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ABSTRACT

Underground mine automation has the potential ttreéase safety, productivity and allow
the mining of lower-grade resources. In a miningienment with both autonomous robots
and humans, it is essential that the robots areeabl detect and avoid people. Current
pedestrian detection systems and the reasonshbgtare inadequate for mining robots are
discussed. A system for human detection in undengramines, using a fusion of three-
dimensional (3D) information with thermal imaging proposed. The system extracts regions
of interest and classifies them as human or baakguo The scene excluding the pedestrians
is assumed to be static and is intended to be tesddtermine the ego motion of the vehicle.
In addition to the thermal camera, a distance sensil provide depth information and
allow the calculation of the vehicle and pedestniatocities. Various classification methods
are compared and it is shown that a neural networvides the best results in terms of
speed and accuracy. The results of tests on twas&izors indicate that further work is
required to determine the effect of the harsh emriment on the accuracy of the sensors.

Keywords: underground, mining, autonomous robdistaxcle detection, human tracking,
thermal imaging, classification.

1 INTRODUCTION

Transportation machinery is responsible for a lgggetion of mine deaths in South Africa.
After rock falls, vehicles are the second leadimgise of mining fatalities. A reliable
system for detecting people near mining vehiclesesded to prevent collisions between
vehicles and personnel. The South African minirdustry has committed itself to strive
for zero fatalities by 2013 [1]. Given that the ruen of mining fatalities in 2010 was 128
[1], achieving zero fatalities by 2013 is unlikely be possible without a fundamental
change in mining methods. Automation in mines asability to improve human safety
[2] and potentially enable the mining of resourtest cannot be mined in the traditional
way [3]. An autonomous mine vehicle operates inaggma with people must be able to
detect humans in order to operate without positigreat to nearby personnel. As a step
towards an underground autonomous mine vehiclegdegirian detection system is
proposed that will assist vehicle operators by jotew) collisions.

It is desirable that the detection system can leel us future to provide automated mine
machines with the ability to operate safely in cmagtion with humans. The system should
be able to detect and localise people near an graerd mine vehicle, which allows the
system to be used for the planning of a safe patlna people in an underground mine.
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There are a number of existing proximity warningteyns for mining vehicles, using
technologies such as ultrasonic, laser, radar, ®a8io Frequency Identification (RFID)
tags, cameras or some combination of these. Sontlkeo$trengths and weaknesses of
these warning systems are outlined below.

Radar-based proximity detection is used for surfageng equipment as an aid to drivers
of dump trucks for detecting people and small velkidbehind the truck. The system is
fairly effective with only occasional false alarij@g. The close proximity of tunnel walls
in an underground mine causes frequent false aJarmaking the use of radar problematic
underground [5].

GPS proximity detection has been proposed for sarfaining operations. Each vehicle
and worker broadcasts its position to nearby vehichA display in the vehicle shows the
position of nearby people, vehicles and statiordojects and alarms if they are within a
predetermined range. The reliance on GPS signalduyales its use in a GPS deprived
underground environment.

RFID tags are popular for collision avoidance syst@®wing to their very low false alarm
rates. Each miner has an RFID tag embedded in¢hpilamp. A transmitter mounted on
the vehicle determines the distance to each tad¢p Rifstems do not provide the exact
location of the personnel, merely how close they. &FID do not provide sufficient

information for an autonomous vehicle. The factttR&ID cannot provide direction

information implies that it cannot be used to pgoath around a pedestrian.

A machine vision based pedestrian tracking syst@macldress some of the shortcomings
of current systems. Vision provides a way of detgcpeople and determining exactly
where they are in relation to a vehicle. Thermdtaied (IR) imaging provides the
advantages of vision based detection without tludlpms of sensitivity to illumination
and obscuring dust. Unlike visible range imagidgg tllumination for thermal images is
radiated by the objects being imaged, in this gesmple. The long wavelength (7-jirh)

of thermal IR allows it to penetrate dust and sm@ke

The IR spectrum can be divided into four main ragioThe main regions are near-
infrared, short-wavelength, mid-wavelength and larayelength IR. Near-infrared (0.7 to
1.4um) is commonly used for light-based distance sensoch as laser scanners and
Time of Flight (TOF) cameras. Near-infrared illumimon is also often used for night-
vision surveillance since this wavelength can beaed using the same imaging sensor
used for visible light. Short-wavelength IR is uded various process monitoring and
inspection tasks such as hot furnace monitoringl-Wivelength IR can be used for gas
spectroscopy. Long-wavelength IR (or thermal IRdhis region of interest for this paper
and is used for thermal imaging. It can be showinglsWien’s displacement law, that
objects at room temperature, around 300 K, emitadation in the long wavelength IR
region (peak wavelength of 9um).

In Section 2 of this paper the basic architecturéahe proposed pedestrian detection
system and the major sub-systems is described. résgts of tests to evaluate the
segmentation and classification algorithms and distance sensors are presented in
Section 3. The results are discussed and thenwsiank are drawn and recommendations
presented.
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2 SYSTEM ARCHITECTURE

The proposed detection system uses the fusioreafdl imaging and a thr-dimensional
(3D) image for pedestrian detection. The sensod leensists of a FLIR A300 therm
camera, a SwissRanger SR4000 TOF camera and anK{beat, as showFigure 1.

XBOX 360

Figure 1: The sensor used for the detection system

A region that the sensor identifies as having gpenature that indicates the region cc
be human is defined as a Region of Interest (RTHe detection system first extra
ROIs which are then classified as being human okdraund objects. The 3D points fro
the depth camera will be projected into the FLIR'ermal image. The humans identifi
in the thermal image can be extracted from therBBge by determining which 3D poir
project the human regions of the thermal im:

The 3D position of the people will be used by trecking system. The tracking syst
estimates the trajectory of the people in the camsdield of view. The backgroun
excluding pedestrians, is assumed to be staticawaalyis used to determine thajectory
of the vehicle. The vehicle trajectory estimatioinll voe done using the establish
iterative closest point surface matching algorittusing the trajectory of the vehicle a
the pedestrians the system calculates whethetigsiaolis likely tc occur

In order for the system to extract ROIs and clgdtiém as human or background, ther
image segmentation and classification of the imdgke place. These steps are outli
and various classification methods compared b

2.1 Thermal Image Segmentation

The system first extracts the ROIs and those amefir as human by a classification <
are tracked. The thermometric image provided leyRhIR camera allows segmentat
of the image on the basis of an empirically detasdi temperature trshold. Tests
performed show that the temperature based segnmentattperformed two more compls
segmentation algorithms.

2.2 Classification
There are a number of methods for classifying hiamarnhermal images. To the authc
knowledge, there has not b a quantitative comparison of methods for hur
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classification in thermal imaging. In the absendeacclear choice, it was decided to
compare four different classification modalitieti€lclassification methods compared are:
An appearance based classifier using the differert@een the candidate and
a template.
a. A feature based classifier which uses a numbeeatiifes extracted from the
image which are classified using a Parzen classifie
b. A neural network classifier.
c. A radial basis function support vector classifier.

A single binary classification was chosen for eatibn of the classifiers. The classifiers
all indicate whether a sub-image is of a singleditag pedestrian or not. The final system
is intended to involve multiple classifiers to it&n groups of pedestrians, occluded
pedestrians and people in poses other than standing

2.2.1 Template classifier

The first method tested was a template classifiemplate-based classification has been
used for human detection in thermal images from ingpvehicles. For example Nanda

and Davis [7] use a probabilistic template credteth training images. It was decided to

create a template that represents the averagerappeaof a person, similar to the idea
used by Nanda and Davis. The images of humanseitrdiming data are rescaled to form

an MxN pixel image. The template is the mean of shaled images. The candidate
regions are rescaled to the same dimensions atetma@ate and the two are compared
using an absolute difference distance measure, i.e.

Diﬁerenceziiabs(T -1y ) (1)

i=1 j=1

where T is the template image and | is the imadgetolassified. If the difference between
the image and the template is less than a threskallte then the candidate image is
classified as human.

2.2.2 Parzen classifier

The second method tested was a Parzen classiftbr imiage features. Fehlman and
Hinders [8] use 15 features and a committee ofsiflass for classification of non-heat
generating objects in thermal images. A smaller bemof features were chosen to test the
Parzen classifier. The feature vectors used fossdiaation are the mean, standard
deviation, aspect ratio, the entropy and fill rasfahe images. The fill ratio is the ratio of
the number of pixels extracted as foreground pixelthe total number of pixels in an
enclosing rectangle. A Parzen classifier is astaél classifier that uses Bayes’ theorem
and a Parzen density estimate. The Parzen derstityate, estimates the conditional
probability of getting a given feature vector (Dyen that the image is of class j;fQ.e.:

j (2)

IE o ZH(
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where O is the §' training feature of class J,iM the number of feature vectors belonging
to class |, h is the length of the sides of a hgplee with the dimensionality of the feature
space (d) and H is the Parzen window function i.e.:

H(u):{l \up\sl{z p=1..d )
0 otherwise

The Parzen classifier uses Bayes’ theorem anddheeR density estimate, in Equation 2,
to determine the posterior probability that the gmdelongs to a certain class given the
observed feature vector i.e. R|(@.

o, o)~ P10 @
AT N T

P(Q) is the prior probability of getting an object d&ss j, which can be estimated from
the frequency with which class j is observed. Pigalled the evidence and normalises
the posterior probabilities so they sum to one.

The image is classified as human if the probabifitgt it is human is greater than the
probability that it is not plus some offset. Thefset allows the adjustment of the
sensitivity and false positive rates.

2.2.3 Neural network classifier

The third classifier investigated was a neural ekwclassifier. Neural networks have
been used for a wide variety of computer visionliggpons including: vision based
vehicle driving, handwritten digit recognition, &adetection and pedestrian detection.

The network chosen for evaluation is a single hidtkeyer network with a sigmoidal

activation function. The input images from the segtation algorithm are re-sampled to
produce 20x48 pixel images. The high dimensionaditythe input is reduced using a
principal component analysis. Using the magnituti¢he eigenvalues, it can be shown
that the first 80 components capture the majoritthe significant information about the

images. For classification the input image is state 20x48 pixels and then projected
onto the lower dimensional space using the 80 chasemponents. The 80 resulting
features are then classified by a neural netwotk 80 input nodes. Initial tests showed
that a network with 12 hidden nodes gave good t&sthe neural network is trained three
times using back propagation and the weights tivattfpe smallest error are saved.

2.2.4 Support vector classifier

Support vector classification is a popular metlod pedestrian detection. A support
vector classifier was tested for classifying th& tenages. A support vector classifier finds
a hyperplane in feature space that separates thelasses of objects with the maximum
margin. The MATLAB SVM toolbox was used for the ilementation of the support

vector classifier [9].
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A number of kernels were tested and it was fothat the Radial Basis Function (RE
kernel performed the best. As with the neural netwie input images are scaled and t
a principal component analysis is performed to peed80 features that are used
classification. A soft margin (C value 00) was used that allows the classifier to acce
small number of training errors. Allowing a smallmber of errors enables the classi
to generalise better by not over fitting the ddiae receiver operating characteristic cu
for the classifier s obtained by adjusting the bias of the hyperpkare evaluating th
performance for each value of the bi

2.3 Distance Sensors

In order to predict the trajectory of the peoplentified by the classification step, t
distance from the vehicle to theople needs to be determined. It was decided tBa:
camera is necessary in addition to the thermal camwing to the limitations of using
single camera for depth estimation. Monocular deggtimation methods such as de
from focus require a numr of images to determine distance and are too &owollision
avoidance. The high cost of thermal cameras doemake stereo IR a viable option s
fusion of the thermal and distance images is req

There are a number of possible depth sensat could be used, such as TOF came
laser scanners and structured light cam

Structured light sensors project a known patterto an surface and record the patt
using a camera a certain distance from the prajette projected pattern can k series
of lines, a grid of lines or matrix or doFigure 2shows the principle used to calculate
distance by triangulation. It can be shown usingilarity of triangles that the x and
coordinates of the target ¢

_ bu
X = @
f cot@—u (6)
bf
Z=———
f cotd—u @)

camera
pattern

projector

—h

target

Figure 2 Schematic showing the principle of structuredhtigiangulation (adapted fror

[11])
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Laser scanners and TOF cameras operate on simiaigbes to each other. Both have of
an emitter that emits a pulse of light and a remreikiat measures the round trip time of the
light. For typical measurement distances the raupdime is in the order of picoseconds
and therefore the electronics required to measheetime directly are expensive. TOF
cameras measure the phase shift of modulatedrigfleicted off a target to calculate the
distance for a grid of pixels simultaneously. Laseanners have a single receiver that is
mechanically scanned and uses pulse travel tinpbase shift to measure distance.

Commercial TOF cameras use a modulated near-idfrgat source and measure the
phase shift between the transmitted and receiggd [iLO]. The maximum unambiguous
distance (Qhamp to a target would be:
o

Dunamb 2f (8)
where f is the modulation frequency of the lightis®. Any distance less than R is
calculated by measuring the ratio of the phase @hifto a full cycle and multiplying it by
the maximum distance.

_ ¢
d=-"D 9
27T unamb ( )

One of the problems with TOF cameras is due to @lsa#t ambiguity. A phase shift of
slightly over Z would be measured as a shift of just greater #t&an and according to
Equation 9 the calculated distance would be closto.

3 RESULTS

This section describes the results of subsystetmgessing preliminary indoor data. A

dataset was taken in a corridor environment udiegRLIR A300 thermal camera. The
thermal images from the FLIR were segmented toaektROls that could possibly be

humans. The ROIs were classified by hand to proaideound truth dataset. The regions
were classified as containing: a single standingge multiple overlapping people, a
partial image of a person or no person. The classibn resulted in a training set

containing sub-images of 332 people, 55 groupseopfe, 126 partially occluded people
and 1287 sub-images not containing a person. Titwangl-truth data was used for the
training and verification of the classification atghms.

The SwissRanger SR4000 TOF camera and a MicrosoécKstructured light 3D sensor
were tested in an operational mine and the reaudtsliscussed in Section 3.3.

3.1 Segmentation

Figure 3 shows an image from the FLIR camera. Igeaé ROIs should only be the two
people in the image. It is shown that a simple teraure threshold-based ROI extraction
performs better than two more complex algorithms.

The first ROI extraction algorithm uses a combioatof intensity and edge information.
The algorithm extracts regions with a certain istgnsurrounded by strong edges. It was
found that objects in the thermal images are immyi surrounded by edges that are
incomplete. A robust integration was used that @cdhilghlight regions surrounded by
incomplete edges but it is computationally inteasiv
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A histogram based segmentation algorithm, using ©thvéshold selection method, v
also tested for segmentation. Otsu's method is amrtynused for greyscale ima
thresholding [12] Otsu's method assumes a bimodal distribution nbénsities ani
attemps to optimally divide the distribution into two.t€d's threshold selection does
work on the thermal images. This is because th@eeature distribution is u-modal due
to the uniformity of the background temperat

Figure 3: An example image for ROI extraction

It was found that a simple temperature threshotidaegmentation performed better t
the two abovewnentioned algorithms. The temperature thresholdhetd regions that ha
a temperature of between 26.8 ani°C and then performs a morphological ning, on
the binary image created, to remove small noiséonsg The ROIs extracted using f
temperature threshold are showrFigure 4.

Following thresholdingeach region in the binary image is numbered usicgraecte(
component labelling method so that the regionsbeadassified separate

Figure 4 ROIs extracted with the temperature range thrés
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3.2 Classification

Each classgier classifies the ROIs as a single standing perso something else. Tt
dataset of 1800 manually classified regions is oamg divided into training an
evaluation datasets, each of approximately the ssimee(a random division with eqt
chance of bing in each set). Each classifier is trained dogh trun three times, the fit
time it is run using the data from the evaluatieh $he two subsequent tests are run u
a new randomly chosen sset of the data. Each classifier is evaluated imd of its
classification accuracy and spe

The classifiers are all run MATLAB R2010b on a 2.&Hz Pentium 4 PC. The speed
each classifier is averaged over the three teststaresults are shownTable 1.

Table T A comparison of classifier speeds. (runnin(MATLAE R2010b)

Classifie Speed (classifications/s)
Templatt 4830

Parzen 552

Neural Networ| 1227

Support Vectc 1677

Figure 5shows typical Receiver Operating Characteristic @R€urves for each of tt
classifiers.

Receiver Operating Characteristics
100 s .

=

B [op o0
o) = =

e
]

True positive percentage

0 20 40 60 80 100
False positive percentage

Figure 5 The Receiver Operating Chaiteristics of a) the template classifier, b)
Parzen classifier, c) the neural network and d)ghpport vector classifir

The performance of the template classifier is $icgmtly poorer than the other two a
does not warrant further consideraticespite being the fastest.

The support vector classifier shows intermediatassification results but perforr
significantly worse than the Parzen and neural aktvelassifiers. The support vect
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classifier is the second fastest because clagsiircainvolves a single matri
multiplication, an addition and a sign che

The neural network achieves very similar clasdifica performance to the Parz
classifier. The main difference between the twdhist the Parzen classifier achieve
maximum truepositive rate of 98% while the neural network catedt 100% of th
targets (albeit with a high false positive rateheTclassifier is required to detect pec
without missing any, i.e. the true positive rateda®to be close to 100%. The effec
false positives is less severe simply adding to thebau of objects that need to
tracked. Consequently achieving a 100% detectitenisaan important characteristic o
classifier for pedestrian detectic

The neural network classifier achieves stly better detection performance anc
significantly faster classification than the Parztassifier. The neural network classit
also achieves a significantly lower number of fapsesitives compared to the supp
vector classifier. The higher speef the support vector classifier is not sufficieit
compensate for inferior performance. The neurawaet classifier is therefore tf
classifier of choice for the proposed human detecsysten

3.3 Distance Sensors

Testing of the two 3D sensors underind showed a significant disadvantage of u:
TOF camera technology in a harsh underground emviemt

The drilling of blast holes in a mine gives off iaef water spray; coupled with hi
humidity this creates a fine mist in active arehthe mine. Tle TOF camera's amplituc
image in Figure &hows the water mist near the base of the suppdhe centre of th
image. The distance image showr Figure 7shows a significant jump in measui
distances near the base of the support due to iste¢hmare

Figure 6 Time of Flight camra amplitude image through m
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Figure 7 Time of Flight camera distance image through

The reason for the poor performance of the TOF cansethat the camera is receivin
reflection off the object of interest as wes multiple reflections off the intervening wa
droplets. The reflection off the mist causes tleeineed phase shift to be less than the
value and therefore the measured distance is sieattdt is expected that dust, which v
be more of a probia in the tunnels where the pedestrian detectiotesysvill operate
will have a similar effect as the m

The TOF camera was also found to suffer from sigguitt motion blurring due to the fe
that a single range image is calculated using fthasemeasurements. Reducing f
integration time of the camera would reduce therblg but would decrease the range
the camera.

The structured light Kinect sensor seems unaffelotethe mist. This is probably becat
the processing hardware calculates the distantkeohasis of the most intense reflecti
Without a known groundruth distance the effect of the mist on the aacy of the Kinect
remains undetermined.

4 CONCLUSION

This paper examines a proposed pedestrian detesystem in underground mines usin
fusion of 3D information with thermal imagi. This system is proposed in response tc
high number of fatalitiesn the mining industry caused by underground trartsgion
machinery and the fact that current pedestrian ctlete systems are limited. TI
architecture of the proposed system is outlined thedsteps of segmenting images
classifying them describ. It is shown that due to the thermometric naturthe images
temperature rangleased segmentation is superior to other more comgeggmentatiol
methods. A neural network classifier is chosentfe detection system because of
superior performancen the test dataset. It is shown that a neural orktwelassifier
outperforms a Parzen classifier slightly in accyrand significantly in speed. The neu
network is slightly slower than a support vectassifier but achieves similar detect
rateswith far fewer false positives. An evaluation ofaV@D cameras shows that T(
cameras suffer from inaccuracies due to obscurimgf. fThe structure light came
appears unaffected by the same obscuring misulbiinefr work is needed to confirm tt
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5 RECOMMENDATIONS

Further work required involves the acquisition dbhege underground dataset for testing,
including a dataset from a moving platform in ordertest the calculation of vehicle
velocity from the 3D data. The acquisition of agladataset will enable the classifier to be
tested and optimised for the mine environment.

Work is also required to determine whether theatftd dust on the TOF camera is similar
to the effect of mist, as suspected. A quantitatimalysis of the effect of dust on the
accuracy of the TOF and structured light 3D sensoatso required.
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