since
the Jeffery-Hamel flow prediction assumes fully developed,fdiscrepancies between the data
and the Jeffery-Hamel flow prediction is expected.



¢ Round edged diffuser/nozzle configuration

Analysing the data from Figure 6(a) with Equation (14) thét flew rate Q of the pump is
calculated as -8635l/min. As Q < 0, it shows the nett flow direction to be in the diffuser
direction. The rouned inlet for the diffuser illustrate® teffect of the entrance losses at low
Reynolds numbers. Compared to the sharp diffuser inlet be@bsolute flow rate is improved
by more than 110% on the absolute flow rate. The flow in this rhisde the diffuser direction
opposed to the nozzle direction as is the case in the shagraddel.

From Figure 6(b) it is clear that the flow is more developedhttieat of the sharp edged model.

Minor backflow is also observed on all three depths of theudéf and contributes to a decreased
flow resistance in the diffuser direction. The velocity wstfrom the CFD data are also closer
to the predicted Jeffery-Hamel velocity distribution thhe sharp edged model’s.

Round edged diffuser and sharpened edge nozzle configuratio

Analysing the data from Figure 7(a) with Equation (14) thét flew rate Q of the pump is
calculated as -11460l/min. As Q < 0, it shows the nett flow direction to be in the diffuser
direction. The sharpened inlet for the nozzle illustratesffect of the entrance losses at low
Reynolds numbers. Compared to the round diffuser inlet mitaeflow rate is improved by
more than 30%. This improvement on the flow rate can be at&ibto the increased losses at
the entrance in the nozzle direction as depicted by Figuiesatd 8(b).

From Figure 7(b) it is observed that the flow is more develdped that of the rounded edged
model. Major backflow is also observed near the bottom of iffasgr and contributes to a
reduced flow resistance in the diffuser direction. The vg@laectors from the CFD data are also
closer to the predicted Jeffery-Hamel velocity distribatthan the sharp edged model’s.

7 Conclusion

The data analysed shows the dependency of the flow directioravables such as inlet and outlet
radii. This dependency can be explained by large losseg d@liffuser entrance due to extreme velocity
gradients in this area. This effect is illustrated in Figu¢a) and 8(b).
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By implementing a rounded diffuser inlet throat, where tauity gradients are large, the efficiency of
the micropump is increased (as seen by comparing Figurgsabget(a)). The nett flow rate is further
increased by adding sharper inlet edges to the nozzle fleaetibn, which increases flow resistance in
the nozzle direction by amplifying inlet losses. This effeecomes visible by comparing Figures 5(a)
and 7(a). Compared to the round diffuser inlet model the flae is improved by more than 30%. The
effect of the alterations on the respective radii have a®ed the sharp edged model’s absolute flow
rate by more than 200%.

At low Reynolds numberfRe,,.q4c| = 500, entrance losses appear to dominate the flow direction in
both diffuser and nozzle direction.
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