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Abstract—Systematic Luby Transform (fountain) codes are
investigated as a possible incremental redundancy scheme for
EDGE. The convolutional incremental redundancy scheme cur-
rently used by EDGE is replaced by the fountain approach.
The results of the simulations performed for each incremental
redundancy scheme show that the fountain approach outperforms
the convolutional approach on the second retransmission when
implemented on the EDGE platform. The results also indicate
that if the packet sizes used by a specific platform is large enough
the fountain approach will always outperform the convolutional
approach.

I. INTRODUCTION

Enhanced Data Rates for GSM Evolution (EDGE) [1],
i.e. 2.75G, is a digital mobile phone technology that allows
increased data transmission rates and improved data trans-
mission reliability when compared to older technologies like
General Packet Radio Service (GPRS) available to users of
Global System for Mobile communications (GSM). EDGE
uses nine modulation and coding schemes (MCS) to vary its
data rates. Gaussian minimum-shift keying (GMSK) is used
by the lower four coding schemes (similar to GPRS) and
8 phase shift keying (8PSK) for the upper five of its nine
coding schemes. The fact that 8PSK can modulate 3 bits per
symbol is the reason for the increase in the data rate of EDGE
(when compared with GMSK that can modulate only 1 bit per
symbol).

One frame block (1392 bits) in EDGE is transmitted over 4
bursts in a total time of 20 ms making the bit rate 278.4 kbit/s
and yielding a bit rate of 69.6 kbit/s per time slot (this is
true for uncoded using no headers). Due to the use of 8PSK
modulation the receiver is now more complex and employs
sophisticated equalization techniques. The actual maximum
bit rate of EDGE is achieved by MCS9 and equals 59.2
kbit/s, the difference is due to EDGE implementation issues
like headers and parity bits [1]. Since only MCS5 to 9 use
8PSK modulation these schemes were used for simulation
purposes (only these schemes achieve a higher throughput
when compared to GPRS).

EDGE also uses link adaptation (LA) [2] [3] and incremen-
tal redundancy (IR) [3] [4]. Link adaptation is the process

of selecting the best MCS for the current channel condi-
tions. Otherwise a too strong or weak code is used for the
channel, hampering throughput. EDGE also uses incremental
redundancy, which sends additional redundancy information
to the receiver after a decoding failure. Both transmissions
can now be combined for better decoding. EDGE combines
these two techniques to maximize throughput. Edge uses the
same convolutional code (CC) for each MCS, but varies the
amount of punctures for each MCS. To implement incremental
redundancy the puncturing patterns for each MCS is changed
after each transmission. In short each MCS has a different
amount of punctures per transmission and different puncturing
patterns to enable retransmissions.

The convolutional approach [3] used for incremental redun-
dancy can be replaced by a fountain approach [5] [6]. A
digital fountain can be compared to a running tap. When a
cup is filled it is not important which droplets land in the
cup, but only that enough water is obtained to fill the cup.
Where the droplets represent the encoded packets and the glass
represent the receiver. So the receiver only require enough en-
coded packets to decode (same size as original message). The
above metaphor also highlights another important property of
digital fountain codes namely its ability to generate an infinite
amount of unique encoded packets from the original source.
So incremental redundancy can be implemented through a
fountain code by only opening the same tap for the second
transmission.

The article starts by giving an overview of a specific fountain
code used for the incremental redundancy scheme imple-
mented in this article namely Luby Transform (LT) codes [7]
[8]. That same section will also discuss the noisy decoding [9]
[10] [11] [12] of this code since fountain codes were originally
developed for the erasure channel [13]. The LT section will
be followed by a section discussing the two incremental
redundancy approaches used in this article. The article will
finish with computer simulation results and a conclusion.

II. LT CODES

The LT code is the first rate less code used to approximate
a fountain and is discussed below [7] [8].



A. Encoder

An LT code is actually a dynamic low-density generator
matrix (LDGM) code. The encoder can be described by using
the following [7] [8]:

Each encoded parity bit p,, can be generated from the message
bits my, ma, - - - ,my through the following two steps:

1) Choose the degree d, of p, randomly from a degree
distribution x(d).

2) Choose at random d,, message bits, and set p,, equal to
the bit wise sum, modulo 2, of the chosen message bits.

This procedure is exactly the same as multiplying a message
with a dynamic random G matrix. An LT code is rate less,
for it can keep on deriving parity bits without end through
its dynamic G matrix. It is important to note here that a
standard LT code is non-systematic [7], since only the parity
bits that were generated is sent through the erasure channel.
To create a systematic LT code [9] is quite simple; send the
message bits before the parity bits. This code comes in handy
for decoding noisy codewords. The result of the encoding
procedure can also be presented by using a factor graph
(graphical representation) as shown in Fig. 1. The left side
nodes represent the original message bits my,ma, - - - , my and
the right side nodes represent the parity bits p1,pa, -+, Dn.

Fig. 1. A simple factor graph of an LT code

B. Degree Distribution

As seen from Section II-A the most important element of an
LT code is the degree distribution x(d) it uses for encoding.
The design of a good degree distribution of an LT code (for an
erasure channel) is closely related to the classical problem of
throwing k balls into K bins [7] [8]. From probability theory it
is known that k = K -In(K/¢) balls are required so that each
of the K bins contains at least one ball with probability 1 — .
When performing the same analysis on a LT code the balls are
analogous to the edges (in the factor graph) and the bins are
the same as the message bits. The amount of edges required
makes sense, all of the message bits must at least be connected
to the graph to obtain successful decoding. Another important
concept to keep in mind is that all the message bits needs to be
covered (meaning that the erasure decoding process from [7]
[8] may not halt). The decoding algorithm from [7] [8] will not
halt if at least one parity bit has degree one after each iteration

of the erasure decoding algorithm. Using the above it is easy
to see that a good LT code will have O(K - In(K/d)) edges,
average left degree of O(In(K/¢)) and encoding and decoding
times of O(K - In(K/¢)). Take note that in this section k
represents the amount of edges in a graph and K the amount
of message nodes, this is done since in classic LT notation the
amount of message bits is always referred to with a capital
letter K. The ideal soliton distribution [7],

p(d):{l/K ford=1

qiy ford=2.3- K (1)
conforms to the above requirements. One of its primary
characteristics is that after every iteration of the decoding
process exactly one parity bit has degree one. This however
works poorly in practice since minor fluctuations in decoding
will lead to termination of decoding prematurely [7]. The
robust soliton distribution has two extra parameters ¢ and &; it
is designed to keep the expected number of degree-one parity
bits equal to approximately:

S =cln(K/5) - VK )

rather than one, throughout the decoding process. The param-
eter § is a bound on the probability that the decoding fails
to run to completion after a certain number K’ of bits were
received. The parameter c is a constant of order one. A positive
function can now be defined [7]

52 ford=1,2,---,(K/S)—1
7(d) = #In(S/5) ford=K/S 3)
0 ford > K/S

To obtain the robust soliton distribution p [7], p and 7 are
added and normalized:

p(a) = 292D @
where Z = >, p(d) + 7(d). The number of encoded bits
required at the receiving end to ensure that the decoding runs
to completion, with probability at least 1 - ¢, is K’ = KZ.
Some degrees have such low probabilities p, that parity bits
of degree d are absent. Instead these probabilities can be used
to reinforce the amount of degree-one parity bits. This is done
by introducing an extra factor [14]

U(d) :{ OZ,U'(di)

where d; represents the degree-i term of the distribution,
satisfying the following inequalities

ford=1
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The improved robust soliton distribution x(d) [14], can now
be defined as
d)+ 7(d) +v(d
() = DD o .

where Z =), p(d) + 7(d) + v(d). In short an LT code can
be uniquely defined through the distribution (K, 4, ¢) it uses




during encoding. The LT code used for the noisy channel was
designed using the exact same method as described above
since [15] shows some linkage between good erasure codes
and other channels.

C. Noisy Decoder

To decode an LT code on a noisy channel it is important
to construct the factor graph as shown in Fig. 1. A code node
usually represents a received bit and is assigned a channel
log-likelihood ratio (LLR) A(m,,) in the case of binary phase
shift keying (BPSK) this equals [11] [16] [17]

4
A(my) = ——anTn (8
(mn) =~
where A(m,,) = In [%}, my, is the random binary

variable containing the prior probability that the n'” received
bit is equal to either a 1 or a 0, r,, is the soft value of the nth
received bit, «,, is the average fading amplitude of r,, and Ny
is the single-sided noise power spectral density

As can be seen from Fig. 1 an LT factor graph consists of
two node types, check and code nodes. Each of these types
of nodes use different formula’s to update its branches. The
input LLR’s of a code node are summed together to produce
the output LLR (including channel LLR), and is described as
(91 [10] [11] [12]:

A(mo) =Y A(mi) + A(my,) )
i#o0
For a check node

A(m,) = 2tanh ™! {H tanh(0.5A(mi))}
i#o0
is used. Where A(m,) represent output branch LLR values,
A(m;) are input LLR values and m, is the appropriate
conditional binary random variable associated with a branch.
Take note that the output branch is not used in the calculation.
To update a node each branch of a node needs to be updated
with the above formula’s. All branches are usually set to zero
for the first iteration.
The order in which the nodes are updated can be chosen
uniquely for each factor graph. Standard LDPC iterative belief
propagation involves updating the code nodes first and then the
check nodes. After such an iteration has been completed, the
algorithm can stop or continue with another cycle. Usually
the algorithm stops if a codeword is found or a certain
predetermined amount of cycles are reached. The decoded
bit value is calculated by performing an appropriate inverse
“hard” decision (with the decision point being 0) on the final
posterior LLR value of a bit calculated with

Almy) = 37 Almi) + AGm,)

(10)

(11

What is clear from the above is that this algorithm will work
better on systematic than non-systematic codes. If the code is
non-systematic the message nodes will all have initial channel
LLR values equal to 0. The O values will hamper efficient
belief propagation, making almost all messages equal to zero.

III. INCREMENTAL REDUNDANCY

Incremental redundancy is implemented in EDGE by using
a punctured convolutional code, see Fig. 2. During the first
transmission the data (1) is encoded by a rate 1/3 convolutional
encoder [1] [3] and punctured using puncture pattern 1 of
MCS,. (2). Since only one transmission was made the combi-
nation stage is skipped (3). If the decoding (4) fails the loop
starts again. The second transmission punctures the encoded
data by using pattern 2 of MCS, (2). Due to differences in
the puncturing patterns the receiver will be able to fill in some
punctures of the first transmission. If some bits (in the same bit
positions) were sent twice, they are averaged (since they are
LLR) to obtain a new soft value for that bit. These calculations
are performed at the combination stage (3). Decoding takes
place again, if decoding fails again the procedure needs to
be repeated. The amount of cycles depend on the MCS
scheme used. For MCS5 and 6, only two transmissions are
possible (due to two puncture patterns). For MCS7 to 9 three
transmissions are possible (due to three puncture patterns). If
the maximum puncturing pattern is reached a decoding failure
is declared (2). This is however not the only approach that can

puncture = pattern 1 of MCS,

Message

max puncture?
Undecodable

Encode % CcC
puncture++

Combine

Fig. 2. IR implemented with punctured convolutional codes

be followed. EDGE can also use a fountain code to implement
an IR scheme (see Fig. 3). LT codes can be used to replace

if first Tx then systematic
else non-systematic

Message

Combine

Fig. 3. IR implemented with fountain codes

the puncturing scheme [10] [12] [20] [21], e.g. a message
can be encoded using a systematic LT code [9] (2) and if the



frame at the decoder (4) is invalid the transmitter retransmits
the message using a different non-systematic LT structure (2).
Now the receiver can use both transmissions for successful
decoding (3). The cycle can be continued until a valid frame
is received. In contrast to punctured convolutional codes,
fountain codes have the ability to utilize all the retransmitted
information for decoding and can have an endless amount of
retransmissions. The reason being it grows dynamically (rate
less), and does not fill up punctures.

A Raptor [18] [19], code can also be used, with the first
transmission being a pre-code, such as an LDPC code. From
there on the scheme is exactly the same. A systematic fountain
code is used on the first transmission since noisy decoding of
non-systematic codes performs poorly, see Section II-C. For
the second transmission a non-systematic LT code (only parity)
is used, because the graphs can be combined at the receiver,
see Section II-A.

IV. SIMULATION: EDGE PLATFORM

Some simulation specific parameters describing the EDGE
platform needs to be defined so the results can be repeated;
these parameters are given in Table I. The different channel

TABLE I
PARAMETERS DEFINING EDGE PLATFORM USED FOR SIMULATIONS
Parameter Value
Maximum Doppler Frequency | 41.6Hz
Fading Frequency selective

Channel Model
Co channel interference
Channel state information

Typically Urban
None

Estimated

(real world receiver)

models for EDGE are described in the documents 3GPP TS
45.005 V7.9.0 (2007-2) and 3GPP TS 05.05 V8.20.0 (2005-
11). For the fountain approach a systematic LT code was
used to implement the IR scheme. The LT codes used for
each MCS scheme are different and can be uniquely defined
by the distribution (K,0,c). The LT codes used for this
simulation can all be described by (z,0.01,0.06), where = =
(468,612, 468, 564, 612) for MCS5 to 9 respectively. The first
transmission consists of = message bits and 1248 — x parity
bits in the case of MCS5 and MCS6. All other retransmissions
send 1248 parity bits. In the case of MCS7, MCS8 and MCS9
two data payloads are sent, each consisting of 612 bits. For the
first transmission one data payload consists of  message bits
and 612 — x parity bits. During the second transmission only
parity bits are sent. Belief propagation was used as decoding
algorithm, 200 iterations (see Section II-C).

A. Simulated BLER Curves: EDGE

The results obtained via computer simulation of IR (EDGE
system) using fountain and convolutional codes for each MCS
scheme is displayed in Fig. 4 - 8.
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B. Discussion of Results

The actual dB improvement due to the fountain approach
on each transmission for each MCS scheme can be found in
Table II.

TABLE I

IMPROVEMENT OF FOUNTAIN APPROACH WHEN COMPARED TO
CONVOLUTIONAL APPROACH

MC TX 1[dB] | TX 2 [dB] | TX 3 [dB]
5 -0.6 0.75 -
6 -1.75 1.5 -
7 -8 4 3
8 -4 1 1.2
9 -1.8 6 1.8
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V. CONCLUSIONS

The following conclusions can be drawn from the observa-
tions gathered from the simulation results of Section IV-A:

1y

2)

3)

4)

Implementing incremental redundancy on EDGE using
the convolutional approach outperforms the fountain
approach on the first transmission, but the fountain
approach starts gaining over the convolutional approach
after the second retransmission. The above is true for all
the MCS schemes.

The reason the first transmission of MCS5 and MCS6
using the fountain incremental redundancy approach
performs only marginally worse than the convolutional
approach, is because these schemes only have one data
payload per Medium Access Control/Radio Link Control
(MAC/RLC) block [1]. This implies longer codewords
than in the case of MCS7, MCS8 and MCS9. Fountain
codes perform better with longer codewords and they
perform especially well when their code rate R, < 0.5.
MCS7 and MCS8 perform very bad on the first trans-
mission if fountain codes are used due to very small
code lengths. MCS7, MCS8 and MCS9 have two data
payloads per MAC/RLC block implying extremely small
code lengths. Any kind of sparse graph code performs
bad if the code length is small. In the case of the
systematic LT code, the code can not cover all of its
message bits with so few parity bits.

For MCS9 the code rate is 1, which makes the uncoded

5)

(1]
[2]
[3]

[4]
[5]
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[16]

(17]

(18]

[19]

[20]

[21]

scheme (fountain scheme) almost as good as using a
punctured convolutional code (since the code rate is 1
only message bits are sent during the first transmission
if the fountain approach is used).

The fountain approach has an endless amount of retrans-
missions and uses all of the resent bits. The convolu-
tional approach has some repetitions and does not have
an endless amount of retransmissions. The drawback
of the fountain approach is that the decoding structure
grows larger after each transmission, slowing the decod-
ing time.
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