Laser Enabled Refurbishment and Performance Enhancement of Industrial Components

C van Rooyen, M Theron, HP Burger

Afrimold

29 September 2011

our future through science

CONTENTS

- Introduction
- Process Fundamentals
- Process Characteristics
- Process Equipment
- Materials and Applications
- Conclusion.

Introduction

Refurbishment

Reconditioning of a component, no longer fit for service, to original specifications

Performance Enhancement

Reengineering of components during refurbishment to obtain longer service life than achievable with original design. Ideally also included in the manufacturing process if possible.

The Case for Refurbishment/Performance enhancement of Industrial Components in South Africa

The potential to improve operational efficiency and reduce operating cost

- Manufacturing Industry largely dependent on imported equipment
- Expensive to import replacement parts
- Long lead times loss of production
- Expensive inventories of critical spare parts
- Volatile exchange rate complicates financial planning
 The potential to reduce environmental impact

Provided that:

Techno-economically viable refurbishment processes and service providers are available

our future through science

Root causes of degradation of machinery

Current state-of-the-art of surface refurbishment/performance enhancement

Predominantly

Weld overlay process based on arc welding

Pro's

- Thick layers (metallurgically bonded)
- High deposition rates
- Inexpensive

Con's

- High heat input
- High dilution
- Distortion
- Thermal spray processes

Pro's

- Versatility
- Low heat input
- Minimal distortion
- Layer thickness range

Con's

Low impact and fatigue resistance (mechanical bonding)

Niche for process which provides

- Minimal distortion (Low heat input)
- High impact and fatigue resistance (Metallurgically bonded layer)
- Thin layers (low dilution)

Laser Enabled Refurbishment/Performance Enhancement Process

Laser Metal Deposition (Laser cladding)

Laser Cladding is essentially a weld overlay process where

- The heat source is a laser beam and
- The welding consumable is a metallic powder or wire

Background:

- High power lasers produce power output in the multi kilowatt range.
- Laser beams can be focused to spot diameters of well below 1 mm
- A focused laser beam can produce power density on a work piece surface that is both very high and highly localized.
- This feature enables the relatively low heat input that is characteristic of all laser based manufacturing processes.

Slide 7 © CSIR 2006 www.csir.co.za

Process Fundamentals.

- •Laser beam creates shallow melt pool on substrate surface.
- •Consumable is fed into melt pool.
- •Deposition of weld bead results from relative movement between laser beam and substrate.
- •Successive weld beads with appropriate overlap results in clad layer.
- •Process parameters:
 - ► Laser power
 - ➤ Laser spot diameter
 - ➤ Powder feed rate
 - ➤ Weld speed
- Simultaneous optimization to ensure fusion, minimize dilution and optimize deposition rate. Slide 8

Laser Metal Deposition (LMD)

- •Laser beam creates shallow melt pool on substrate surface.
- •Consumable is fed into melt pool.
- •Deposition of weld bead results from relative movement between laser beam and substrate.
- •Successive weld beads with appropriate overlap result in clad layer.

Process Characteristics

- **Low Heat Input** (Typically 0.02-0.2 kJ/mm)
 - > Small HAZ
 - ► Low dilution (<5%)
 - Minimized distortion
 - > Thin layers possible
 - No undercut
 - > Increased hardness (Grain refinement caused by rapid solidification)
 - > Combination of thin layers and low dilution allow consumable saving.

Metallurgical bonded layer

- Good fatigue resistance
- Good impact resistance

Layer thickness

- ightharpoonup Typically 0.1 2 mm
- ➤ Thicker layers possible through multiple passes

our future through science

Slide 10 © CSIR 2006 www.csir.co.za

Process Characteristics (continued).

Reduced machining effort

- Capacity for thin layers reduce pre machining.
- \triangleright Low layer surface roughness reduce post machining. Machining tolerance 0.2 1.0 on dia.

High level of quality assurance

- Automated process
- Combination of laser technology and CNC processing ensures excellent process control and reproducibility.

Flexibility

- ➤ Much larger range of commercially available powder consumables than welding wires.
- ➤ Ability to modify consumable chemical composition by mixing of powders.

On Site applications becoming possible

➤ Increased mobility of new generation high power laser sources.

Slide 11

© CSIR 2006

www.csir.co.za

Process Characteristics (continued).

- Flexibility
 - Much larger range of commercially available powder consumables than welding wires.
 - Ability to modify consumable chemical composition by mixing of powders.
- Deposition rate
 - > Up to 1.3 kg/hour (316L).
- Consumable utilization (Powder efficiency)
 - > Up to 95%

Applications of Laser Metal Deposition

- Refurbishment of worn components.
- Performance enhancement of functional surfaces on components.
- Improved wear resistance
- Improved corrosion resistance
- Correction of machining errors on high value components.

Laser Metal Deposition in South Africa

- Technology platform established at CSIR-NLC in 2002
- Technology transfer from Fraunhofer ILT
- Ongoing core funded R&D program
- Contract R&D for Industry
- Refurbishment service
- Small number of manual wire feed systems in industry

Materials and Applications

Stainless steel

- Low-C martensitic (0.02C,12Cr, 5Ni, 1-5Mo) - 38-40 HRC
- 431 (0.2C, 16Cr, 4Ni) 52 HRC
- 316L

- Inconel (625, 718)
- Nistelle C, D
- Self fluxing 40-60 HRC

- Stellite 6 52 HRC
- Stellite 12 55 HRC
- Ti alloys
 - Ti6Al4V

Also Al-Si, Al-Si-Mg, Al-Zn-Mg-Cu

Injection Mould Repair

Werma Patterns & Moulds

BAE SYSTEMS

Repair of casting defect in gearbox housing

Refurbishing of compressor screw

Rebuilt mechanical seal

Refurbishment and performance enhancement of concast rolls

Refurbishment of Water Storage Tanks

Combination of high residual stress and

marine environment induced stress corrosion cracks in SS 304L MIG weldments.

Process required to seal leaking cracks.

Slide 22 © CSIR 2006

www.csir.co.za

Lab demonstration – January 2010

Mobile Laser Cladding System

- 3 Axis space frame
- Pneumatic suction pads
- Laser cladding head
- Fiber laser
- Chiller
- Powder feeder
- Control system

our future through science

On Site Application: April 2011

Conclusion

- Refurbishment is underutilized in South Africa
- OEM requirements for original parts and approved processes.
- Subcontracting of maintenance requirements
- Lack of technological awareness
- Lack of confidence
- Change of mindset required
- Laser metal deposition has potential to increase refurbishment significantly
- Excellent process control
- Low dilution, low HI, high repeatability, high precision
- Address application niche
 - Thermal spray PTA
 - Maximum benefit Thin layers, metallurgical bond, expensive consumables

Slide 26 © CSIR 2006 www.csir.co.za

Laser Transformation Hardening

Alternative processes

- furnace hardening (electric or gas)
- thermo-chemical methods
- carburizing
- \rightarrow nitriding (0.1 0.5 mm, 55-70 HRC)
- Carbo-nitriding
- Cyaniding
- electric induction
- flame hardening

Laser hardening indicated when application requires:

- Selective case hardening
- Minimum distortion
- Quenching is impractical

Laser hardening of stub axle

Laser Hardening of Punch Die

"Soft Tooling" – Laser trimming of sheet metal pressings

- Reconfigurable
- •Trim tool development
- •Small batch production
- •Handy alternative when trim tool is unavailable

Thank you for your attention!

The Laser Materials Processing Competence area wishes to express their gratitude to:

- DST
- CSIR
- •Fraunhofer ILT

For enabling us to make LIGHT work of industry challenges!

