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Abstract: This paper presents a gain-scheduling controller for a human-following robot. Typical
controllers use either a point-to-point approach where the relative orientation between human
and platform is uncontrolled, or a direction-based approach which corrects orientation errors at
the expense of additional actuation. We describe the flaws and benefits of each and argue that
a gain-scheduling controller combining the two is better equipped to deal with the challenges
of human-following. A model of our feature-based, single camera vision system is presented and
used to show that the gain-scheduling controller offers better performance than its components,
and actual responses to a human following task are used to corroborate this.
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1. INTRODUCTION

The ability of a mobile robot to track and follow a target
is required in a wide variety of applications, particularly in
service robotics. Target-following robots not only need to
detect, recognise and track their targets in real time, but
also navigate towards them in an intelligent manner. These
robots are typically equipped with a diverse set of sensors
for locating and recognising targets. Light detection and
ranging (LIDAR), for example, provides accurate distance
measurements but may lead to ambiguity in target recog-
nition. Electronic tethering is effective but requires that
the target followed use a tracking device and often needs
a secondary sensor for greater accuracy. As a result many
systems employ vision, selected for its ability to provide
abundant information about the robot’s environment, in a
passive manner, at relatively high speeds and low cost.

The control of mobile robots using vision in the feed-
back loop falls into the well-studied field of visual servo
control. Two primary approaches are used: image-based
visual servoing (IBVS) and position-based visual servoing
(PBVS). IBVS refers to the control of a system from
calculations performed only in the image plane with pixel
coordinates, while PBVS defines control strategies in terms
of the position of the vision system relative to some
fixed reference coordinate system. These two approaches
are discussed in detail by Hutchinson et al. (1996), and
Chaumette and Hutchinson (2008) provide a review. From
a PBVS perspective, the control of wheeled robots has
typically been divided into two strategies: simple point-
to-point positioning without control of orientation and
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direction-based motion control that takes orientation into
account. The latter allows for the tracking of a reference
trajectory provided it is feasible. A trajectory is considered
feasible if it solves the robot’s kinematic model for a set of
control inputs (Morin and Samson (2008)). Various control
strategies that asymptotically stabilise feasible reference
trajectories are discussed in the work of Morin and Samson
(2008), Petrov and Parent (2006) and Ma et al. (1999).
Point-to-point positioning is the most common approach
for moving towards set-points on non-feasible trajectories.

A particularly interesting target following application
requiring non-feasible trajectories is that of human-
following, as robots equipped with the ability to follow
humans could prove extremely useful. Robotic mules could
follow humans out to a point and then move back and
forth ferrying burdens. Another potential application is in
search and rescue, where a robot follows teams of medics
and returns stabilised patients to field hospitals.

In this paper we present a hybrid gain-scheduling con-
troller for use in a human-following robot. We argue that
there are benefits in each of the typical target following
control strategies, and propose a controller combining as-
pects of each. A feature-based matching scheme is chosen
to detect and recognise the human target, in an effort
to minimise the likelihood of tracking ambiguity, and an
approach to extracting human pose information from a
single image is briefly explained. We characterise the lim-
itations in this approach and present a model of a typical
feature-based vision system. We use this model to provide
simulation results, which show that our controller outper-
forms two commonly used point-to-point and direction-
based controllers. This finding is corroborated through the
results of practical experimentation.
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2. METHODOLOGY

2.1 Visual Pose Estimation

Our system operates under the assumption that the pose
of a walking person’s upper body typically indicates travel-
ling direction. Our approach, which allows a planar fit to
the back of a human torso to be obtained from a single
image captured by a camera mounted on the robot, is
described in Burke and Brink (2010), where we showed
that the information thus extracted is suitable for use in
a control system. A brief summary follows here. Note that
the system requires that relatively salient clothing be worn
by the human because the detection is feature-based.

Feature-based target detection relies on the detection
of interest points, or features, in a reference and input
image. Ideally, these points should be easily recognised
from varying scales, angles and under changing lighting.
A descriptor of a small region around each feature is
extracted and these descriptors matched across images.
Numerous matching features indicate a target’s presence
and can be used with camera geometry and knowledge of
a target’s structure, to extract relative pose. We use the
SURF scheme of Bay et al. (2008) because of its high speed
and the good detector repeatability over varying blur, scale
and viewpoint. With this method we obtain good matching
results for a wide variety of torso motions.

Unfortunately the performance of feature-based detectors
typically degrades rather dramatically over changes in
scale and viewpoint. Fig. 1a highlights the ability of SURF
to detect objects undergoing yaw motions, showing the
number of matches detected correctly over angles which
can be expected in operation. More and more features are
lost as the target rotates, until no detection can be made
after about 60◦. Fig. 1b shows the robustness of SURF
to changes in target scale. As expected, detected features
decrease as objects are viewed from further away.

After feature matching a homography is estimated. Pro-
jected points x1 and x2 in two images (current and desired
view) of some feature on the target plane, in homogeneous
coordinates, are related by a 3×3 homography matrixH as
x1 = Hx2. Note that this relationship assumes a perfect
pinhole camera model and therefore requires images to first
be dewarped with respect to lens distortion.

The normalised direct linear transform (DLT) (Hartley
and Zisserman (2004)) can be used to find the homography
from at least four available point correspondences. The
problem is likely to be over-specified as typically more than
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Fig. 1. Robustness of the SURF algorithm to changes in
(a) yaw motions and (b) scale.

four matches are found. Many correct matches would be
useful for a least-squares solution, but incorrect matches
can have a drastic negative effect on such a solution. We
therefore opt for an iterative RANSAC-based approach
(Fischler and Bolles (1981)), in an effort to find a homog-
raphy that minimises a re-projection error. This robust
RANSAC-based homography estimation is effective even
in the presence of a large number of outliers, which is
especially desirable because of the deformable nature of
clothing, the occasional mismatched feature and the slight
curvature of a human torso.

Once the homography has been determined the various
pose parameters, mapping the current camera coordinate
system to the desired (template) camera coordinate sys-
tem, can be retrieved from the decomposition

H = K
(

R+ t nT
)

K−1, (1)

where K is the intrinsic camera calibration matrix, R a
rotation matrix, t the translation of the camera and n a
vector normal to the target surface. We use an algorithm of
Faugeras and Lustman to calculate the pose parameters in
(1) from the estimated homography. The reader is referred
to their paper, Faugeras and Lustman (1988), for details.

Note that the translation vector is returned up to scale,
because a single camera is used. The unknown scale is
time-invariant, however, as each incoming image is com-
pared to a fixed template. Moreover, for the purposes of
control, the unknown scale is not a problem as long as the
translation components remain monotonic. The controller
will minimise error in translation by generating propor-
tional motion commands so, in a sense, the unknown scale
is incorporated in the controller gains.

After decomposition a pose vector p = [tx, tz, φ]
T

is
specified. It relates the current view of the human with the
desired view, as is illustrated in Fig. 2. (Note the additional
angle α. For now we may suppose that α = 0.) Here tx is
the cross-track error between the two camera views, tz the
in-track error and φ the camera yaw angle. Roll, pitch and
out-of-plane translation information is unnecessary and
hence discarded. The ability to extract the three param-
eters of interest independently of the unnecessary degrees
of freedom is important though, because it implies some
invariance to uneven terrain and various torso motions.

φ

α

tx

tz

X

Z

human

robot with PTU

human’s
travelling
direction

reference
image plane

Fig. 2. A graphical interpretation of the parameters tx, tz
and φ that specify the pose vector relating the robot’s
position and orientation with the human’s.
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2.2 Tracking

The measured pose estimate can be further refined through
the use of a Kalman filter. We select the measurement
uncertainty as one third of the typical pose variation in
straight line motion, weighted by a factor w = 1 − ni/nt.
Here ni indicates the number of inliers returned by the
RANSAC algorithm and nt is the total number of available
matches. This weighting implies that as the number of
inliers increases so does the trust in the estimated homog-
raphy and its decomposition. It is important to note that
the accuracy of the measurement decreases as the target
pose moves away from the template or desired view. As a
result, there is a greater burden on the controller to ensure
that the relative pose stays within acceptable bounds.

We follow an approach similar to one by Yoon et al. (2008)
for rigid object tracking to predict pose from a history
of estimates. Let pk be a pose estimate at time tk. The
predicted pose at time tk+1 is then

pk+1 =

(

1 +
δtk+1

δtk

)

pk −

(

δtk+1

δtk

)

pk−1 + ζk+1, (2)

where δtk = tk−tk−1 and ζk+1 is the zero-mean prediction
noise, with covariance Qk+1, at time tk+1. Assuming that
the prediction noise is independent of pose estimates, the
predicted covariance of pk+1 is given by

Pk+1 =

(

1 +
δtk+1

δtk

)2

Pk +

(

δtk+1

δtk

)2

Pk−1 +Qk+1. (3)

We select the uncertainty in predicted pose, Qk+1, as half
the uncertainty in measurement (excluding the homogra-
phy trust weighting) so as to stabilise the measurements
based on their history. This simple model assumes that the
time rate of pose change remains constant, incorporating
unexpected and unpredictable human motion as noise.

2.3 Control

We use a gain-scheduling controller that phases between
the classic strategy for regulating an aircraft onto a refer-
ence trajectory and a traditional point-to-point controller.
Our system is implemented on a terrestrial skid steering
platform with two available control variables: angular and
forward velocity. Only forward motion is discussed below,
as the control law handling reverse motion is similar. The
camera is mounted on a pan-tilt unit (PTU) in order to
facilitate the control process and allow certain trajectories
to be followed without losing sight of the target. The PTU
continually adjusts its azimuth (the angle α in Fig. 2)
and elevation so that the centroid of matched features is
centred in the camera frame.

The first controller in our scheme is a traditional direction-
based controller that regulates both position and orienta-
tion. The platform’s angular velocity input at time step k
is generated by the proportional control law

ω1(k) = K1

[

φ(k) + α(k)
]

+K2 tx(k). (4)

Here φ(k) is the estimated human facing direction ex-
tracted from the homography, α(k) the PTU pan angle
and tx(k) the cross track error at time step k. The pro-
portional gains K1 and K2 are used to weight the relative
errors in the control law. In general these errors cannot
be minimised simultaneously as they typically represent

conflicting goals, so the weighting is selected such that
greater emphasis is placed on minimising cross track error.

The forward velocity control input, v(k), is obtained
through the proportional-integral control law

v(k) = K3

[

tz(k) + τi

k−1
∑

m=0

tz(m)

]

, (5)

with tz(k) the in-track error,K3 a proportional gain and τi
an integral term that rejects cumulative errors introduced
by a moving target. Note that, because this control system
operates in real time, a minimum acceptable sampling rate
is required for stability. The integral term is added at the
expense of phase lag, which increases the required process-
ing rate and necessitates high-speed image processing.

Unfortunately, while this direction-based controller cor-
rects orientation, it does so by traversing non-ideal trajec-
tories (an example of which is given in the next section).
These trajectories make the system vulnerable to losing
a fast moving target and are disconcerting as they often
differ greatly from the path followed by the target. A more
desirable trajectory may be obtained through a traditional
point-to-point approach, where the platform’s angular ve-
locity input is generated by the proportional control law

ω2(k) = K1 α(k). (6)

The forward velocity control law remains unchanged.
While this controller follows the target’s position closely,
it does not take orientation into account. As a result it
may be vulnerable to losing the target over sharp turns.

Clearly, a hybrid approach that combines the benefits
of each controller is required. If the target is turning
sharply, emphasis should be placed on the orientation-
regulating controller so as to reduce the risk of losing the
target during the turn. When the target orientation does
not differ greatly from the platform’s, the point-to-point
controller, which is less prone to losing a faster moving
target, is preferred. The platform’s angular velocity input
is then generated by the weighted sum

ω(k) =

(

|φ(k)|

φmax

)

ω1(k) +

(

1−
|φ(k)|

φmax

)

ω2(k), (7)

with φmax the maximum detectable orientation angle.

3. RESULTS

3.1 Simulated Controller Responses

The intended behaviour of the three controllers is ex-
plained here, with the aid of simulated straight-line and
circular responses. These responses are not only useful in
describing controller behaviour, but longer paths can be
deconstructed into straight-line and circular portions. As
mentioned, the point-to-point controller causes the plat-
form to move directly towards a target, with no control of
relative orientation. The direction-based controller causes
the platform to move in such a way as to approach the
target with the same orientation. The hybrid controller
attempts to combine benefits of both by phasing between
the two depending on the relative orientation angle.

Fig. 3 shows responses to a straight line trajectory. The
target trajectory is offset from the platform starting po-
sition and orientation. The point-to-point controller does
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not converge to the path as quickly as the other two, since
it only responds to error in distance. The direction-based
controller attempts to cancel out relative positional and
orientation errors, but this requires greater control action.
The hybrid gain-scheduling controller behaves as expected,
producing a trajectory between the other two responses.

Fig. 4 shows the response to an offset circular trajectory.
The response of the hybrid controller is not shown, as
it is almost identical to the direction-based controller in
this case (the relative orientation of a target on a circular
trajectory is large enough to enforce a favouring of the
direction-based controller). The shorter distance with the
point-to-point controller is clearly visible, along with the
longer distance required by the direction-based controller.
The latter essentially tries to control towards a tangent
to the target trajectory, which thus results in a trajectory
outside of the target’s.

These simulations provide valuable information regarding
expected limitations. The point-to-point controller, while
traversing a shorter distance, is vulnerable to losing sight
of a sharply turning target. This could occur if orientation
is not corrected and the relative target orientation moves
beyond the limit of the recognition system. While the
direction-based controller corrects orientation errors and is
not as susceptible to this problem, it does so by traversing
a longer trajectory and requires greater actuation. This
increases the chances of losing a fast moving target,
which may leave the system’s recognition range while
the platform is attempting to correct orientation and
positional errors simultaneously.
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Fig. 3. Simulated responses of the three controllers to an
offset straight line trajectory.
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Fig. 4. Simulated responses of the controllers to an offset
circular trajectory.

3.2 Monte Carlo Noise Analysis

The operating regions of the control systems described
here are difficult to determine, as no closed form model of
the vision components is available. We therefore use Monte
Carlo analysis in an attempt to show the expected system
bounds. We consider only forward and rotational velocities
less than or equal to the maximum platform velocities. It
is clear that any target motions exceeding these velocities
cannot be followed. Moreover, our analysis is concerned
only with the platform velocities that can be followed and
assumes the platform starts in the desired position relative
to the target, with no offset in position or orientation.

Due to the difficulty in accurately controlling the attitude
of a target, performance is analysed through a simulation
process using a model incorporating limitations and poten-
tial problems resulting from the object recognition module.
The inclusion of these limitations allows for simulations
closely matching reality, because the pose estimation pro-
cess is not subject to external noise sources.

In our model of the vision system a number of uniformly
distributed features are generated on a virtual plane in
3D, and projected onto a fronto-parallel image plane to
produce features in the reference image. Given the rela-
tive pose between a target and camera, the 3D features
are rotated and translated so as to emulate a change in
viewpoint. Roll and pitch uniformly distributed between
−20◦ and 20◦ are added to simulate unevenness in terrain
or a walking person’s torso. The transformed features are
projected onto an image plane, and normally distributed
noise with variance 10 pixels is added to account for
deforming clothing. These features represent matched fea-
tures in an input image. Given the features in two images
the homography-based pose estimate is applied to produce
a relative pose measure that incorporates likely noise.

Thus far, no mention on the selection process for the num-
ber of 3D points generated, has been made. Fig. 1 showed
that the number of matched features decreases with yaw
and scale changes, and our model needs to capture this
degradation. We model the distribution from which the
number of features is drawn naively, under the assumption
that the decrease due to scale changes and rotations is
independent, and approximate the distributions in Fig. 1
with zero-mean Gaussians with standard deviations 15◦

and 1m respectively. Fig. 5 shows the resultant distribu-
tion used to select the number of features. Note that the
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Fig. 5. The distribution from which the number of features
in the pose estimation calculations is drawn. Note the
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Fig. 6. Results of the Monte Carlo analysis. A successful target-following task is denoted by a 1 on the result axis, and
a failure by a 0. The angular velocity ω is measured in rad/s, and the forward velocity v in m/s.

chosen standard deviations cause the yaw Gaussian to cut
off at about 60◦, and the scale Gaussian at about 3m. This
corresponds to the limits of the recognition system as seen
in practice, allowing for a realistic simulation.

The simulations consisted of 1000 runs. Initially, uniformly
distributed random forward and rotational velocities are
generated, used as controls for the target, and remain
constant for each iteration. The paths traversed are not
important here, but rather whether the platform is able to
maintain sight of the target over each simulation. If this
occurs, the task is considered successful.

Target position and orientation are adjusted with a stan-
dard unicycle motion model. The relative yaw, translations
and pan angles used in the controllers are then calculated
to form inputs to the vision model. Recall that a certain
number of features is required for successful target recog-
nition, so the number of features generated provides a ter-
mination criterion to the simulation. If sufficient features
are generated, the relative target position and orientation
including noise is calculated and used as inputs to the rel-
evant control system which generates platform velocities.
They in turn are used to update the platform motion. A
delay corresponding to the average image processing rate
is also incorporated here. The process continues until a
target is lost or a specified distance has been travelled. If
the target was not lost the target-following task is assumed
to be successful.

Fig. 6 shows simulation results for each of the three con-
trollers. It confirms that while the point-to-point controller
is able to follow rapidly moving targets, it is unable to
follow sharply turning objects with little forward velocity.
The direction-based controller maintains sight of sharply
turning targets, but experiences difficulties when following
rapid targets. The hybrid controller dramatically improves
the performance of both controllers, only experiencing
difficulties in following sharply turning targets.

It is important to note that controller stability has not
been confirmed here and that the simulations have only
covered constant velocity motion within the bounds of
the allowable platform velocities. Other motions could still
cause the platform to lose sight of a target. In addition, the
simulation is model-based and only an approximation of
the physical situation. However, the simulations do provide
good evidence as to the operation of the controllers, and
confirms our proposition that the hybrid controller offers
better performance than its components.

3.3 Actual Controller Results

Actual results of the controller responses to target tra-
jectories are now presented. It is difficult to obtain ground
truth when following a human target, so the responses here
were generated by following a second robotic platform with
a salient planar target attached. These pose measurements
are not as noisy as those obtained from a human, but still
represents a good approximation and allows for the actual
behaviour of controllers to be examined. The responses
were measured using platform odometry. While this odom-
etry is subject to drift, it is reliable over short distances
and hence a sufficiently accurate measure of position for
our purposes. We stress that while these platforms are
equipped with odometry, our system does not make use
of this information and is purely vision-based.

Responses of the controllers to circular trajectories are
shown in Fig. 7 and confirm the behaviour exhibited in
simulation. Fig. 8 shows step responses to a target offset
in both position and orientation. Again, behaviour close
to that exhibited in simulation is observed.

In the final experiment a human walked along a pre-
determined path with the robot following from a preset
starting position. Internal robot odometry measurements
were logged and are displayed for comparison with the
predetermined path in Fig. 9. Although odometry drifts,
and the starting point and orientation of the platform
could not be accurately controlled, a good idea of the
various controller behaviours is obtained. As indicated,
both sub-controllers failed during the experiment while the
hybrid controller was successful, suitably overcoming the
conditions that caused the sub-controllers to fail.

−2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

x (m)

y
(m

)

−2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

x (m)

y
(m

)

Fig. 7. Response of the point-to-point (red), direction-
based (blue) and hybrid controller (green) to a target
object following a circular path (grey).
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3.4 Limitations due to Motion Blur

The simulation results have indicated that the hybrid gain-
scheduling controller is able to follow targets at speeds of
up to 2m/s. Unfortunately, in practice, the allowable tar-
get speed is significantly lower due to the effects of motion
blur. Practical experimentation, using a laser tracker to
determine human walking speeds, shows that the system
is capable of following a target at approximately 0.7m/s.
Motion blur introduces significant smoothing and removal
of feature information. As a result, insufficient features are
extracted and feature-based recognition strategies would
fail. While predictive tracking such as the Kalman filter
approach used here does assist in countering motion blur,
it is only able to do so for a brief period of time.

The primary causes of blur in our human-following system
are sharp movements of the PTU and abrupt platform
accelerations. These movements form part of the controller
response to a rapidly moving target, so the need to
minimise them by ramping up speeds results in a decrease
in the allowable speeds which can be tracked.

Despite limiting the system’s speed of operation, the
effects of motion blur do not affect the conclusions made
in this work. Analysis of Fig. 6 shows that the hybrid
controller still offers better performance than its sub-
controllers in the practical system’s range of operation.
It should also be mentioned that blur can be countered
through better control of lighting conditions, by using
better cameras, or through software algorithms.

4. CONCLUSIONS

We have presented an approach to robotic human-
following using pose information extracted from single
images. Traditional point-to-point controllers are prone
to losing targets that turn sharply. Direction-based con-
trollers remedy this, but can lose rapidly moving targets
due to non-ideal trajectories. A hybrid gain-scheduling
controller that combines benefits of the two has been
presented and shown to outperform them. While the point-
to-point controller would not suffer orientation-induced
losses if all sides of the target were recognisable, we believe
that the use of the hybrid controller to follow a target
intelligently is a much less involved problem and therefore
more suitable for real-time following.

A model of our vision system has been presented and
used for simulation. Planned future work involves using
this model to evaluate potential paths and select those
which maximise feature visibility. Collision avoidance is
easily incorporated in this approach, making the system
practically feasible. In addition, the inclusion of other
sensors and target trackers will lift the burden of the vision
system and assist in reducing the effects of motion blur.
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