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Abstract

The valveless micropump holds great potential for the biomedical community in applications such as
drug delivery systems, blood glucose monitoring, and many others.

In this paper, we investigate the characteristics of a planar diffuser/nozzle based micropump using de-
tailed computational fluid dynamics (CFD) analyses. The significant parameters are determined using
the Buckingham-Pi theorem. In part based on this, the shape of the diffuser and the nozzle of the
micropump, as well as the piezoelectric disc oscillation frequency, are selected for numerical investiga-
tion. The influences of the determined parameters on the flow rate of the micropump are then studied
using three dimensional transient CFD analyses. The data from the CFD analyses are compared to ve-
locity profiles from Jeffery-Hamel flow predictions in a wedge shaped channel. Significant similarities
are found between the CFD data and the Jeffery-Hamel velocity profiles, especially near the exit of the
diffuser where the flow is more developed.

Three different diffuser geometries are simulated at threedifferent frequencies. The flow rate and
direction of flow are shown to be highly sensitive to inlet andoutlet diffuser shapes, with the absolute
flow rate varying by as much as 200% for the geometrical perturbations studied. Entrance losses at
both the diffuser inlet and nozzle inlet appear to dominate the flow resistance at extremely laminar flow
conditions with an average Reynolds number ofReaverage ≈ 500.

1 Introduction

The first documented reports of a miniaturized pump or micropump date back to as early as 1975, e.g.
see Tay [1]. Realizing the potential of the micropump in industries such as heat transfer, biomedicine
and printing, researchers continued their investigationsin later years. In 1993, Stemme and Stemme [2]
designed and tested a valveless micropump based on the flow rectification properties of diffusers. The
design proposed by Stemme and Stemme was simple and offered the advantage of low fabrication cost,



reduced wear, increased valve reliability and less clogging of the valves, which is prevalent in most
passive check valve models.

Literature abounds with studies that emphasize the importance of geometric effects of the diffuser on
the performance of micropumps, e.g. see Stemme and Stemme [2], Olssonet al. [3, 4], and Singhalet
al. [5]. Since the diffuser forms an integral part of the performance of the micropump, many different
geometries have previously been investigated. Among the diffuser geometries studied are conical [2, 6],
pyramidal [3] and flat walled diffusers [3, 4]. The diffuser geometry is for the most part dependent on
the type of fabrication processes available. However, under the same conditions, flat walled diffusers
have been shown to be 10-80% shorter than conical diffusers for similar efficiency [7]. Due to its
aforementioned qualities, the flatwalled diffuser is the subject of this study.

2 Diffuser and Nozzle Characteristics

The optimization of the diffuser is integral to the performance of the micropump, but little experimental
data and few analytical expressions exists that describe pressure losses in the diffuser [8]. An exception
is Runstadleret al. [9], but the data is predominantly for turbulent flows and notfor laminar flow as
is the case for micro-diffusers. Numerical and experimental results presented in the literature is case
dependent. If however literature cases are combined with data from Runstadleret al. [9], this offers
valuable insight into diffuser behavior.

Diffuser operation can be classified into four modes as depicted in Figure 1(a), depending on the dif-
fuser geometry. The no-stall region occurs when flow is steady and viscous with no separation at the
diffuser walls and diffuser performance is relatively goodin this region. Transitory-stall is reached
when flow is unsteady and pressure loss is a minimum. Bistablesteady-stall flow occurs when the flow
flip-flops between the diffuser walls and performance is poorin this region. Flow is said to be in the jet
flow region when it separates completely from the diffuser walls and passes through at a near constant
cross-sectional area [7].

Minimum pressure loss as depicted in Figure 1(a) is illustrated graphically in Figure 1(b) as an experi-
mental study and provides information on the performance ofthe diffuser element. Although intended
for very high Reynolds number flows, Figure 1(b) can be utilized to aid the design process and provide
an estimate of parameter influences. However, it should be emphasised that the data presented in Fig-
ure 1(b) is at best a crude estimate and Wanget al. [10] and Jianget al. [11] have provided data that
suggested major differences when the Reynolds number approached Re≤ 100.

A measure of the efficiency for the micro-diffuser is a dimensionless coefficient, called the diffuser
pressure loss coefficientKd [7], and is defined as [3, 4, 10, 11, 12]

Kd =
∆pd
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whereρ is the fluid density,Vc is the characteristic velocity of the flow and∆pd is the pressure difference
over the diffuser.

Similarly,Kn for a nozzle is defined as [5]

Kn =
∆pn
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(a) Stability map of a typical diffuser [9]. (b) Performance map of typical flat walled dif-
fuser [9].

Figure 1: Typical performance and stability maps for diffusers.

where∆pn = pressure difference over the length of the nozzle.

Pressure loss coefficients as defined in Equations (1) and (2)consist of three areas of pressure loss:
∆pd,en – pressure losses due to sudden contraction at the entrance of the diffuser,∆pd – pressure
losses due to viscous flow in the expanding cross-section, and ∆pd,ex – pressure losses due to sudden
expansion at the exit of the diffuser.

The total pressure loss can then be written as

∆pd,total = ∆pd,en + ∆pd + ∆pd,ex , (3)

and using Equations (1) and (3), the total pressure loss coefficient for a diffuser can be written as

Kd,total = Kd,en + Kd + Kd,ex
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(4)

Hence, for a given diffuser geometry, the pressure loss coefficient can be estimated from the pressure
drop and the mean velocity at the neck of the diffuser. However, these equations are largely simplified
and usually intended for use in conventional diffusers. Therefore determining the pressure drop inside
the diffuser or∆pd,total requires a numerical or experimental approach.

The diffuser efficiencyηnd for a nozzle-diffuser element is defined as the ratio of the total pressure loss
coefficient for flow in the nozzle direction to that for the flowin the diffuser direction [5], i.e.

ηnd =
Kn,total

Kd,total

. (5)



Thus,ηnd should be greater than one to provide a net flow rate in the diffuser direction. Ifηnd is equal
to one there is no net flow rate due to equal pressure drop in both directions. Whenηnd is smaller than
one the net flow is in the nozzle direction.

3 Dimensional Analysis

The goal of the dimensional analysis is to determine a functional relationship between the various
design parameters as depicted in Figure 2(b). Consider the parameters of the diffuser as given by

θ

αr,urLine source

(a) Geometry and parameters of Jeffery-
Hamel flow.

(b) A flat walled diffuser / nozzle element.

Figure 2: Diffuser parameters for Jeffery-Hamel flow and Buckingham Pi-theorem.

Figure 2(b), for which the functional relationship for the flow rate can be expressed as

Q̄ = F (∆p, f, ρ, µ, L, h, Wt, We, rt, re) , (6)

whereQ̄ is the mean averaged flow rate,∆p is the applied differential pressure,f is the excitation
frequency,µ is the fluid viscosity,L is the total length of diffuser,h is the depth of diffuser,Wt is the
width of the throat of the diffuser,We is the width of the diffuser exit,rt is the inlet radii for the throat
of the diffuser, andre is the outlet radii for the exit of the diffuser.

The expression in (6) can be simplified using dimensional analysis. The method presented here was
proposed in 1914 by Buckingham [13], and is now known as the Buckingham Pi-theorem. The theorem
states that when a problem is written as a functional relationship,Qi = f(Q1, Q2, ...., Qn) in terms of
n dimensional variables, then these terms are physically relevant in the problem and are inter-related
by an unknown dimensionally homogeneous set of equations. If r is the number of fundamental di-
mensions required to describe then variables, the remainingp = n − r variables can be expressed
asp dimensionless and independent “Pi-groups”. Thus any functional relationship of this form can be
reduced to

∏
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For the problem as set out in (6) there will be11 − 3 = 8 independent dimensionless groups. The
simplified equation will not be unique, and one possibility for this functional relationship is
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assuming that the applied pressure∆p and the frequency of excitationf are properties of the piezo-
electric disk and not the geometry of the micropump these parameters are not considered for this inves-
tigation. As the piezoelectric disk is not the focus of the research presented, the remaining parameters
areWt, We, L, h, rt andre.



Using Figure 1(b) and data from [9], it is clear that the optimal performance for diffusers angles ranges
from 5◦ ≤ 2θ ≤ 10◦. From this an angle of2θ = 7.5◦ and a dimension ofWt = 80 µm are selected
for the design (which conforms with manufacturing capabilities). From these specified values and
Figure 1(b), the maximumCp is found atL/Wt = 13.75, which means an AR (area ratio) ofWe/Wt =
2.7.

As the depthh of the diffuser is a constant (planar diffuser) and fixed by manufacturing capabilities to
80µm, the remaining variable parameters of Equation (7) are theinlet radiirt and outlet radiire of the
diffuser. The inlet and outlet radii of the diffuser are thusselected for further investigation.

4 Jeffery-Hamel flow in a wedge shaped region

Diffuser and nozzle flow is presented here in polar coordinates for a wedge shaped region. This work
presented here is one specific numerical solution to Jeffery-Hamel flow, as presented by White [14].

When the flow is assumed to be purely radial the momentum equation is reduced to a third-order,
non-linear ordinary differential equation. The problem, altough a boundary value problem, is solved
numerically using Matlab’s Runge-Kutta initial value problem solver i.e.ode45.

As depicted in Figure 2(a), the flow is considered in polar coordinatesr andθ, generated by a line
source at the origin as presented by White [14]. The flow in thediffuser is considered to be purely
radial henceuθ = 0 and bounded by the sidewalls atθ = ±α.

4.1 Analytical model derivation

The continuity equation in polar coordinates as given by [14]

1

r

∂

∂r
(rur) = 0 . (8)

If ur have a local maximum atθ = 0, then a nondimensionalization for the problem is
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α
, (9)

and
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The momentum equation in polar coordinates foruθ = 0 is given by [14]
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Pressure is eliminated by cross differentiation and introducing the variables from Equation (9) and (10).
The result is a third-order non-linear ordinary differential equation for the velocity profilef of the form

f
′′′

+ 2Reαff
′

+ 4α2f
′

= 0 , (12)



Figure 3: Three dimensional layout of the micropump model.

whereRe = urrα/ν is the characteristic Reynolds number for the flow presented. Flow is assumed to
be symmetric and a no slip boundary condition is applied at the walls. As mentionedumax is atθ = 0.
The initial and boundary values can thus be summarized by

f(+1) = f(−1) = 0 ,

f(0) = 1 ,

f
′

(0) = 0 .

(13)

Equation (12), combined with initial and boundary values from (13), is solved numerically using Mat-
lab’s Runge-Kutta solver i.eode45 as illustrated by [15]. Equation (12) is solved for a range ofReα
values. Data from the CFD simulations are compared to the predicted Jeffery-Hamel velocity distri-
butions and are graphically illustrated in Figures 5(b), 6(b) and 7(b). The solutions are plotted for the
Reα value at the exit of the diffusers, where the flow is more developed.

5 Numerical simulations

A two-dimensional, steady state model of the micro-diffuser was solved to test the mesh dependancy.
Mesh bi-section was used to refine the mesh and the optimum mesh settings were extrapolated to the
three-dimensional model.

The CFD solver used for all simulations is Fluent 6.3.26. A pressure based solver is chosen and the
SIMPLE pressure-velocity coupling scheme is selected for the analysis. The second order upwind
numerical scheme is used for the momentum equation calculations. Small flow volumes is expected,
the absolute convergent criteria is therefore set to1 × 10−12 and the laminar viscous model is selected.
Fluid properties of water at20 ◦C is used for the fluid.

A three-dimensional model is simulated with three different inlet and outlet radii configurations as
depicted by Figure 4. All models are solved at an excitation frequency of 1 kHz and the time step is
set to∆t = 0.01 ms. The model has 400 000 cells and is solved on a parallel computing Linux cluster.
A model similar to the one depicted in Figure 3 is used in the numerical investigation. A sinusoidal
pressure at 1 kHz is applied to the pump chamber and the outletflow rates are calculated. Velocity
vectors are recorded on three depths in the diffuser, at 40µm, 25µm and 5µm.

• Sharp edged diffuser/nozzle configuration
In this model the diffuser inlet and nozzle inlet edge has angles approaching90◦ as depicted in
Figure 4(a). The resulting flow rates are plotted in Figure 5(a) and the comparison between the
predicted Jeffery-Hamel velocity profiles and the CFD data are plotted in 5(b).



Figure 4: (a) A two-dimensional diffuser model with sharp diffuser and nozzle inlet radii. (b) A two-dimensional
diffuser model with rounded diffuser inlet edge and sharp nozzle inlet edge. (c) A two-dimensional
diffuser model with rounded diffuser inlet edge and sharpened nozzle inlet edge.
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(a) Inlet and outlet flow rates for the sharp edged diffuser
nozzle configuration exited at 1 kHz for 2 ms and with∆t =
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(b) A comparison between the predicted Jeffery-Hamel ve-
locity profiles and the calculated CFD velocity vectors at the
exit of the diffuser and at three depths in the diffuser for the
sharp edged diffuser nozzle model.

Figure 5: Results for the sharp diffuser and nozzle inlet configuration (see Figure 4(a)).

• Round edged diffuser/nozzle configuration
This model has a rounded inlet edge,rt = 40µm, for diffuser flow and a sharp inlet edge, angles
approaching90◦, for the nozzle flow as depicted in Figure 4(b). The resultingflow rates are
plotted in Figure 6(a) and the comparison between the predicted Jeffery-Hamel velocity profiles
and the CFD data are plotted in 6(b).

• Round edged diffuser and sharpened edge nozzle configuration
This model has a rounded inlet edge,rt = 40 µm, for diffuser flow and a sharpened inlet edge,
angles approaching180◦, for the nozzle flow as depicted in Figure 4(c). The resultingflow
rates are plotted in Figure 7(a) and the comparison between the predicted Jeffery-Hamel velocity
profiles and the CFD data are plotted in 7(b).

6 Results and Discussion

Considering Figures 5(a), 6(a) and 7(a), the nett flow rateQ̄ can be calculated as

Q̄ =
∑

Qoutlet −
∑

Qinlet , (14)

which means that if̄Q ≤ 0, the pump direction is in the diffuser direction. If howeverQ̄ ≥ 0, the
pump direction is in the nozzle direction. The inlet and outlet curves of Figures 5(a), 6(a) and 7(a) are
integrated numerically and calculated as in Equation (14).
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(a) Inlet and outlet flow rates for the rounded diffuser inlet
and sharp nozzle inlet configuration exited at 1 kHz for 2 ms
and with∆t = 0.01 ms.
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(b) A comparison between the predicted Jeffery-Hamel ve-
locity profiles and the calculated CFD velocity vectors at the
exit of the diffuser and at three depths in the diffuser for
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model.

Figure 6: Results for the rounded diffuser inlet model (see Figure 4(b))
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(a) Inlet and outlet flow rates for the rounded diffuser inlet
and sharpened nozzle inlet configuration exited at 1 kHz for
2 ms and with∆t = 0.01 ms.
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(b) A comparison between the predicted Jeffery-Hamel ve-
locity profiles and the calculated CFD velocity vectors at the
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Figure 7: Results for the rounded diffuser inlet and sharpenend nozzle inlet configuration (see Figure 4(c)).

• Sharp edged diffuser/nozzle configuration

Analysing the data from Figure 5(a) with Equation (14) the nett flow rate Q̄ of the pump is
calculated as 3679µl/min. As Q̄ ≥ 0, it shows the nett flow direction to be in the nozzle
direction. The flow rate is reversed from what was expected. This result illustrates the high
entrance losses associated with very low Reynolds number flows (Remax ≈ 900). Even with
large flow separation from the sidewalls, the inlet lossesKd,en dominate the flow resistance at all
simulated frequencies.

From Figure 5(b) it is clear that the flow is never fully developed and large velocity gradients at
the diffuser wall contribute to large shear forces. These large shear forces contribute to the already
high flow resistance in the diffuser direction. It is also observed that there is negligible black flow
in the diffuser and there is very little comparison to the Jeffery-Hamel velocity distribution. Since
the Jeffery-Hamel flow prediction assumes fully developed flow, discrepancies between the data
and the Jeffery-Hamel flow prediction is expected.



• Round edged diffuser/nozzle configuration

Analysing the data from Figure 6(a) with Equation (14) the nett flow rate Q̄ of the pump is
calculated as -8635µl/min. As Q̄ ≤ 0, it shows the nett flow direction to be in the diffuser
direction. The rouned inlet for the diffuser illustrates the effect of the entrance losses at low
Reynolds numbers. Compared to the sharp diffuser inlet model the absolute flow rate is improved
by more than 110% on the absolute flow rate. The flow in this model is in the diffuser direction
opposed to the nozzle direction as is the case in the sharp edge model.

From Figure 6(b) it is clear that the flow is more developed than that of the sharp edged model.
Minor backflow is also observed on all three depths of the diffuser and contributes to a decreased
flow resistance in the diffuser direction. The velocity vectors from the CFD data are also closer
to the predicted Jeffery-Hamel velocity distribution thanthe sharp edged model’s.

• Round edged diffuser and sharpened edge nozzle configuration

Analysing the data from Figure 7(a) with Equation (14) the nett flow rate Q̄ of the pump is
calculated as -11460µl/min. As Q̄ ≤ 0, it shows the nett flow direction to be in the diffuser
direction. The sharpened inlet for the nozzle illustrates the effect of the entrance losses at low
Reynolds numbers. Compared to the round diffuser inlet model the flow rate is improved by
more than 30%. This improvement on the flow rate can be attributed to the increased losses at
the entrance in the nozzle direction as depicted by Figures 8(a) and 8(b).

From Figure 7(b) it is observed that the flow is more developedthan that of the rounded edged
model. Major backflow is also observed near the bottom of the diffuser and contributes to a
reduced flow resistance in the diffuser direction. The velocity vectors from the CFD data are also
closer to the predicted Jeffery-Hamel velocity distribution than the sharp edged model’s.

7 Conclusion

The data analysed shows the dependency of the flow direction on variables such as inlet and outlet
radii. This dependency can be explained by large losses at the diffuser entrance due to extreme velocity
gradients in this area. This effect is illustrated in Figures 8(a) and 8(b).

(a) Velocity contour plot of the nozzle flow for the sharp noz-
zle inlet edge model.

(b) Velocity contour plot of the nozzle flow for the sharpened
nozzle inlet edge model.

Figure 8: Velocity magnitude distribution plots illustrating the higher velocity gradients at the entrance of the
sharpened nozzle inlet edge model.



By implementing a rounded diffuser inlet throat, where the velocity gradients are large, the efficiency of
the micropump is increased (as seen by comparing Figures 5(a) and 6(a)). The nett flow rate is further
increased by adding sharper inlet edges to the nozzle flow direction, which increases flow resistance in
the nozzle direction by amplifying inlet losses. This effect becomes visible by comparing Figures 5(a)
and 7(a). Compared to the round diffuser inlet model the flow rate is improved by more than 30%. The
effect of the alterations on the respective radii have increased the sharp edged model’s absolute flow
rate by more than 200%.

At low Reynolds numbers|Reaverage| ≈ 500, entrance losses appear to dominate the flow direction in
both diffuser and nozzle direction.
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