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Abstract 

Quantifying photosynthetic activity at the regional scale can provide important information 

to resource managers, planners and global ecosystem modelling efforts. With increasing 

availability of both hyperspectral and narrow band multispectral remote sensing data, new 

users are faced with a plethora of options when choosing an optical index to relate to their 

chosen leaf or canopy parameter. The literature base regarding optical indices (particularly 

chlorophyll indices) is wide ranging and extensive, however it is without much consensus 

regarding robust indices. The wider spectral community could benefit from studies that 

apply a variety of published indices to differing sets of species data.  The consistency and 

robustness of 73 published chlorophyll spectral indices have been assessed, using leaf level 

hyperspectral data collected from three crop species and a variety of savanna tree species. 

Linear regression between total leaf chlorophyll content and bootstrapping were used to 

determine the predictive capabilities of the various indices.  The indices were then ranked 

based on the prediction error (the average root mean square error (RMSE)) derived from 

the bootstrapping process involving 1000 iterative resampling with replacement. The 

results show two red-edge derivative based indices (Red-edge position via linear 

extrapolation index and the modified red-edge inflection point index) as the most 

consistent and robust, and that the majority of the top performing indices (in spite of 

species variability) were simple ratio or normalised difference indices that are based on 

off-chlorophyll absorption centre wavebands (690 – 730 nm).  
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1. Introduction 

Leaf chlorophyll and nitrogen content have been shown to be important bio-indicators of plant 

physiological state, mainly due to their roles in photosynthesis (Carter, 1994b; Lichtenthaler, 

1998). Being able to quantify leaf chlorophyll (chl) or nitrogen (N) contents, and by association 

photosynthetic activity, could provide useful information a) for precision agriculture at the 

stand/field scale, b) for improved resource use and planning at the protected area (e.g. National 

Parks) scale, c) for regional, and/or global, modelling of ecosystem services and productivity.  

Many years of published research surrounding the spectral changes experienced when vegetation 

chlorophyll and nitrogen contents change, has led to the inclusion of chlorophyll sensitive 

wavebands on a number of earth observation satellites. These advances being made in 

spaceborne multispectral, and hyperspectral, sensors should make the quantification of 

vegetation vitality increasingly possible for both novice and advanced users of remote sensing 

data. Leaf, and field, level measurements are often an important part in the development and 

calibration of vegetation indices (VIs) that are eventually used to quantify changes in vegetation 

productivity. 

Decades of research has gone into finding biochemically sensitive regions within the 

vegetation spectrum that can be non-destructively extracted (i.e. quantified) using combinations 

of wavebands (i.e. vegetation indices) from remote sensing platforms. By far the most 

investigated part of the vegetation spectrum is the spectral red-edge, situated between 670 and 

800 nanometres (nm)  (Myneni and Asrar, 1994; Veroustraete et al., 1996; Carter, 1998; Goetz et 

al., 1999; Gupta et al., 2003; Inoue et al., 2008; Ustin et al., 2009;). The red-edge region is 

characterised by an abrupt change in canopy reflectance between the red (670 nm) and near 

infrared (NIR) (800 nm), caused by the combined effects of strong chlorophyll absorption in the 

red wavelengths and high leaf structure-driven reflectance in the NIR (Gates et al., 1965; Tucker, 

1979; Horler et al., 1983). The red-edge position (REP) has been shown to have good correlation 

to chlorophyll content, and is defined by the point of maximum slope between the red 

chlorophyll absorption region, and the region of high NIR reflectance (Horler, 1983). The shape 
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and position of the red-edge are influenced by variations of chlorophyll content and leaf structure 

(Filella and Peñuelas, 1994). An increase in the amount of chlorophyll and/or water in leaves 

generally causes the red-edge to shift to longer wavelengths due to an expanding red absorption 

well (Gitelson, 1996; Mutanga et al., 2003). Decreasing chlorophyll and water contents, usually 

associated with stress events or senescence, have been linked to a shift in the red-edge position 

towards shorter wavelengths (Rock, 1988). Quantitative hyperspectral remote sensing of 

terrestrial bio-chemistry therefore makes use of indices to monitor the position of the REP. Other 

chlorophyll, structural, and water-related indices are also used in order to better assess net 

primary production, environmental and nutritional stresses, and the effects of disease on 

vegetation vitality (Filella and Peñuelas, 1994; Gitelson and Merzlyak, 1997; Barry et al., 2008; 

Delalieux et al., 2009). 

The derivation of the most commonly used optical index for characterising canopy 

photosynthesis, the normalised difference vegetation index (NDVI), is based on the reflectance 

contrast between the red and the NIR (Rouse et al., 1974; Tucker, 1979). Efforts in the remote 

sensing of canopy chlorophyll content via NDVI have however been hindered by the limitations 

in the spectral resolution of conventional broadband (> 10 nm) sensors such as Landsat TM 

(Curran, 2001; Gitelson and Merzlyak, 1997). There are major shortcomings with broadband 

NDVIs derived from red wavebands positioned in the chlorophyll absorption pit (at about 670-

680 nm) and bands positioned in the NIR plateau (between 750-900 nm). Several studies have 

demonstrated the instability of broadband NDVI with varying soil brightness, canopy structure, 

illumination and viewing geometry, as well as atmospheric conditions (Baret and Guyot, 1991; 

Goward and Huemmrich, 1992; Huete et al., 1992; Huete and Jackson, 1988; Kaufman and 

Tanré, 1992; Qi et al., 1995). Furthermore, broadband NDVIs asymptotically approach a 

saturation level after a leaf area index (LAI) of approximately 4 (Seller, 1985; Mutanga and 

Skidmore, 2004; Cho et al., 2007). Thus, broadband NDVIs are only effective in distinguishing 

broad differences in vegetation condition (e.g. greenness), but are not effective in providing a 

detailed quantitative assessment of canopy photosynthesis (Cho & Skidmore, 2006b). 
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Studies based on narrowband spectra (< 10 nm) have revealed a broadening of the major 

chlorophyll absorption feature centred around 670-680 nm with an increasing chlorophyll 

content (Carter, 1994b; Gitelson and Merzlyak, 1997; Yoder and Pettigrew-Crosby, 1995; 

Dawson et al., 1999) causing a shift in the red-edge slope towards longer wavelengths (Cho et 

al., 2008; Curran et al., 1997; Horler et al., 1983). The broadening of the absorption feature 

causes greater sensitivity of off-centre wavelengths (i.e. 690-730 nm) to subtle changes in 

chlorophyll content when compared to bands located in the centre of the absorption feature 

(Carter, 1994b).  On the basis of this knowledge an increasing number of narrow waveband 

multispectral satellite sensors have been designed to include off-chlorophyll absorption centre 

wavebands, and have recently been launched into space (e.g. RapidEye, Worldview-2 and 

SumbandilaSAT).  These sensors provide more sensitivity towards canopy biochemical 

constituents by including red-edge wavebands (i.e. 690-730 nm), while still having the 

characteristics of multispectral sensors (i.e. wider swaths, medium-high spatial resolution).  

Prior to the above-mentioned developments, much of the research was focused on how best to 

relate the most sensitive bands in the red-edge to the vegetation biochemicals causing the 

spectral deviations. This often involved the development of VIs, which can take the form of 

normalised difference ratios (i.e. [Rx – Ry] / [Rx + Ry]), simple ratios (i.e. Rx / Ry), reflectance 

derivatives, or more complex band combinations. These VIs are initially developed at leaf level 

using hyperspectral data and empirically-derived relationships before being scaled up to canopy 

level and eventually applied to multispectral image data in order to produce regional maps. Up 

scaling to canopy level reflectance introduces a variety of “spectral noise” to the leaf reflectance 

spectra. Canopy reflectance is a combination of green and non-green plant parts (bark, flowers), 

and is influenced by plant structure (e.g. shadows and leaf orientation) and soil background 

(Blackburn, 1998). For this reason, vegetation index development often revolves around 

reducing unwanted reflectance effects while at the same time increasing the indices’ sensitivity 

towards those biochemical (e.g. chlorophyll, stress pigments) and biophysical (e.g. LAI) 

parameters of interest. Not all VIs are developed to enhance the same parameters. Some, such as 
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the Modified Chlorophyll Absorption Ratio Index have been shown to be sensitive to LAI, 

chlorophyll and chlorophyll-LAI interactions (Daughtry et al., 2000). On the other hand, Datt 

(1999) developed an index that was more sensitive to pigments than it was to LAI or scattering 

influences. Ideally, the goal for researchers would be to develop VIs that are not only as sensitive 

as possible to the desired parameter, but also robust across species and leaf structures.  

The performance of VIs to retrieve biochemical pigments (especially chlorophyll) has been 

the subject of several studies. Many of the published VIs, and subsequent comparative review 

studies, are based on one or only a few plant species (Vogelman et al., 1993, Peñuelas et al., 

1994; Gitelson and Merzlyak, 1997; Stagakis et al., 2010). While researchers do have the 

benefits of radiative transfer models at their disposal (i.e. PROSPECT and SAIL), which can 

model endless variations of leaf or canopy reflectance’s by tweaking key input parameters within 

the models, these models cannot adequately capture the complexity of the interaction of light 

with all leaf or canopy types (Jacquemoud & Baret, 1990; Kuusk, 1991; le Maire et al., 2004). 

Therefore, there is the continued need to establish the predictive capability of VIs (both narrow 

and broadband) for and across a range of species (both at leaf and canopy level) in various 

environments and ecosystems.  

The paper aims to build on studies such as Sims & Gamon (2002) and le Maire et al. (2004) 

by testing the performance of a range of published (chlorophyll) indices in their ability to predict 

leaf level chlorophyll content (mg/m
2
) for a variety of species datasets. The VIs in this paper 

were applied to leaf level reflectance data for three crop species (maize, tomato and cabbage), as 

well as a dataset containing eight savanna tree species.  This study used linear regression and a 

bootstrapping technique in order to compare the estimation accuracy (root mean square error, 

RMSE) of each spectral index in determining chlorophyll content (mg/m
2
). The RMSE 

performance of each VI was then ranked and summed on a per dataset basis, as well as for a 

combined species dataset, in order to gain insight into which of the VIs are more consistent 

across the species (i.e. datasets treated separately) and robust for the combined species dataset. 
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2.  Methodology  

2.1  Leaf spectral data  

The leaf data used in this study were collected from garden crops and wild plants, which 

resulted in a wide range of structural differences. Leaf level spectral measurements were 

collected from maize plants (n = 73), cabbage plants (n = 35), tomato plants (n = 35), as well as 

from eight savanna tree species (n = 80, n = 10 per species), namely, Combretum hereroense, 

Combretum molle, Combretum collinum, Euclea natalensis, Terminalia sericea, Sclerocarya 

birrea, Pterocarpus rotundifolius and Lannea discolor. The maize plants had been grown under 

controlled conditions within a greenhouse and were being subjected to varying nutrient 

treatments. The savanna tree species were collected the summer of 2010 within the greater 

Kruger National Park, Mpumalanga Province, South Africa. The cabbage and tomato plants were 

of the garden variety and were growing in a common garden setting. 

Spectral measurements were made using an ASD FieldSpec3(R) spectrometer (Analytical 

Spectral Devices, Boulder, CO, USA) and its associated leaf contact probe. The ASD collects 

data in the 350–2500 nm spectral region with a resampled spectral resolution of 1 nm.  Two 

reflectance measurements were made of the adaxial leaf surface and then averaged. The contact 

probe has a diameter of 25 millimetres (mm), an instantaneous field of view of 10 mm, as well as 

its own halogen lamp light source. After each leaf level reflectance measurement, a leaf borer 

(diameter=18 mm) was used to clip the same area of the leaf that had just been measured.  The 

collected leaf samples were kept cool and dry before being sent for chlorophyll content analysis, 

within 24 hours. The wet lab extraction technique was used to determine the chlorophyll 

concentration per unit area of leaf chlorophyll (Lichtenthaler & Wellburn, 1983). After recording 

the fresh weight of the leaf samples, the leaf pigments were extracted in 100% acetone.  The 

extract was then spun in a micro centrifuge to precipitate the cell debris. The absorbance (A) of 

the samples was measured at 661.2 nm (for chlorophyll a) and 644.8 nm (for chlorophyll b) by 

the Ultra Violet to Visible spectrophotometer.  Chlorophyll a, chlorophyll b and total chlorophyll 

content were computed using the following equations (Lichtenthaler & Buschmann, 2001): 
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Chlorophyll a (μg/ml) = 11.24A661.2 – 2.04A644.8      Eq. 1 

Chlorophyll b (μg/ml) = 20.13A644.8 – 4.19A661.2      Eq. 2 

Total Chlorophyll = chlorophyll a + chlorophyll b     Eq. 3 

The unit of the chlorophyll was subsequently converted to mg/m
2
 using data on the volume of 

leaf pigment extract and the leaf disc area. Only the total chlorophyll was used in this study. 

  

The four datasets represent a variety of leaf structures, leaf surfaces and leaf chlorophyll 

contents (Fig. 1), but every effort was made to also include leaves of different developmental 

stages and conditions for each individual dataset. No outliers were removed from the data as 

none had a consistent effect on all the indices, and as we discuss later, some indices appear to 

deal with them better than others. 

(Figure 1) 

2.2  Data analysis 

Using the leaf reflectance data, we calculated 73 published chlorophyll indices (Table 1). The 

types of indices included simple ratio indices (e.g. R750nm / R710nm), normalised difference ratios 

(e.g. Normalised Difference Vegetation Index (NDVI) = (R800 − R670) / (R800 + R670)), modified 

versions of these two types of indices (e.g. modified NDVI = (R800 − R680) / 

(R800 + R680 − 2R445)), as well as REP based indices (Table 1). The indices included in this study 

vary widely in their original target parameters (i.e. chl a, chl b, chl total, stress or LAI), as well 

as the target levels (i.e. canopy or leaf) at which they were developed and/or intended. However, 

the majority of the indices included were developed at the leaf level and were intended to be 

related to chlorophyll parameters. A number of canopy level indices have been included out of 

interest and in preparation for future canopy level studies of a similar kind. 

Linear regression and bootstrapping techniques were used to determine the performance of 

each index in predicting total chlorophyll content (mg/m
2
) (Efron, 1983; Uraibi et al., 2009). The 
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bootstrapping technique iteratively (1000 iterations) resampled two-thirds of the dataset for 

model calibration and one-third of the dataset for validation, which makes it a good technique for 

assessing the model accuracy for datasets with a limited amount of samples (Verbyla and 

Litvaitis, 1989). Linear regressions between chlorophyll content and the spectral indices were 

used to compute the model coefficient of determination (R
2
) and the prediction error (root mean 

square error (RMSE)) for leaf chlorophyll content. The techniques were implemented within 

Mathworks (2009), and the RMSE for each spectral index was calculated as an average of the 

RMSE generated from the 1000 iterations.  

The consistency and robustness of the various VIs in estimating leaf chlorophyll content was 

assessed in two different ways, namely, for each dataset and for the combined data:  

(i) In the first scenario, the RMSE values were computed for the linear regressions between 

the leaf chlorophyll content and the respective VI values for each leaf dataset (cabbage, tomato, 

maize and savanna trees) separately. Subsequently, the predictive performance of the 73 VIs was 

assessed by ranking the RMSE values in ascending order for each leaf species dataset. The 

overall performance of the indices across the four datasets was then evaluated by finding the sum 

of the ranks and then ordering the VIs according to increasing summed ranks, i.e., the best 

performing VI across the four datasets will have the lowest summed rank.  

(ii)  The second scenario involved combining the four datasets into one, for which the 

respective RMSE values were calculated. The VIs were then ranked in ascending order 

according to increasing RMSE value.  

(Table 1) 

3.  Results 

3.1  Performance of indices across datasets 

In order to identify the consistently performing indices over the four datasets, we summed 

each index’s ranking position over the four datasets. In Table 2 the indices have been sorted 

according to their summed ranks, in ascending order. Looking at the rankings, one of the first 
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observations is that many of the indices in the top quarter of the table make use of off-

chlorophyll absorption centre wavebands, which lie between 690 nm and 730 nm (e.g. MTCI, 

Maccioni index, VOG3, and Datt1) (Table 2). These top indices make use of various off-

chlorophyll absorption centre wavebands, in both derivative and raw reflectance form. The top 

indices are also calculated using a variety of methods. For instance some of the top indices 

include the modified red-edge inflection point index (mREIP) (Miller et al. 1990) that uses an 

inverted Gaussian fit on reflectance, the linearly extrapolated REP index (REP_LE) (Cho & 

Skidmore, 2006a) that utilises derivative values, the MERIS terrestrial chlorophyll index (MTCI) 

(Dash & Curren, 2004) that uses reflectance data in normalised difference ratios, and the 

Vogelmann index (Vogelmann et al., 1993) that utilises two derivative wavebands in a simple 

ratio calculation. Out of all 73 indices there are four indices that seek to determine the red-edge 

position (REP), but only the REP_LE and the mREIP indices appeared in the top ten, while the 

red-edge inflection point (REIP) and linearly interpolated REP (REP_LI) indices appear in 16
th

 

and 39
th

 position  respectively. Of the top 25 indices there are at least eleven indices that usually 

have their focus on canopy level measurements (e.g. DDn, Boochs2, MCARI2/OSAVI2, 

TCARI/OSAVI, D2, MCARI2, OSAVI2, mSR2, D1, MTCI and mREIP). Two of these eleven 

indices perform well enough to appear in the top three of all the indices (i.e mREIP and MTCI). 

Indices that have their focus on carotenoids and stress related pigments (e.g. NPCI, SRPI, SIPI) 

include wavebands in the green and/or blue spectral regions (i.e. 450 – 550 nm), and therefore 

have poor relations to chlorophyll content, which results in their appearance towards the bottom 

of the rankings.  Indices that are dominated by bands close to, on, or in, the chlorophyll 

absorption pit (i.e. 670nm to 680nm) and chlorophyll absorption plateau (i.e. 750nm to 900nm) 

also appear at the bottom of the rankings (e.g. mSR, mNDVI, RDVI).  

(Table 2) 

Table 2 also allows some insight into the leaf types and chlorophyll contents under which 

certain indices perform best. For instance, the D1 index (Zarco-Tejada et al., 2003) performed 

well for both the cabbage and tomato datasets, but then struggled to deal with the low 
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chlorophyll maize dataset (See Figure 1), as well as the variety of leaf structures in the savanna 

tree dataset. The maize data resulted in 8 of the top 15 indices recording their lowest ranks for all 

four datasets. The Maccioni and Datt indices experienced their lowest performance when applied 

to the high chlorophyll savanna tree dataset, but then had their highest performance with the low 

chlorophyll maize data (Table 2). It is also interesting to note the performance of the canopy-

based, and soil adjusted, OSAVI2 index, which was the third highest performing index for the 

maize data (RMSE = 17.32 mg/m
2
, Rank = 3). The mREIP index ranked above all other indices 

for both the savanna tree and maize datasets, but then experienced its lowest ranking with the 

medium chlorophyll tomato dataset.   

3.2  Performance of indices for combined species dataset 

To investigate the robustness of the indices across different species, we combined all the 

datasets and again looked into the relationships between each index and the combined 

chlorophyll content data (mg/m
2
) (See Table 2). Once again the indices utilising off-chlorophyll 

absorption centre wavebands appear high in the rankings (e.g. Vogelmann3, Maccioni, MTCI, 

mND705, Carter4). The derivative based REP_LE (Rank = 1, RMSE = 55.10 mg/m
2
) and mREIP 

(Rank = 2, RMSE = 57.08 mg/m
2
) showed their consistency in the previous scenario, and this 

time demonstrate their robustness by once again performing well and appearing at the top of the 

rankings.  

In much the same vein as the previous scenario, the top placed indices are derived using an 

assortment of wavebands and methods, and also include a number of canopy-based indices. The 

OSAVI2 (Rank = 4, RMSE = 59.31 mg/m
2
) and MTCI (Rank = 6, RMSE = 61.84 mg/m

2
) 

indices are two such canopy-based models that produced low RMSE values. Indices such as the 

OSAVI2 and MCARI2 indices are modifications of the original indices (i.e. OSAVI and 

MCARI) in order to include off-chlorophyll absorption centre bands (e.g. 750 nm and 705 nm). 

Both of the modified indices perform considerably better than their predecessors (in both 

scenarios). The TCARI2 index is an exception to this though, as it is also modified to include 

off-chlorophyll absorption centre wavebands, but is outperformed by its predecessor (i.e. 
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TCARI) in both scenarios. Only three of the top 25 indices have wavebands in the blue or green 

region of the spectrum (e.g. MCARI2, G-NDVI, and mND705), while many of the other indices 

that include these wavelengths appear towards the bottom of the rankings.  

Fig. 2 shows a number of scatter graphs which depict the linear relationships of various 

indices that share common traits. Excluding the four indices that involve the REP or the REIP, 

Fig. 2 visualises the improved performance of the indices that utilise the off-chlorophyll 

absorption centre wavebands (e.g. MTCI, NDVI2, SR1 and OSAVI2), as opposed to those that 

don’t (e.g. EVI, NDVI, SR and OSAVI). The indices with off-chlorophyll absorption centre 

wavebands have higher regression coefficients, greater linearity, and fewer signs of saturation at 

high chlorophyll values. Also visible in the scatter plots, are outliers that we assume were caused 

by low chlorophyll yellowish-brown leaves. These outliers were not removed as they did not 

appear to have a consistent effect on all the indices. In fact Fig. 2 illustrates how the indices with 

off-chlorophyll absorption centre wavebands better mitigate these low chlorophyll samples (i.e. 

EVI vs. MTCI, and SR vs. SR1).  

 (Figure 2)  

4.  Discussion  

This study investigated the performance of 73 published indices using leaf spectra and 

chlorophyll content data from different species datasets. The aim was to understand which of the 

myriad of published VIs would be consistent and/or robust enough when applied to, and across, 

different species datasets. The indices varied greatly in terms of their original focus, and 

intended targets, but they were tested none-the-less and produced interesting results.  We felt that 

the datasets that we applied the indices to would provide a more than adequate examination of 

their abilities, due to the variety of leaf structures, leaf surfaces, moisture contents and 

chlorophyll contents present. The maize data had low chlorophyll contents; the tomato and 

cabbage datasets had medium chlorophyll contents, while the savanna tree dataset consisted of a 

variety of leaf structures and leaf surfaces, and had the widest range and highest mean 

chlorophyll content.  
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A common observation in the study was that the indices using off-chlorophyll absorption 

centre wavebands (i.e. 690 – 730nm) appeared regularly in the top of the rankings for each of the 

scenarios. These bands form an integral part of the red-edge region, which has been shown to 

have a significant relationship with chlorophyll content and the physiological status of vegetation 

(Collins, 1978; Horler et al., 1983). The performance of indices with these wavebands would 

support other literature that points to off-centre wavelengths having greater sensitivity to subtle 

changes in chlorophyll content when compared to bands in the absorption centre (Carter, 1994b; 

Zarco-Tejada et al., 2003). For instance, the Maccioni (Maccioni et al, 2001) and Datt (Datt, 

1999) indices were developed using high chlorophyll Eucalyptus leaves, and were meant to 

correct for leaf surface reflectance and scattering (Datt, 1999), yet they performed poorly in the 

high chlorophyll savanna tree dataset. Both indices include the 680 nm region, which is quick to 

saturate at low chlorophyll levels and therefore becomes insensitive to high chlorophyll contents 

(Sims and Gamon, 2002; Wu et al., 2008). The second Datt index (i.e. Datt2) is a simple ratio 

index that excludes the 680 nm region, and subsequently performs better for the high chlorophyll 

savanna dataset. The improved linearity, and resultant prediction power, of the off-chlorophyll 

absorption centre indices was evident in Fig. 2 of the results section.  

The influence of the off-chlorophyll absorption centre wavebands could also be seen in the 

performance of the canopy indices. As pointed out in the results, the majority of the canopy 

indices that were modified to include off-chlorophyll absorption centre wavebands outperformed 

their predecessors that had bands in the 680 nm or 800 nm regions. These indices have well 

researched combinations of wavebands that have evidently been selected in order to minimise 

LAI interference and pick out any changes in canopy chlorophyll, most times at low 

concentrations and/or against soil background (Daughtry et al., 2000; Haboudane et al., 2002; 

Wu et al., 2008). This is presumably part of the reason for impressive performances by canopy 

indices, such as the OSAVI2 index that performed particularly well on the low chlorophyll maize 

data, and also achieved the fourth highest rank in the combined dataset rankings. The poor 

performance of the TCARI2 index, compared to its predecessor TCARI is in contrast to what 
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Wu et al. (2008) found. 

The phenological state of the leaves, as well as inherent differences between species, results 

in datasets with variable moisture contents, leaf surfaces, and leaf internal structures. The indices 

would have had different responses to these moisture and structure variations, which in turn 

could have influenced their ability to predict for chlorophyll content.  The linear extrapolation 

REP index(i.e. REP_LE), which topped both sets of rankings for the two scenarios, was 

developed by Cho et al (2008) to be highly correlated to leaf chlorophyll content and less 

sensitive to leaf and canopy biophysical factors than other REP techniques. Sims and Gamon 

(2002) developed two indices (i.e. mND705 and mSR705) that would be relatively insensitive to 

species and leaf structure variations. They showed that these indices could eliminate the effects 

of variability in surface reflectance and result in better chlorophyll content predictions across a 

wide variety of species and vegetation types. In this study their mND705 index dealt with the 

variety of species, and leaf structures, relatively well and was subsequently placed in the top 5 

for both scenarios.  We could assume that the best performing indices (in both scenarios) 

probably show a decreased sensitivity to varying leaf structures or moisture contents and can be 

considered more robust than indices that only did well for crop species. 

Our results also have similarities to those reported in le Maire et al. (2004), where they used 

data from various deciduous trees species to test the performance of 60 published chlorophyll 

indices. Some of the same indices that performed well in the le Maire et al. (2004) study also 

perform well in this study (e.g. Maccioni index, Datt index and Vogelman indices). le Maire et 

al. (2004) intimated that there was little use for REIP like indices, partly due to the influence of 

the double-peak feature found in the derivative red-edge region and partly because there are 

computationally simpler and more effective indices. This is in contrast to what our results show 

in that our two most consistent and robust indices include the modified REIP (with inverted 

Gaussian fit) by Miller et al. (1990), and the linearly extrapolated REP index (REP_LE) that was 

specifically developed by Cho & Skidmore (2006a) to deal with the double-peak feature.  
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The question regarding whether there is one single index to use in order to estimate vegetation 

chlorophyll content has not been answered in this paper, and will continue to depend on the type 

of vegetation being measured, as well as local ecosystem conditions. The study has however 

pointed out that: 

i) Given the varied datasets used in this study, we showcased indices that were robust and  

consistent, across datasets and species, and could therefore be seen as priority indices to be 

tested in any follow up work. For instance the modified REIP (mREIP) index by Miller et al. 

(1990) consistently performed well across the datasets, came second in terms of robustness 

across species, and was the best performer for the low chlorophyll maize data. 

ii) We will be able to limit the number of indices used in follow up tests to narrowband 

indices, which use off-chlorophyll absorption centre wavebands, due to their prominence 

amongst the best performing indices in this study. 

Further research is recommended regarding whether or not the results of this study would be 

any different should chlorophyll concentration, instead of chlorophyll content per unit area, be 

used. It also remains to be seen how the best performing indices in this study would perform 

using different species datasets from elsewhere in the world, but they have showcased their 

potential for being candidates in the search for more robust vegetation indices. Their ability to 

make the step up to canopy scale spectral measurements also needs to be further researched. 

5. Conclusions 

This study tested the chlorophyll content (mg/m
2
) prediction ability of 73 published indices 

and showed that there are a number of indices that perform regularly well across different 

datasets and within combined species datasets, despite the varying moisture contents and leaf 

structures involved. With increasing availability of remote sensing data, especially hyperspectral 

data, the (potential) user base, be it novice or expert, for these indices is probably expanding. 

While novice users (e.g. farmers, resource managers) might not fully understand the science 

behind the indices, they will nonetheless want, or need, to know which of the plethora of 
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published indices would be best suited to their conditions and data. We therefore believe studies 

such as this one would be useful, and should be encouraged in order to grow the knowledge base 

surrounding which indices work best for what kind of vegetation, growing where and in what 

kind of conditions. None of the indices used in this study can be touted as truly universal. 

However, if similar studies continue to compare published indices across a variety of species, 

then hopefully a level of consensus could be reached regarding an index’s robustness under 

certain conditions or for particular vegetation types.   
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Figure 1: Box plots showing the variability of total chlorophyll content (mg/m
2
) for the four species datasets. 
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iii) Canopy indices 
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iv) NDVI indices 
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v) Simple Ratio indices 
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vi) Soil adjusted vegetation indices 
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Figure 2: Scatter plots showing the improvements in the regression equations between the original and modified 

vegetation indices, which have similar attributes (i = REP indices, ii = REIP indices, iii = canopy indices, iv = NDVI 

indices, v = simple ratio indices, vi = soil adjusted indices). The regression was done using all four species datasets 

(CAB = cabbage, TOM = tomato, MAI = maize, SAV = savanna trees). 
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Table 1: Vegetation indices used in the study (adapted from Stagakis et al., 2010 and le Maire et al., 2004). 

Index Formulation Scale Related to Reference 

Boochs*
 

Boochs2*
 

D703 

D720 
Canopy 
Canopy 

chl a 
chl a 

Boochs et al. (1990) 

CARI (Chlorophyll Absorption 
Ratio Index) 

R700*(SQRT((a*670 + R670 + b)
2
)) / R670*(a

2
 + 1)

0.5
 

[ a = (R700 – R550) / 150 ; b = R550 – (a*550) ] 
Leaf chl Kim et al. (1994) 

CI (Curvature Index) R675 * R690 / R683
2
 Canopy chl a 

Zarco-Tejada et al. 
(2003) 

Carter* 
Carter2* 
Carter3* 
Carter4* 
Carter5* 
Carter6* 

R695 / R420 
R695 / R760 
R605 / R760 
R710 / R760 
R695 / R670 

R550 

Leaf 
Leaf 
Leaf 
Leaf 
Leaf 
Leaf 

Stress 
Stress 
Stress 
Stress 
Stress 

chl 

Carter (1994a) 

Datt* 
Datt2* 
Datt3* 

(R850 – R710) / (R850 – R680) 
R850 / R710 

D754 / D704 

Leaf 
Leaf 
Leaf 

chl 
chl 
chl 

Datt (1999) 

Datt4* 
Datt5* 
Datt6* 

R672 / (R550 x R708) 
R672 / R550 

R860 / (R550 x R708) 

Leaf 
Leaf 
Leaf 

chl a, chl total 
chl b 

 
Datt (1998) 

DD (Double Difference Index) (R749 – R720) – (R701 – R672) Leaf chl total le Maire et al. (2004) 
DDn (new Double Difference 

Index) 
2*(R710 – R(710 - 50) – R(710 + 50)) Canopy chl total le Maire et al. (2008) 

DPI (Double Peak Index) (D688*D710) / D697
2
 Canopy chl fluorescence 

Zarco-Tejada et al. 
(2003) 

dRE Maximum value of first derivative in red-edge region Leaf chl, stress 
Filella and Peñuelas 

(1994) 
D1* 
D2* 

D730 / D706 

D705 / D722 
Canopy 
Canopy 

chl fluorescence 
Zarco-Tejada et al. 

(2003) 
EVI (Enhanced Vegetation 

Index) 
2.5*((R800 – R670) / (R800 + (6*R670) – (7.5*R475) + 1)) Canopy chl Huete et al. (1997) 

EGFR (Ratio of first derivative 
maxima in red-edge and green 

regions) 
EGFN (Normalised ratio of first 
derivative maxima in red-edge 

and green regions) 

dRE / dG 
 
 

(dRE – dG) / (dRE + dG) 

Leaf 
 
 

Leaf 

chl, N 
 
 

chl, N 

Peñuelas et al. (1994) 

GI (Greenness Index) R554 / R677 Canopy chl, LAI x chl Smith et al. (1995) 

Gitelson*
 

1 / R700 Leaf chl total Gitelson et al. (1999), 
Gitelson2* (R750 – 800 / R695 – 740) - 1 Leaf chl Gitelson et al. (2003) 

Green NDVI (R800 – R550) / (R800 + R550) Canopy chl a Gitelson et al. (1996) 

MCARI (Modified Chlorophyll 
Absorption Ratio Index) 

MCARI / OSAVI 

((R700 − R670) − 0.2*(R700 − R550))*(R700 / R670) 
 

MCARI / OSAVI 

Canopy 
 

Canopy 

chl, LAI 
 

chl 
Daughtry et al. (2000) 

MCARI2 
MCARI2 / OSAVI2 

((R750 – R705) − 0.2*(R750 – R550))*(R750 / R705) 
MCARI2 / OSAVI2 

Canopy 
Canopy 

chl 
chl 

Wu et al. (2008) 

mNDVI (Modified NDVI) 
mND705 

(R800 − R680) / (R800 + R680 − 2R445) 
(R750 − R705) / (R750 + R705 − 2R445) 

Leaf 
Leaf 

chl total 
chl total 

Sims and Gamon 
(2002) 

Maccioni* (R780 - R710) / (R780 – R680) Leaf chl Maccioni et al. (2001) 

mREIP (Modified Red-Edge 
Inflection Point )* 

Modified REIP with inverted Gaussian fit on reflectance 
Leaf + 

Canopy 
chl Miller et al. (1990) 

MSAVI (Improved Soil 
Adjusted Vegetation Index) 

0.5*(2*R800 + 1 - SQRT((2*R800 + 1)
2
 - 8*(R800 – R670))) Canopy chl Qi et al. (1994) 

mSR (Modified Simple Ratio) 
mSR705 

(R800 − R445) / (R680 − R445) 
(R750 − R445) / (R705 − R445) 

Leaf 
Leaf 

chl total 
chl total 

Sims and Gamon 
(2002) 

mSR2* (R750 / R705) – 1 / SQRT((R750 / R705) + 1) Canopy chl + LAI Chen (1996) 
MTCI (MERIS Terrestrial 

chlorophyll index) 
(R754 − R709) / (R709 − R681) Canopy chl 

Dash and Curran 
(2004) 

NDVI (Normalised Difference 
Vegetation Index) 

(R800 − R670) / (R800 + R670) Canopy chl, LAI Tucker (1979) 

NDVI2 *
 

(R750 − R705) / (R750 + R705) Leaf chl a 
Gitelson and Merzlyak 

(1994) 
NDVI3*

 
(R682 − R553) / (R682 + R553) Canopy chl total Gandia et al. (2004) 

NPCI (Normalised Pigment 
chlorophyll Index) 

(R680 − R430) / (R680 + R430) Leaf 
(Total pigments) / chl, 

stress 
Peñuelas et al. (1994) 

OSAVI (Optimised Soil-
Adjusted Vegetation Index) 

(1+0.16)*(R800 − R670) / (R800 + R670 + 0.16) Canopy chl Rondeaux et al. (1996) 

OSAVI2 (1+0.16)*(R750 – R705) / (R750 + R705 + 0.16) Canopy chl Wu et al. (2008) 
RDVI (Renormalised 

Difference Vegetation Index) 
(R800 − R670) / (SQRT(R800 + R670 )) Canopy chl, LAI 

Roujean and Breon 
(1995) 

REIP (Red-Edge Inflection 
Point) 

Wavelength for maximum value of the 
first derivative in red-edge region 

Leaf 
Canopy 

chl, LAI 
chl x LAI, biomass 

Collins (1978); 
Horler et al. (1983) 

REP_LE* (Red-Edge Position 
linear extrapolation) 

See Cho & Skidmore, 2006 Leaf N, chl 
Cho and Skidmore 

(2006) 
REP_LI * (Red-Edge Position 

linear interpolation) 
700+40*((R670 + R780 / 2) / (R740 – R700)) Leaf chl Guyot et al. (1988) 

SIPI (Structure Insensitive 
Pigment Index) 

(R800 − R445) / (R800 − R680) Leaf 
(pigments)/chl, 

stress 
Peñuelas et al. (1995) 

SPVI (Spectral Polygon 
Vegetation Index) 

0.4*(3.7*(R800 − R670) − 1.2*SQRT((R530 − R670)
2
) Canopy chl x LAI Vincini et al. (2006) 

SR* (Simple Ratio Index) R800 / R680 Canopy chl Jordan (1969) 
SR1* 
SR2* 
SR3* 

R750 / R700 

R752 / R690 

R750 / R550 
Leaf chl 

Gitelson and Merzlyak 
(1997) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6V-4Y71915-1&_user=958262&_coverDate=05%2F17%2F2010&_alid=1381428881&_rdoc=1&_fmt=high&_orig=search&_cdi=5824&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000049363&_version=1&_urlVersion=0&_userid=958262&md5=49a0909174310b384d1180aaeb11e42a#bib24
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6V-4Y71915-1&_user=958262&_coverDate=05%2F17%2F2010&_alid=1381428881&_rdoc=1&_fmt=high&_orig=search&_cdi=5824&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000049363&_version=1&_urlVersion=0&_userid=958262&md5=49a0909174310b384d1180aaeb11e42a#bib24
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6V-4Y71915-1&_user=958262&_coverDate=05%2F17%2F2010&_alid=1381428881&_rdoc=1&_fmt=high&_orig=search&_cdi=5824&_sort=r&_docanchor=&view=c&_ct=1&_acct=C000049363&_version=1&_urlVersion=0&_userid=958262&md5=49a0909174310b384d1180aaeb11e42a#bib43
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SR4* R700 / R670 Leaf chl McMurtey et al. (1994) 
SR5* R675 / R700 Leaf chl a Chappelle et al. (1992) 

SR6* R750 / R710 Leaf chl 
Zarco-Tejada & Miller 

(1999) 

SR7* R440 / R690 Leaf Stress 
Lichtenthaler et al. 

(1996) 
SRPI (Simple Ratio Pigment 

Index) 
R430 / R680 Leaf 

(Total pigments)/chl, 
stress 

Peñuelas et al. (1995) 

Sum_Dr1* Sum of first derivative reflectance between R625 and R795 Canopy chl 
Elvidge and Zhikang, 

1995 

Sum_Dr2* Sum of first derivative reflectance between R680 and R780 Leaf 
LAI, chl a, chl b, chl a + 

b 
Filella and Peñuelas, 

1994 
TCARI (Transformed 

Chlorophyll Absorption Ratio 
Index) 

3*((R700 − R670) − 0.2*(R700 − R550)*(R700 / R670)) Canopy chl 
Haboudane et al. 

(2002) 

TCARI2 3*((R750 – R705) − 0.2*(R750 − R550)*(R750 / R705)) Canopy chl Wu et al. (2008) 

TCARI / OSAVI TCARI / OSAVI Canopy chl 
Haboudane et al. 

(2002) 
TCARI2 / OSAVI2 TCARI2 / OSAVI2 Canopy chl Wu et al. (2008) 

TVI (Triangular Vegetation 
Index) 

0.5*(120*(R750 − R550) – 200*(R670 − R550)) Canopy 
LAI, canopy chlorophyll 

density 
Broge and Leblanc 

(2000) 
Vogelmann* 

Vogelmann2* 
Vogelmann3* 

R740 / R720 

(R734 − R747) / (R715 + R726) 
D715 / D705 

Leaf 
Leaf 
Leaf 

chl 
chl 
chl 

Vogelmann et al. 
(1993) 

Rx represents reflectance at wavelength x nm. 

Dx represents the derivative of the reflectance spectrum at wavelength x nm. 

dRE is the maximum value of the first derivative in red-edge region (670 – 800 nm) 

dG is the maximum value of the first derivative in the visible green region (500 – 580 nm) 

*
 
No original index abbreviation found, so an appropriate one was inserted 
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Table 2: The ranking results of the performance (assessed using RMSE) of the 73 vegetation indices to predict total chlorophyll 
content (mg/m

2
) according to the two scenarios, i) across all species datasets and ii) the combined species dataset. 

i) Summed  rank across datasets   ii) Combined dataset rankings 

Index 
Savanna 

Tree RMSE 
(mg/m

2
) 

Rank 
Cabbage 

RMSE 
(mg/m

2
) 

Rank 
Tomato 
RMSE 

(mg/m
2
) 

Rank 
Maize 
RMSE 

(mg/m
2
) 

Rank 
Summed 

Rank 
  Index 

RMSE 
(mg/m

2
) 

Rank 

REP_LE 59.76 2 41.48 3 31.12 4 18.14 12 21 
 

REP_LE 55.10 1 

mREIP 59.48 1 46.24 8 34.56 11 17.19 2 22 
 

mREIP 57.08 2 
MTCI 62.62 6 40.92 2 29.99 3 18.48 13 24 

 
Vogelmann3 57.85 3 

mND705 63.66 10 42.33 5 36.31 18 16.98 1 34 
 

OSAVI2 59.31 4 
Gitelson2 61.84 3 49.02 12 33.03 7 18.56 14 36 

 
mND705 59.82 5 

Vogelmann3 63.58 9 41.61 4 28.50 1 19.45 25 39 
 

Maccioni 61.30 6 
Maccioni 67.17 17 47.68 10 33.89 10 17.35 4 41 

 
MTCI 61.84 7 

Vogelmann 62.04 4 49.33 13 32.30 6 18.77 18 41 
 

Carter4 61.92 8 
Datt 64.06 12 43.80 7 31.72 5 19.01 20 44 

 
Datt 62.21 9 

Vogelmann2 69.32 19 48.11 11 33.87 9 17.37 5 44 
 

NDVI2 62.21 10 
D1 70.20 20 39.45 1 29.99 2 20.63 31 54 

 
Vogelmann 62.41 11 

Datt2 63.15 8 56.34 21 35.26 13 18.57 15 57 
 

REIP 62.82 12 

SR6 62.93 7 56.18 20 35.44 15 18.59 16 58 
 

MCARI2 / 
OSAVI2 

63.09 13 

Carter4 65.69 15 59.54 25 37.12 21 17.62 7 68 
 

mSR2 63.58 14 
DD index 65.10 13 51.05 15 35.29 14 21.61 35 77 

 
Boochs2 63.70 15 

mSR2 62.52 5 64.68 38 38.79 27 18.00 10 80 
 

Gitelson2 64.41 16 
REIP 72.12 24 50.50 14 38.20 24 19.44 24 86 

 
DDn Index 65.03 17 

OSAVI2 66.07 16 66.88 42 38.98 28 17.32 3 89 
 

EGFN 65.17 18 
mSR705 63.79 11 86.63 55 35.45 16 17.88 8 90 

 
DD index 65.41 19 

NDVI2 65.44 14 66.13 41 39.17 29 17.62 6 90 
 

SR6 66.74 20 
MCARI2 67.80 18 63.77 37 38.65 26 18.12 11 92 

 
MCARI2 68.47 21 

D2 79.87 27 55.71 18 37.27 22 21.07 33 100 
 

Datt2 68.65 22 
TCARI / 
OSAVI 

80.06 28 62.55 35 38.49 25 20.02 27 115 
 

D1 69.64 23 

MCARI2 / 
OSAVI2 

71.05 22 65.03 39 39.19 30 19.85 26 117 
 

Vogelmann2 70.50 24 

Boochs2 87.03 33 71.86 47 40.42 34 17.94 9 123 
 

Green NDVI 74.79 25 

DDn Index 93.39 38 57.10 22 34.58 12 26.12 52 124 
 

TCARI / 
OSAVI 

76.04 26 

Datt3 99.40 45 52.79 16 40.97 35 21.04 32 128 
 

SR1 78.07 27 
TCARI 81.61 29 56.08 19 36.61 19 30.43 62 129 

 
EGFR 79.02 28 

Datt4 99.32 43 42.83 6 33.73 8 35.15 73 130 
 

SR3 81.78 29 
SR1 70.53 21 78.95 52 46.36 45 18.66 17 135 

 
D2 92.70 30 

EGFN 90.31 34 53.31 17 39.43 31 26.76 55 137 
 

Carter3 93.82 31 
Green NDVI 86.12 31 98.35 59 39.97 32 19.17 21 143 

 
Sum_Dr1 94.92 32 

SR3 85.88 30 100.61 61 40.23 33 20.44 28 152 
 

TCARI2 / 
OSAVI2 

95.23 33 

MCARI / 
OSAVI 

91.75 35 63.61 36 43.59 42 23.65 40 153 
 

TCARI 96.30 34 

Boochs 96.08 41 47.44 9 60.58 54 26.21 53 157 
 

Datt6 96.59 35 
Carter 104.28 47 58.70 24 48.48 47 23.97 43 161 

 
Carter2 96.74 36 

Carter5 111.70 50 58.14 23 36.66 20 32.35 68 161 
 

mSR705 97.33 37 
SR4 104.19 46 60.50 27 38.12 23 31.48 65 161 

 
SPVI 99.77 38 

Datt6 86.93 32 62.48 34 48.75 48 24.93 49 163 
 

Datt3 101.84 39 
REP_LI 79.20 26 80.45 53 42.52 39 24.28 45 163 

 
Carter6 103.82 40 

SR5 111.83 51 60.29 26 35.67 17 33.00 71 165 
 

CI 104.90 41 
MCARI 95.79 40 61.57 29 42.44 38 30.78 64 171 

 
EVI 107.69 42 

Carter2 92.88 37 99.28 60 55.02 52 19.42 23 172 
 

SR2 107.92 43 
Carter3 92.55 36 113.13 65 56.69 53 18.78 19 173 

 
MSAVI 108.56 44 

SR7 120.65 54 61.79 31 62.35 55 21.12 34 174 
 

Sum_Dr2 109.93 45 
EGFR 97.64 42 67.04 43 42.29 36 26.30 54 175 

 
RDVI 110.54 46 

Gitelson 77.11 25 77.77 51 50.11 50 25.42 50 176 
 

Datt4 110.64 47 
CI 99.33 44 62.28 33 44.32 44 28.16 56 177 

 
Gitelson 112.19 48 

TCARI2 / 
OSAVI2 

71.60 23 82.17 54 42.39 37 32.66 69 183 
 

MCARI / 
OSAVI 

112.96 49 

CARI 119.47 53 61.62 30 42.88 40 32.79 70 193 
 

REP_LI 117.36 50 
GI 124.69 56 62.10 32 43.04 41 31.57 66 195 

 
OSAVI 118.06 51 

Carter6 95.69 39 94.76 58 44.31 43 28.50 57 197 
 

SR 128.95 52 
NDVI3 135.94 64 60.80 28 49.63 49 30.56 63 204 

 
GI 130.18 53 

SR2 105.64 48 119.23 70 73.63 58 20.60 30 206 
 

DPI 131.40 54 
TCARI2 107.80 49 107.46 62 95.96 73 19.31 22 206 

 
NDVI3 131.91 55 

DPI 131.81 63 68.13 44 84.59 61 24.59 47 215 
 

NDVI 133.43 56 
Sum_Dr1 121.99 55 122.04 73 74.00 59 20.50 29 216 

 
MCARI 136.04 57 

NPCI 143.49 69 72.27 48 86.93 63 23.51 38 218 
 

Carter5 139.60 58 
SRPI 143.63 70 73.09 49 87.37 64 23.21 36 219 

 
SR5 140.79 59 

Datt5 152.53 73 65.66 40 47.88 46 29.80 61 220 
 

Carter 146.10 60 
SIPI 111.97 52 71.09 46 71.12 57 32.07 67 222 

 
SR7 147.17 61 

SPVI 128.86 59 121.16 72 80.92 60 23.34 37 228 
 

TVI 147.48 62 
MSAVI 127.13 58 114.20 66 90.95 68 23.52 39 231 

 
SR4 154.82 63 

dRE 138.30 66 69.85 45 54.04 51 33.32 72 234 
 

Datt5 155.91 64 
TVI 143.73 71 74.30 50 68.81 56 28.60 58 235 

 
SIPI 163.31 65 

OSAVI 129.07 60 114.51 67 90.12 67 23.77 42 236 
 

mNDVI 163.99 66 
NDVI 131.25 62 115.49 68 89.91 66 23.72 41 237 

 
SRPI 170.71 67 

EVI 138.08 65 94.45 57 92.31 70 24.53 46 238 
 

dRE 171.12 68 
RDVI 130.49 61 113.08 64 91.49 69 24.02 44 238 

 
NPCI 171.62 69 

SR 126.69 57 116.55 69 89.16 65 24.86 48 239 
 

TCARI2 175.04 70 
mNDVI 142.31 68 91.66 56 86.49 62 29.37 59 245 

 
CARI 176.82 71 
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Sum_Dr2 140.62 67 111.04 63 93.32 71 25.56 51 252 
 

Boochs 178.51 72 
mSR 146.22 72 120.43 71 95.26 72 29.51 60 275 

 
mSR 178.77 73 

For index abbreviations and calculations, refer to Table 1. 

 


