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ABSTRACT
Image texture features extracted from high-resolution re-
motely sensed images over urban areas have shown promise
in their ability to distinguish different settlement classes.
Without any explicit mechanism to counter the effects of vari-
able illumination- and viewing geometries, these features may
not generalize well in multi-date applications such as change
detection. This paper presents the results of a small study of
the effects of unwanted variability on low-income settlement
classification performance in the Soweto residential area of
the city of Johannesburg, South Africa.

Somewhat surprisingly, the Gray-Level Co-occurrence Ma-
trix (GLCM) features were found to perform better than Local
Binary Pattern (LBP) features on combined spatial and tem-
poral generalization tasks, although the LBP features offered
better performance on spatial-only generalization problems.

1. INTRODUCTION

Image texture features have been shown to be an effective
means of describing the structural features that sets apart dif-
ferent urban settlement classes. Early work in this category
includes that of Pesaresi [1], Benediktsson et al. [2]. These
features can also be used to detect the presence of urban areas
within satellite imagery, as recently demonstrated by May et
al. [3].

Texture features have also been demonstrated to be effec-
tive in classifying low-income and informal settlement classes
such as those found in South Africa [4]. The regular monitor-
ing of such informal settlements is critical to the service pro-
visioning planning process, thereby helping to bring services
such as water and sanitation to these areas in a timely manner.

Although some texture features, such as those generated by
the Local Binary Pattern (LBP) algorithm, have been demon-
strated to be highly effective in the settlement classification
task, subsequent experiments have demonstrated that the gen-
eralization performance of classifiers using these features is

not ideal. The study presented here is an early investigation
into identifying the cause of poor generalization performance.
It is expected that viewing- and illumination geometry are the
two dominant factors that hamper the generalization perfor-
mance of classifiers based on such texture features, since the
illumination geometry has a direct impact on both the amount
and direction of shadowing within a scene.

2. METHODOLOGY

A good image feature is one that is designed to have a repre-
sentation that is sensitive to change in the desired variables,
e.g., settlement type, whilst being insensitive to other types of
change that may be present in the image. If an image feature
has these properties, then it can be expected that the feature
will lead to good generalization performance in classification
tasks. The high spatial resolution of QuickBird presents sev-
eral hazards to good generalization in that many differences
can be observed in co-registered image pairs, but that most
of these differences are unrelated or irrelevant to a settlement
classification problem.

The QuickBird satellite can acquire images at fairly large
off-nadir angles. Imaging the same area at two different off-
nadir angles produces an image pair that may contain a large
number of spurious differences, even though no real change
occurred on the ground. This effect is referred to as view-
ing geometry differences, and is the first source of unwanted
change that is observed in repeated QuickBird images of the
same area.

Images acquired at different times of the year also have dif-
ferent illumination geometries, which manifests as shadows
of varying lengths and orientations. This effect could also be
exacerbated by large off-nadir viewing angles, because the lo-
cal time on the ground may be different compared to a nadir
view of the same area. This also introduces spurious differ-
ences in image pairs of the same area, and is referred to as
illumination geometry differences.

A third type of spurious change can be observed if two im-
ages from different seasons are compared. This affects mainly



vegetation, but the peak of the spectral response function of
the panchromatic sensor on board QuickBird is shifted to-
wards red / near infrared, which implies that seasonal veg-
etation changes are prominent in the panchromatic band. It
is expected that the effect of the seasonal differences will be
smaller in urban environments, or that these seasonal differ-
ences will not dominate real structural differences.

The following method is proposed to evaluate the sensitiv-
ity of different texture features to these sources of spurious
change:

1. Obtain two QuickBird images over the same area, prefer-
ably acquired not too far apart in time (minimizing sea-
sonal differences), but with different viewing- and illu-
mination geometries.

2. From each image, extract polygons containing examples
of different settlement types. Multiple non-overlapping
examples of each settlement type are extracted.

3. From within each polygon, extract square tiles (120 m
× 120 m) from random locations entirely within the de-
marcated polygons. Tiles are paired, so that the same
location is extracted from both dates (images).

4. Extract image feature vectors (patterns) using various
texture feature algorithms. Partition these extracted pat-
terns into four sets, namely Ad1 , Ad2 , Bd1and Bd2where
Ad1denotes the first set derived from the scene acquired
on date d1, and Bd1denotes a second set derived from the
same scene. Observe that the B sets do not overlap the
A sets spatially.

5. Evaluate the generalization performance of the different
texture feature algorithms by evaluating the performance
of a Support Vector Machine (SVM) classifier over the
six possible combinations of training and test sets, e.g.,
Ad1used as training set, evaluated on Bd2as test set, and
so on.

It is expected that texture features that are less sensitive to
viewing- and illumination geometry will produce temporal
generalization classification accuracies (training and testing
data from different dates) that are comparable to their spatial
generalization performance (training and testing data from
same date, but spatially non-overlapping), whereas less robust
features will exhibit a decrease in performance.

3. DATA SET

To evaluate the effect of these possible sources of spurious
differences, a familiar study area, namely Soweto (Gauteng,
South Africa) was selected. This area contains a large vari-
ety of settlement types, ranging from formal suburbs, to very
informal settlements consisting of owner-built shacks. Two
QuickBird images over this area were obtained: one acquired

on 2005-10-18 (early summer, rain season, called d1 in the
sequel), and another on 2006-05-30 (early winter, called d2

in the sequel). Large differences in viewing- and illumina-
tion geometry between these images lead to a pronounced dif-
ference in both the amount of shadow and the orientation of
shadows.

This study area has previously been used in settlement clas-
sification experiments [4]. Unfortunately, the area of overlap
between the two QuickBird images was smaller than previ-
ous studies, and it no longer contained sufficient examples of
the unstructured informal settlement class. To compensate for
the slight loss of variety, it was decided to merge the classes
leaving just four final classes: formal suburbs (FS), formal
suburbs with backyard shacks (FSB), ordered informal set-
tlements (OIS), and a non-built-up (NBU) class to represent
vegetation and bare areas. For each date a set of 6794 pat-
terns were selected for training data, leaving 7560 patterns in
the testing set.

Examples of three of the settlement classes are provided in
Figure 1. Observe how the different settlement classes each
have a unique distribution of object (building) sizes. The rel-
ative position of the buildings is also an important attribute.

4. RESULTS

A previous study investigated the performance of various tex-
ture features in a comparable settlement classification task
[4]. The three best performing algorithms from that study
were selected: Gray-Level Co-Occurrence Matrix (GLCM)
features [5], Local Binary Patterns (LBP) features [6], and
Granulometric features [7]. Reasonable effort was expended
to ensure that the parameter choices of these algorithms were
suitable for the intended task. A total of 10 attributes were
extracted from each image using the GLCM algorithm, with
LBP and Granulometry weighing in at 30 attributes and 14
attributes, respectively.

In order to obtain standard deviations on the various classi-
fication accuracy results, the following procedure was used to
evaluate a given configuration using data sets X and Y (where
X = Ad1 , and Y = Bd1 , for example):

1. Train a support vector machine (SVM) using the whole
of set X .

2. Partition set Y into 10 folds using stratified sampling to
preserve relative class frequency.

3. Evaluate the SVM (trained on X) on each of the 10 folds
of Y , obtaining one accuracy figure for each fold.

4. Exchange X and Y , and repeat steps 1–3.

This process, denoted X ⇀↽ Y , produces 20 individual values
for each accuracy metric, which were then used to calculate a
mean and standard deviation for each metric (Table 1).



(a) formal settlement (b) formal settlement with backyard
shacks

(c) ordered informal settlement

Fig. 1. Examples of three of the settlement classes found in Soweto

Table 1. Overall classification accuracy obtained with various texture algorithms, and per-class true positive (TP) rate. All
values represent sample means followed by corresponding standard deviations.

Texture Data set Overall FS FSB OIS NBU
algorithm Accuracy (%) TP (%) TP (%) TP (%) TP (%)

GLCM Ad1
⇀↽ Bd1 92.58 ± 0.60 57.62 ± 43.14 99.52 ± 0.22 94.28 ± 5.85 100.00 ± 0.00

Ad2
⇀↽ Bd2 95.96 ± 0.60 83.15 ± 15.21 97.84 ± 1.89 96.63 ± 2.15 100.00 ± 0.00

Ad1
⇀↽ Bd2 87.18 ± 1.15 57.51 ± 34.79 86.69 ± 1.33 92.67 ± 7.62 99.92 ± 0.24

Ad2
⇀↽ Bd1 88.21 ± 3.74 65.79 ± 33.06 92.22 ± 8.00 82.07 ± 14.96 99.29 ± 0.81

Ad1
⇀↽ Ad2 91.37 ± 2.84 73.14 ± 20.83 89.99 ± 7.47 95.58 ± 4.57 99.95 ± 0.15

Bd1
⇀↽ Bd2 90.56 ± 1.77 70.67 ± 28.74 94.22 ± 2.44 84.41 ± 15.78 97.89 ± 2.29

LBP Ad1
⇀↽ Bd1 96.66 ± 1.69 90.08 ± 7.86 96.72 ± 3.24 98.06 ± 2.23 99.60 ± 0.55

Ad2
⇀↽ Bd2 97.38 ± 1.57 96.06 ± 3.40 97.43 ± 2.15 94.41 ± 4.77 100.00 ± 0.00

Ad1
⇀↽ Bd2 87.79 ± 1.76 78.78 ± 28.61 97.19 ± 2.65 54.11 ± 9.06 100.00 ± 0.00

Ad2
⇀↽ Bd1 80.79 ± 0.56 77.42 ± 22.96 86.42 ± 7.03 38.72 ± 33.16 98.27 ± 1.89

Ad1
⇀↽ Ad2 88.89 ± 5.51 79.86 ± 26.01 98.23 ± 1.60 63.88 ± 34.98 100.00 ± 0.00

Bd1
⇀↽ Bd2 81.94 ± 5.26 77.00 ± 23.32 89.08 ± 7.05 37.87 ± 2.31 98.47 ± 1.71

Granulometry Ad1
⇀↽ Bd1 81.06 ± 1.26 60.68 ± 32.15 91.65 ± 5.38 46.23 ± 3.54 99.92 ± 0.18

Ad2
⇀↽ Bd2 81.99 ± 1.49 73.26 ± 20.48 92.96 ± 5.00 40.52 ± 11.56 99.30 ± 0.91

Ad1
⇀↽ Bd2 70.85 ± 1.20 62.98 ± 21.09 68.98 ± 3.16 38.62 ± 21.33 99.21 ± 0.89

Ad2
⇀↽ Bd1 72.62 ± 6.88 59.34 ± 30.91 78.66 ± 13.00 30.45 ± 23.85 99.23 ± 0.74

Ad1
⇀↽ Ad2 76.77 ± 8.17 69.08 ± 21.50 72.53 ± 9.36 55.89 ± 33.59 99.35 ± 0.43

Bd1
⇀↽ Bd2 78.38 ± 6.80 61.48 ± 24.89 79.80 ± 11.87 52.87 ± 12.35 99.72 ± 0.55



From the results in Table 1 it is clear that the Granulo-
metric features did not perform well, even when both train-
ing and test data sets were selected from the same date (e.g.,
Ad1

⇀↽ Bd1 ). The spatio-temporal generalization accuracy
(e.g., Ad1

⇀↽ Bd2 , Ad2
⇀↽ Bd1 ) obtained with the Granulo-

metric features was only about 71%, which is not sufficient
for an automated mapping application. Both the GLCM
and LBP methods performed well on the spatial generaliza-
tion (same date) tasks, with LBP faring slightly better. The
GLCM features performed well on both temporal generaliza-
tion and spatio-temporal generalization tasks, achieving accu-
racies close to 90% in these tasks.

Overall accuracy does not tell the whole story, though. Ex-
amination of the per-class true positive rates (Table 1, right
hand side) show that LBP and GLCM each have a weak class
(OIS and FS, respectively) whenever the training and test data
sets were selected from different dates, as represented by the
last four rows of results for each algorithm. The OIS and FS
classes turn out to be the smallest two classes in this study,
which may have biased the SVM training process, though.

A significant result of this initial robustness study is thus
that the GLCM features may be more suited to this problem
than an earlier study indicated. Although the LBP method
performs slightly better than GLCM when both training and
testing patterns were collected on the same date, it fails to
impress in the across-date classification experiments.

The main purpose of the study, though, was to quantify the
influence of spurious differences on the generalization per-
formance of classifiers using texture features as input, repre-
sented directly by the Ad1

⇀↽ Ad2and Bd1
⇀↽ Bd2classes. Here,

the GLCM features consistently produced the best overall
classification accuracies, indicating that these features may
be somewhat robust to changes in viewing- and illumination
geometry. Even so, the performance of the GLCM features do
appear to have deteriorated under these influences. The LBP
features appear to have experienced an even more pronounced
drop in generalization performance across dates. The results
of this study indicate that texture feature algorithms are in-
deed influenced by viewing- and illumination geometry of
satellite images.

Lastly, the effects of seasonal changes on vegetation do not
appear to affect generalization performance much. The tem-
poral as well as spatio-temporal generalization performance
of all three the methods on the non-built-up (NBU) class re-
mained comparable to the accuracies obtained in the same-
date experiments.

5. CONCLUSION

An ideal image feature would be sensitive to real differences
between the various settlement classes, while remaining in-
sensitive to spurious differences caused by viewing- and il-
lumination geometry differences. This paper presented the
results of a study to investigate whether well-known texture

features behave in this manner.
The results of a classification experiment involving two

scenes of the same area acquired under different conditions
indicate that the GLCM method may yet produce the best
features under these conditions. Unfortunately, the general-
ization performance of the GLCM features were still far from
ideal, yielding overall generalization classification accuracies
of less than 95%. Future work will focus on attempts to di-
rectly improve the performance of these algorithms by explic-
itly treating the shadowed parts of the images differently.
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