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1. INTRODUCTION
The laser beam quality factor (M2) is a useful parameter for
describing laser beam propagation through linear optical sys-
tems and can be used directly to calculate how tightly a laser
beam may focus or how fast it diverges during propagation
[1,2]. Since this factor does not change when propagating
through media with a quadratic refractive index profile, a
change in the beam quality factor can be used to infer the pre-
sence of aberrations and thereby study the media of interest.
For these reasons, among others, research into the beam qual-
ity factor of Gaussian beams has generated much interest in
the laser community [1,2]. However, despite the large body of
work on the subject of laser beam propagation, to date very
little work has considered how the change in laser beam qual-
ity is related to aberrations.

Optical aberrations have been a subject of interest for some
time now [3–7]. They have found use in the fields of imaging
[3,4], ophthalmology [5], and atmospheric turbulence [4,7].
Their use in laser beams has mostly been limited to the aber-
rations’ impact on the laser field during propagation [8–10].
Research on their impact on individual beam parameters such
as the beam quality factor, beam size, waist size, and waist
location has been limited at best. It follows that the beam
quality factor is a measure of a real beam’s deviation from
the “ideal” Gaussian mode, both in amplitude and in phase
[1,2,11]. The latter point suggests that, when aberrations
are present, a concomitant decrease in the beam quality factor
should be noted. Siegman and coworker showed both theore-
tically [12] and experimentally [13] how a lens aberrated by
spherical aberration can degrade the quality of a laser beam
of any size and that, beyond a certain size, the M2 factor in-
creases sharply. This model was extended to a tensor formu-
lation to include all primary Zernike coefficients in the
characterization not only ofM2 but also of divergence and cur-
vature but was not tested experimentally [14]. An attempt to
use the model in experiments has not been successful as the
model is deemed to be “so mathematical, that it might not be
appropriate to apply in practical applications” [15]. It is prob-
ably because in [14] the beam quality factor is presented in the

form of a tensor, J, which is of little practical value but very
important in theoretical analysis of laser beams.

In this paper we propose a model for the impact of aberra-
tions on the laser beam quality factor. Our model, based on the
moments concept, is practical to use and easy to demonstrate
in the laboratory. In particular we propose a formulation for
describing the impact of aberrations on the laser beam quality
factor of Gaussian beams. We will show that this formalism
leads to a closed-form solution in terms of aberrations ex-
pressed in terms of the Zernike polynomial set and generalize
the result to include Gaussian laser beams truncated by circu-
lar apertures of arbitrary size. The latter is important in such
studies as any aberration description requires a very careful
definition of the aperture over which the aberrations are de-
fined. Our model predictions are in general agreement with
those found by others, but moreover we present experimental
validation of the results through the use of digital holograms
written to a phase-only spatial light modulator. The accuracy
of the agreement should prove this a useful tool for experi-
menters in the laboratory.

2. THEORY
The beam quality factor of a propagating field is invariant if no
sources of aberrations are present in its path, and it may be
calculated from the product of the near-field and far-field dis-
tributions of the beam [1]. Alternatively, the beam quality fac-
tor can be defined by the curvature removal method, in which
a curvature fit is made to the wavefront at any position along
the propagation path and subsequently subtracted to leave a
beam “waist” from which the beam size (near field) and diver-
gence (far field) are calculated, and the beam quality factor
inferred. In the case where aberrations are present in the
beam path, the beam quality factor is no longer invariant dur-
ing propagation, and the latter method lends itself to comput-
ing the change in beam quality factor as a function of the
propagation distance.

We can apply this method to a general complex amplitude
transverse electric field, at some arbitrary propagation
distance, given by
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Uðρ; θÞ ¼ ψðρÞ expðiϕðρ; θÞÞ; ð1Þ

which carries power through some aperture of radius a, given
by P ¼ a2

R
2π
0

R
1
0 ψ2ðρ; θÞρdρdθ, where ρ ∈ ½0; 1� and θ ∈ ½0; 2π�

with the radial term normalized to a. We can define a beam
whose propagation for the two principal axes, x and y, can
be treated as separable problems. It can be shown that the
beam quality factor using the curvature removal method is
defined by (see Appendix A)

M2
x ¼ π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
xθ2x − V2

x

q
; ð2aÞ

M2
y ¼ π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
yθ2y − V2

y

q
; ð2bÞ

where the beam size, ωx, and the divergence, θx, and their
y-axis equivalents are given by

ω2
x ¼ 4a4

P

Z
2π

0

Z
1

0
ψ2ρ2 cos2 θρdρdθ; ð3aÞ

ω2
y ¼ 4a4

P

Z
2π

0

Z
1

0
ψ2ρ2 sin2 θρdρdθ; ð3bÞ
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π2P
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2
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�
2
�
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×
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Z
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θ2y ¼ λ2
π2P
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2π
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Z
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sin2 θ
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sin θ ∂ϕ
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þ θ2e : ð4bÞ

The spatial-angular moment is given by

Vx ¼ 2λa2
πP

Z
2π

0

Z
1

0
ψ2ρ cos θ

�
cos θ ∂ϕ

∂ρ −
sin θ
ρ

∂ϕ
∂θ

�
ρdρdθ;

ð5aÞ

Vy ¼ 2λa2
πP

Z
2π

0

Z
1

0
ψ2ρ sin θ

�
sin θ ∂ϕ

∂ρ þ cos θ
ρ

∂ϕ
∂θ

�
ρdρdθ:

ð5bÞ

Note that, in this formalism, we have introduced the trunca-
tion of the field (by some aperture) by limiting the integrals to
finite size in the radial coordinate, which goes from 0 to 1 in
the normalized state and from 0 to awhen not normalized. It is
for this reason that the last term in Eqs. (4a) and (4b) appears:
it accounts for the added divergence due to the finite aperture

and approaches zero in the limit of a large aperture. It can be
shown that it is given by [16]

θ2e ¼
16λ2
π2P ψ2ð1Þ: ð6Þ

It remains to introduce the aberrations to the field via an
appropriate modulation of the phase function, ϕðρ; θÞ. We
choose to express the phase (or wavefront) as a linear
combination of Zernike polynomials, orthogonal over the unit
circle:

ϕðρ; θÞ ¼ 2π
Xm
n¼0

An0Rn0ðρÞ

þ 2π
X∞
n¼1

Xm
n¼1

RnmðρÞ½Anm cosmθ þ Bnm sinmθ�: ð7Þ

Here RnmðρÞ is the Zernike radial term and n and m (nonne-
gative integers) are the order and the ordinal numbers, respec-
tively (the order is related to m such that m ≤ n and n −m is
even). The Zernike odd and even coefficients in waves are re-
presented by Anm and Bnm, respectively. The names, symbols
and rms polynomials of the primary Zernike aberrations,
which are of interest in this paper, are given in Table 1.

3. ABERRATED GAUSSIAN BEAMS
We select, by way of example only, the Gaussian field as
defined by

Uðρ; θÞ ¼
�
2γ2
πa2

�
1=4

expð−γ2ρ2Þ expðiϕðρ; θÞÞ; ρ ≤ 1; ð8Þ

where we have introduced a truncation parameter, γ ¼ a=ω,
to aid the analysis of aperture size on the properties of the
beam. The consequence is that the expression in Eq. (8) is
zero outside the aperture. Equation (6) can now be rewritten
as

θ2e ¼
32γ2

ðe2γ2 − 1Þπ3
�λ
a

�
2
: ð9Þ

A graph of this function of the truncation parameter is shown
in Fig. 1. It shows that, as the aperture size increases, the term
approaches zero, which is referred to as the soft aperture
case, and when γ ≥ 2, we can ignore this term. Physically, it
means that the beam is not experiencing diffraction effects

Table 1. Names, Symbols, and Polynomials of the
Zernike Primary Aberration Coefficients

n m Description and Symbol Polynomial

0 0 Piston, A00 1
1 1 odd y-tilt, B11

p
2ρ sin θ

1 even x-tilt, A11
p
2ρ cos θ

2 2 odd y-astigmatism, B22
p
6ρ2 sin 2θ

0 Defocus, A20
p
3ð2ρ2 − 1Þ

2 even x-astigmatism, A22
p
6ρ2 cos 2θ

3 3 odd y-triangular astigmatism, B33
p
8ρ3 sin 3θ

1 odd y-primary coma, B31

ffiffiffi
8

p ð3ρ3 − 2ρÞ sin θ
1 even x-primary coma, A31

ffiffiffi
8

p ð3ρ3 − 2ρÞ cos θ
3 even x-triangular astigmatism, A33

p
8ρ3 cos 3θ

4 0 Spherical aberration, A40
p
5ð6ρ4 − 6ρ2 þ 1Þ
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due to the aperture; the smaller this term, the greater diffrac-
tion it experiences and so the faster the beam diverges.

The beam quality factor of the Gaussian field is calculated
using Eq. (2) after substituting for ω, θ, and V as defined by
Eqs. (3)–(5), respectively. The aberrations are defined in
Eq. (7) and used as the expansion of the phase in Eq. (1). After
much algebra, the results for the two principal planes are
given by

M4
x ¼ 1

π½expð2γ2Þ − 1�γ8 f24π
3½B2

22½expð2γ2Þ − 1�½expð2γ2Þ − 2γ2 − 1�2γ4 þ 3ðB2
31½expð2γ2Þ − 1�½expð2γ2Þ − 2γ2 − 1�½expð2γ2Þ − 1 − 2ðγ4

þ γ2Þ�γ2 þ A2
31½expð2γ2Þ − 1 − 2γ2�½5 expð4γ2Þ þ 2γ2ðγ2 þ 1Þ − 2 expð2γ2Þð9γ4 þ γ2 þ 5Þ þ 5�γ2

þ 2ðB31B33 þ A31A33Þ½expð2γ2Þ − 1�½expð2γ2Þ − 1 − 2γ2�½expð2γ2Þ − 2ðγ4 þ γ2Þ − 1�γ2 þ ½expð2γ2Þ − 1�fðB2
33 þ A2

33Þ½expð2γ2Þ − 1

− 2γ2�½expð2γ2Þ − 1 − 2ðγ4 þ γ2Þ�γ2 þ 20A2
40½2γ2ðγ2 þ 2Þ þ expð4γ2Þ − 2 expð2γ2Þð2γ6 − γ4 þ 2γ2 þ 1Þ þ 1�gÞ�

þ ½expð2γ2Þ − 1�½expð2γ2Þ − 1 − 2γ2�fπ½expð2γ2Þ − 1 − 2γ2� þ 32gγ8g; ð10aÞ

M4
y ¼ 1

π½expð2γ2Þ − 1�γ8 f24π
3½B2

22½expð2γ2Þ − 1�½expð2γ2Þ − 1 − 2γ2�2γ4 þ 3ðB2
31ðexpð2γ2Þ − 1 − 2γ2�½5 expð4γ2Þ þ 2γ2ðγ2 þ 1Þ

− 2 expð2γ2Þð9γ4 þ γ2 þ 5Þ þ 5�γ2 þ 2B31B33½expð2γ2Þ − 1�fexpð2γ2Þ − 1 − 2γ2g½expð2γ2Þ − 1 − 2ðγ4 þ γ2Þ�γ2 þ ½expð2γ2Þ
− 1�ðexpð4γ2Þf½B2

33 þ ðA31 − A33Þ2�γ2 þ 20A2
40g þ γ2f40A2

40ðγ2 þ 2Þ þ ½B2
33 þ ðA31 − A33Þ2�½4γ6 þ 6γ4 þ 4γ2 þ 1�g

− 2 expð2γ2Þf½B2
33 þ ðA31 − A33Þ2�½γ3 þ γ�2 þ 20A2

40ð2γ6 − γ4 þ 2γ2 þ 1Þ� þ 20A2
40gÞ� þ ½expð2γ2Þ − 1�½expð2γ2Þ

− 1 − 2γ2�½πðexpð2γ2Þ − 1 − 2γ2Þ þ 32�γ8g; ð10bÞ

where we have made use of the orthogonality of the trigono-
metric functions as well as the radial component of the
Zernike polynomials:Z

2π

0
cosmθ cos qθdθ ¼ πð1þ δm0Þδmq;Z

2π

0
sinmθ sin qθdθ ¼ πð1 − δm0Þδmq;Z

2π

0
cosmθ sin qθdθ ¼ 0; andZ
1

0
RnmðρÞRpqðρÞρdρ ¼ δnpδmq

2ðnþ 1Þ :

Equations (10a) and (10b) are the main results of this paper.
Please note that this definition of the beam quality factor is the
square of the better established M2, is expressed this way for
convenience, and will be retained for the rest of the paper. The
equations show that the beam quality factor is affected by
individual amounts of y-astigmatism, x- and y-coma, x- and y-
triangular astigmatism, spherical aberration, and the trunca-
tion parameter. It is generally established that tip/tilt and
defocus do not affect the quality of the beam, and this is con-
sistent with the above-mentioned results. One can understand
this from the perspective that defocus is nothing but a curva-
ture on the wavefront due to an ideal lens, whereas tip/tilt
simply adjusts the propagation axis of the beam, a factor that
is removed through the first moment subtraction of the field in
deducing the second moment sizes. Interestingly, the x-
astigmatism does not influence the beam quality factor, while

the y-astigmatism does. This is somewhat surprising consider-
ing that these two aberrations are similar in that each one is
essentially a lens with two focal axes oriented orthogonally to
one another. This is to say, they exhibit quadratic index beha-
vior in axes orthogonal to each other. In x-astigmatism both
focal axes coincide with the principal Cartesian axes, whereas
with y-astigmatism the focal axes are at 45° to the principal
axes. This implies that, with respect to the Cartesian axes,

x-astigmatism behaves very much like a normal lens (without
the rotational symmetry associated with defocus) since the
beam quality factor is calculated in the principal axes. With
y-astigmatism, the lenslike behavior does not take place in
the principal axes where the beam quality factor is calculated
and thus has a deleterious impact on the laser beam quality.
Note that, when dealing with astigmatic beams, the choice of
principal axes is always an important factor in how the beam
propagation is described [12,13]. In this work we have
adopted the sensible approach of choosing the principal axes

Fig. 1. (Color online) Added far-field divergence due to the aperture
size as a result of truncation.
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of the beam to coincide with that of the x and y planes of the
Zernike basis functions. If one were to rotate the choice of
principal axes by 45°, then the role of x- and y-astigmatism
would interchange (x-astigmatism would now affect the beam
quality factor), and in general it is the component of the as-

tigmatism at 45° to our choice of principal axes that influences
the beam quality factor [5].

For completeness we point out that the equations can be
reduced to cover the soft aperture case (γ ≥ 2) and a truncated
plane-wave (γ ∼ 0) case and are given in Table 2. An average of

Table 2. Special Cases of the Beam Quality Factor Equations

Beam Quality Factor, M4

γ ≥ 2 M4
x 1þ 24π2γ−8ðB2

22γ4 þ 3ð5A2
31 þ 2A31A33 þ A2

33 þ ðB2
31 − B2

33ÞÞγ2 þ 60A2
40Þ

M4
y 1þ 24π2γ−8ðB2

22γ4 þ 3ð5B2
31 − 2B31B33 þ B2

33 þ ðA2
31 þ A2

33ÞÞγ2 þ 60A2
40Þ

γ ∼ 0 M4
x 16=π þ 8ðπ2ð3B2

22 þ 6ð3A2
31 þ 2A31A33 þ A2

33 þ ðB31 þ B33Þ2Þ þ 20A2
40ÞÞ

M4
y 16=π þ 8ðπ2ð3B2

22 þ 6ð3B2
31 − 2B31B33 þ B2

33 þ ðA31 þ A33Þ2Þ þ 20A2
40ÞÞ

No aberrations M4 1þ ð4=πÞðexpð2γ2Þ − 1Þ−2ððπ − 16Þγ2 − 8þ πγ4 þ expð2γ2Þð8 − πγ2ÞÞ

Fig. 2. (Color online) Beam quality factor of a truncated Gaussian beam for (a), (b) γ ¼ 0:3, (c), (d) γ ¼ 1, (e), (f) γ ¼ 2, and (g), (h) γ ¼ 3.
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these two cases returns the previously reported result for the
beam quality factor tensor, J [14], for all aberrations except
that of y-astigmatism ([14] reports no effect of y-astigmatism
on J). The impact of the aperture alone can be deduced by
setting all aberration coefficients to zero (see Table 2).

4. NUMERICAL RESULTS IN THE CASE OF
AN ABERRATED GAUSSIAN BEAM—HARD
APERTURE
To illustrate the usefulness of the theory, we calculate the
impact of aberrations on the laser beam quality factor for
the case of an aberrated and truncated Gaussian beam, as de-
scribed by Eq. (10). As expected, there is no dependence for
x-tilt (A11), y-tilt (B11), defocus (A20), and x-astigmatism (A22),
for which M4

x ¼ M4
y ¼ 1 for all γ. All other aberrations show a

monotonically increasing function for beam quality factor ver-
sus aberration coefficient, implying that no “balancing” of the
aberrations is possible—i.e., one cannot improve the laser
beam quality factor of an aberrated laser beam by introducing
other types of aberrations. The model correctly accounts for
the impact of the aperture size on the beam quality factor: in-
creasing γ (softer aperture) reduces the beam quality factor,
as expected. We also note that, for small values of γ, the beam
quality deterioration is mostly a result of spherical aberration
closely followed by coma: x-coma in the horizontal plane and
y-coma in the vertical plane. We note that, as γ increases from
1 to 2, coma, in both axes, begins to dominate with the change
over occurring at γ ¼ 1:91. The domination increases as γ in-
creases until γ ¼ 3, when y-astigmatism becomes the second

most dominant [Figs. 2(g) and 2(h)]. Last, we note that B31,
A33, and B33 have the same value of M4

x and that A31, A33

and B33 have the same value of M4
y, for all γ.

5. EXPERIMENT SETUP AND RESULTS
The experimental setup is shown in Fig. 3. A laser beam from
an He–Ne source (Thorlabs, Model HRP020) was passed
through a 4× beam expander onto a liquid crystal phase-only
spatial light modulator (Holoeye, Model HEO1080P) onto
which aberration coefficient holograms of 8bit gray scale ran-
ging from white (0 rad phase change) to black (2π rad phase
change) were programmed in a 1920 × 1080 pixel array. The
resulting aberrated beam was then imaged onto the detector
grid of a Shack–Hartmann wavefront sensor (Wavefront
Sciences, Model CLAS 2D) with a 4f lens relay system, thus
preserving both the amplitude and phase of the aberrated
beam. Both the amplitude and phase of the aberrated laser
beam could then be determined, as well as the resulting M2

parameter.
Primary aberrations with selected coefficients were

programmed onto the spatial light modulator (SLM). The
modular-2π holograms of all primary aberrations are shown
in Table 3 as gray scale images of size 1920 × 1080 pixels to
match the SLM dimensions. The Zernike radius was set at a ¼
1:44mm to be one sixth of the SLM screen width in the smal-
lest axis, with the laser beam width expanded to ω ¼ 1:9mm
(γ ¼ 0:763).

A calibration process was carried out to make sure that the
Zernike polynomials programmed onto the sensor were accu-
rate to within a reasonable error margin [17]. For each aber-
ration the selected coefficients were between −0:3λ and 0:3λ,
and 20 frames of data were gathered for each aberration to
allow averaging of the results.

The experimental results are presented in Fig. 4 for: (a) de-
focus, (b) spherical aberration, (c) x- and (d) y-astigmatism,
(e) x- and (f) y-coma, and (g) x- and (h) y-triangular astigma-
tism, with the theoretical prediction shown as a solid curve.
The data are plotted as mean values with error bars of 1 stan-
dard deviation and given for both principal axes. Clearly
the model, as given by Eq. (10), is in excellent agreement with
the measured data. As expected, defocus does not impact
on the beam quality factor, while spherical aberration ad-
versely affects the quality of the laser beam following a
simple power law: M4 ∝ A2

40, as found by others [12]. The x-
astigmatism does not influence the beam quality factor, while

Fig. 3. (Color online) Experimental setup for the demonstration of
optical aberrations in the laboratory. The digital holograms imparted
to the laser beam are relay imaged to the wavefront sensor for an ac-
curate phase measurement.

Table 3. Modular-2π Phase Screens of the Zernike Primary Aberrations

m

n −3 −2 −1 0 1 2 3

1

2

3

4
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the y-astigmatism does, thus confirming the departure of this
model over that reported previously [14]. As expected, due to
the asymmetry in coma, the resulting change in the beam
quality factor is not the same in the two principal axes [see
Figs. 4(e) and 4(f)].

6. CONCLUSION
We have derived closed-form equations that relate the impact
of an individual aberration on the beam quality factor. The re-
sult, which takes into account an arbitrary-sized aperture, has
been verified experimentally using digitally encoded optical
aberrations. These results should prove useful for practical
optical design given the ease with which the beam quality

factor may be calculated, as well as the accuracy of the
model.

APPENDIX A: DERIVATION OF EQ. (2)
We outline here the derivation of Eq. (2) using the method of
moments to derive an expression for the beam quality factor
using the curvature removal method. We apply this method to
a general complex amplitude transverse electric field, at some
arbitrary propagation distance, given by

Uðx; yÞ ¼ ψðx; yÞ expðiϕðx; yÞÞ; ðA1Þ

Fig. 4. (Color online) Beam quality factor dependence on rms Zernike primary aberrations (except tilt) in the x axis and y axis for the model
(graphs) and the experimental results (data points).
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where we have normalized the Cartesian plane ðx0; y0Þ to some
aperture of size a such that x ¼ x0=a and y ¼ y0=a. The power
carried by the field is then given by P ¼ a2∬ ψ2ðx; yÞdxdy. As
the propagation for the two principal axes can be treated as
separable problems, we outline the approach for the x axis
only, with the y axis following an identical treatment. We
make use of the standard definition of the beam quality factor
as a product of moments [16]:

M2
x ¼ 4π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i0hD2

xi
q

; ðA2Þ

where each moment is defined by

hxsDt
xi ¼

asþ2

P

ZZ
ψ2ðx − hxiÞsðDx − hDxiÞtdxdy; ðA3Þ

for arbitrary nonzero integers s and t. Without any loss of gen-
erality, we may take the beam center to coincide with the
aperture center so that hxi ¼ 0. Note that, in this expression,
the subscript 0 in the second-order spatial moment (s ¼ 2 and
t ¼ 0) implies that the calculation is done at the waist plane:

hx2i ¼ a4

P

ZZ
ψ2x2dxdy: ðA4Þ

In the paraxial regime, the angle Dx between the Poynting
vector and the z axis is given by

Dx ¼ λ
2πψa

����∂U∂x
����¼ λ

2πψa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂ψ
∂x

�
2
þ
�
ψ ∂ϕ
∂x

�
2

s
: ðA5Þ

Making the substitution s ¼ 0 and t ¼ 2 into Eq. (A3) and then
substituting Eq. (A5) into the result we get

hD2
xi ¼ a2

1
P

ZZ
ψ2ðDx − hDxiÞ2dxdy

¼ λ2
4π2

�
a2

P

ZZ ��
∂ψ
∂x

�
2
þ
�
ψ ∂ϕ
∂x

�
2
�
dxdy

−
�
a
P

ZZ
ψ2 ∂ϕ

∂x
dxdy

�
2
�
: ðA6Þ

Now we note that the above approach can in fact be used for
any propagation plane, not necessarily the waist plane, if the
expression in Eq. (A2) is adjusted to create a “virtual” waist
plane by subtracting the first-order spatial-angular moment
(hxDxi) from the second-order moments. This term is zero
at the waist but is nonzero at any other plane. The new expres-
sion for the beam quality factor then becomes

M2
x ¼ 4π

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihD2

xi − hxDxi2
q

; ðA7Þ

where the first-order spatial-angular moment (s ¼ t ¼ 1) is
given by

hxDxi ¼
a3

P

ZZ
ψ2xDxdxdy ¼ λ

2π
a2

P

ZZ
ψ2x

∂ϕ
∂x

dxdy: ðA8Þ

The above expressions, together with Eq. (A7), allow the
beam quality factor to be calculated at any plane if the ampli-
tude and phase of the field at that plane are known. These
expressions can also be formulated in terms of conventional
beam size (ωx ¼ 2hxi), divergence (θx ¼ 2hDxi), and the first-
order spatial-angular moment Vx ¼ ωxθx ¼ 4hxDxi. The trans-
formation to cylindrical coordinates is achieved through a
simple coordinate change.

REFERENCES
1. A. Siegman, “New developments in laser resonators,” Proc. SPIE

1224, 2–14 (1990).
2. T. F. Johnston, Jr., “M2 concept characterizes beam quality,”

Laser Focus World 26, 173–184 (May 1990).
3. V. N. Mahajan, Optical Imaging and Aberrations, Part I: Ray

Geometrical Optics (SPIE, 1998).
4. V. N. Mahajan, Optical Imaging and Aberrations, Part 2: Wave

Diffraction Optics (SPIE, 1998).
5. G-M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008).
6. M. Born and E. Wolf, Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffraction of Light,
7th ed. (Cambridge University, 1998), pp. 517–553.

7. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J.
Opt. Soc. Am. 66, 207–211 (1976).

8. A. Wada, H. Ohminato, T. Yonemura, Y. Miyamoto, and M.
Takeda, “Effect of comatic aberration on the propagation
characteristics of the Laguerre–Gaussian beams,” Opt. Rev.
12, 451–455 (2005).

9. O. Mendoza-Yero and J. Alda, “Irradiance map of an apertured
Gaussian beam affected by coma,” Opt. Commun. 271,
517–523 (2007).

10. R. K. Singh, P. Senthilkumaran, and K. Singh, “The effect of
astigmatism on the diffraction of a vortex carrying beam with
a Gaussian background,” J. Opt. A 9, 543–554 (2007).

11. R. Borghi and M. Santarsiero, “M2 factor of Bessel–Gauss
beams,” Opt. Lett. 22, 262–264 (1997).

12. A. E. Siegman, “Analysis of laser beam quality degradation
caused by quartic phase aberrations,” Appl. Opt. 32,
5893–5091 (1993).

13. J. A. Ruff and A. E. Siegman, “Measurement of beam quality
degradation due to spherical aberration in a simple lens,”
Opt. Quantum Electron. 26, 629–632 (1994).

14. J. Alda, J. Alonso, and E. Bernabeu, “Characterization of aber-
rated laser beams,” J. Opt. Soc. Am. A 14, 2737–2747 (1997).

15. T. A. Jeong and J. Lee, “Accurate determination of the beam
quality factor of an aberrated high-power laser pulse,” J. Korean
Phys. Soc. 55, 488–494 (2009).

16. R. Martinez-Herrero and P. M. Meijas, “Second-order spatial
characterization of hard-edge diffracted beams,” Opt. Lett. 18,
1669–1671 (1993).

17. C. Mafusire and A. Forbes, CSIR National Laser Centre, P.O. Box
395, Pretoria 0001, South Africa are preparing a manuscript to
be called “Phase calibration of the Shack–Hartmann wavefront
sensor using a phase only spatial sight modulator.”

1378 J. Opt. Soc. Am. A / Vol. 28, No. 7 / July 2011 C. Mafusire and A. Forbes


