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1 Introduction

The transformation of polarization state of light fields while
propagating in an anisotropic medium is an important topic in
the development of classical crystal optics (see, for example,
Refs. 1-3), and has led to a multitude of practical polariza-
tion devices. However, despite the success in applying the
theory, the underlying theoretical framework is based on the
limiting case of propagation of plane or quasi-plane waves.
The transition from plane waves to Bessel beams (BBs),
which are also exact solutions of Maxwell equations, involves
new peculiarities in the problem of the transformation of
such beams during propagation in anisotropic crystals. It has
been shown*> that uniaxial and biaxial crystals transform
simultaneously the polarization state and the spatial structure
of BBs, changing the order of a dislocation of the phase front,
thus changing the order of the BB after the crystal. In other
words, the polarization dynamics of BBs is associated with an
energy exchange between circularly polarized components
of the fields propagating along the optical axis (of uniaxial
or biaxial crystals). For example, it has been shown that in a
uniaxial crystal, aright circularly polarized BB of the order m,
converts into a left circularly polarized BB of the order m + 2,
and similarly, a left circularly polarized BB of the order m
changes into a right circularly polarized BB of order m —2.*3
High-order BBs, which are sometimes termed Bessel vor-
tex beams, are an important class of propagation invariant
fields, with an amplitude proportional to J,,(gp) exp(img),
where J,, is the m’th order Bessel function of the first kind,
p and ¢ are the radial and azimuth coordinates, and ¢q is
the transverse wave number. Because of their nondiffrac-
tive nature and a very narrow dark central region, high-order
Bessel beams can be used for atom guiding over extended
distances,®® the focusing of cold atoms,” and for optical trap-
ping and tweezing.'* ! Single mode and superpositions'? of
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such beams have been created, and the nondiffracting and
self-reconstruction properties investigated and applied to si-
multaneous manipulation and rotation of particles in spatially
separated sample cells.'? Thus, the problem of generation and
transformation of BBs of various orders is of both scientific
and practical importance.

The general transformation of circularly polarized high-
order BBs through uniaxial crystals has been studied
previously,*'* and in fact, attention has shifted to studies
of arbitrarily shaped optical beams. In particular, the propa-
gation of arbitrarily shaped optical beams along the optical
axis of uniaxial crystals has been considered, where it was
shown that the Fourier-spectral analysis and diffraction con-
siderations allows one to describe the full propagation and
transformation of such fields within the paraxial regime.'>~1°
Polarization dynamics has been studied® of circularly polar-
ized paraxial Laguerre—Gaussian and Bessel Gaussian beams
of higher order that propagate along the optical axis of uni-
axial media. A number of features of the angular momen-
tum exchanges between the orthogonally polarized Gaussian
beams in anisotropic crystals have been investigated,'®?!-2°
with emphasis on the coupling between the spin and orbital
components of the angular momentum. It is now well un-
derstood that light may carry both a spin angular momentum
associated with the polarization and an orbital angular mo-
mentum associated with the spatial distribution of the light.
This has implications in the understanding of polarized light
propagating through such crystals when the incoming light
is a BB: the order change reported can then be explained as
a spin-orbital interaction of the light beam due to the crystal.
Special attention is paid to the conversion of the spin an-
gular momentum to orbital angular momentum, which leads
to the generation in uniaxial crystals of optical vortices,'*?°
where this effect has been shown both experimentally and
theoretically for circularly polarized Gaussian beams propa-
gating along the optical axis of uniaxial crystals.?’
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Nowadays, the generation of fields with phase singu—
larities with the help of a form-birefringent medium®® and
photonic crystals?®?" is of great interest. In Kurilkina et al.,°
a method has been proposed of the transformation of Bessel
vortices of the (m — 1) order into Bessel vortices of the (m +
1) order using one-dimensional photonic crystals (1-DPC)
(with and without of a defect impurity—a layer of an uni-
axial crystal). The intensity transformation of vector Bessel
beams from the (m — 1) order to the (m + 1) one implies that
in a beam transmitted through a multilayer system (1-DPC),
the overwhelming part of photons has the orbital angular mo-
mentum, which increases by 2/ (per photon) in comparison
to one of an incident Bessel beam (or corresponding charges
of the vortices of the incident and transmitted beams differ
by two units with respect to each other).

In this paper, we investigate the generation of high-order
(vortex) BB beams through linear and nonlinear (NL) inter-
action in uniaxial crystals. We outline a new phase-matching
condition (full conical phase matching) for the nonlinear
frequency doubling of high-order BBs, where three-wave
mixing of quasi-nondiffractive Bessel light beams is realized
when the cone of plane waves of a Bessel beam coincides with
the phase-matching cone of an uniaxial crystal. We present
results for this frequency-doubling process for uniaxial crys-
tals of hexagonal, tetragonal, and trigonal symmetry, and
show experimental findings for the case of an uniaxial BBO
crystal.

2 Generation and Transformation of Bessel
Vortex Beams in Uniaxial Crystals

2.1 Basic Equations

In studies of Bessel vortex beam propagation in crystals, it
is reasonable to neglect diffraction effects because the thick-
ness of the crystal is usually small (millimeter or centimeter
scale), and transverse Bessel beam size is relatively large so
that the diffraction effect in the central area of the Bessel
beam is not signiﬁcam.31 As aresult, the analysis of the field
transformation by a crystal can be performed using exact
solutions of Maxwell’s equations. By analogy with the or-
dinary (o-wave) and extraordinary (e-wave) plane waves in
uniaxial crystals, Bessel beams have transverse electric field
(TE)- and transverse magnetic field (TH)-polarization states.
The solutions to Maxwell’s equations in cylindrical coordi-
nates (p, @, z) for both TH- and TE-polarized Bessel beams
propagating along the axis of a uniaxial crystal, are shown in
Table 1.

Table 1 Expressions for the components of the electric E and mag-
netic B fields for TH- and TE-polarized BBs in uniaxial crystals.

TE-polarized BB TH-polarized BB

Eop = % (Ims1 + Im-1)
Emp = (Jm 1 Jm+1)

Eoz =0 Eez = n;go Im

Eep = mez (Jm 1= Jm+1)

Eep = —Q%f, (Im+1 + JIm-1)

BOp = % (Jm—1 - Jm+1)

in
Boy = 3%

Bep = % (Jms1 + Im—1)
Bey = "% (Im-1 — Im1)
Bez =0

(Ims1 + Im=1)

Boz = —indm
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Here, no, = n, cos(yo), ne; = ne(ye) cos(ye), ne
= ne(ye) sin(ye) = np sin(yo) = ny sin(y), where ne(ye.)
= none[n2 sin(y,)* + n? cos(y.)?171/2, and yi, and y,. are
the cone angles of incident TE (ordinary) and TH (extraor-
dinary) BBs inside the crystal. Also n, and n.(y.) are the
refraction coefficients of the o- and e-waves, and n; is
the index of refraction of the isotropic medium bordering
the crystal.

Then, the vectors of the electric and magnetic fields of the
TE and TH waves at the entrance face of the crystal (z = 0)
are of the following form:

E, = % Un—1(qr)és expliGm — Dy

+e_Jur1(gr)exp[i(m + Del}, (1)
o= (g 1(qr), explitm — D]
e = m— rye tim —
\/Ena 1gr)e eXp 4
—é_Juri(gr)exp[i(m + D]}, ()

B, = :’72 {Jm1(qr)e, explim — 1)g]

- Z—Jl7l+l(qr) exXp [l(m + 1)¢]}, (3)

B, = % {n_1(gr)és expli(m — Dg]

+é_Jui1(gr)expli(m + Del}, “

where g = kon, is the conicity parameter or radial wave
number of the Bessel beam, and é. = (&; £ ié,)/+/2 are
unit vectors for right- and left-circular polarization.

Inside the crystal, the o- and e-modes have different ve-
locities of propagation owing to which the spatial structure
of the field changes even without diffraction.

2.2 Calculation of Bessel Beams inside the Crystal

We now calculate the change of the spatial field structure
of the BB propagating through the crystal Let the linear
superposmon of o- and e-modes, as given by Egs. (1)—(4), of
the type Ei = E + E, be incident on the crystal face from
an isotropic medium with refractive index n;. The reflected
and refracted fields can also be expressed in the form of
superpositions of the o- and e-modes. At the boundary, one
can calculate the transmission coefficients, 7, ., to be

2
(= ny cos(yr) ’ )
nycos(y1) + n, cos(y,)
[ = 2ny cos(y1) ' ©)

ne COS(VI) + ny COS(Ve)ne(ye)/no

From these expressions, one can make the following ob-
servation: calculation of the dependence of 7, and 7 on
the incidence angle for a LiNbOj crystal shows that the
“contrast” of the refraction coefficients, defined by n(y)
= [t.(¥)* — t,(¥)[t.(¥)* + t,(¥)*17" at a wavelength of A
= 633 nm does not exceed 2% for incident angles in the
range from 0 to 20 deg. Consequently, when considering the
angles within the BB cone typical in experiments, the dif-
ference between the 7, and f¢ coefficients can be neglected.
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This allows us to approximate cos(y;) &~ 1 (because we may
select the 0-deg option). In this case, the superposition £ . of
TH- and TE-modes of the electric field at the entrance face
of crystal may be written in the simple form

Ey = iJu_1(gr)és explitm — Dgl, (7)

E_ =iJys1(gr)é-expli(m + Dyl ®)

and similarly for the magnetic field. As is seen in Eqgs. (7)
and (8), the polarization of the incident BB is circular. Such
a beam can be obtained, for example, using an axicon.

Under these conditions, the TH and TE fields inside uni-
axial crystal may be expressed as

Eo(z.p) = %{[qu(qp) + Ini1(@o)iE,

 ne1(@P) — Tnir(@P)IE,) explikess),  (9)
Euz p) = %{[Jm_mqp) — T @o)liE,

— [Jm=1(gp) + Jms1(gp)1e,} explike.z),  (10)

where ko, = kono cos(y,), ke; = kone cos(y.), €, and é, are
the unit vectors of the cylindrical coordinate system.

Consider the case where the incident field is allowed to
be right-circularly-polarized [i.e., described by the Eq. (7)].
Let ko, e, = k; &= Ak,/2. Thereafter, summarizing amplitudes
(9) and (10), we obtain that the transverse component of the
refracted field E . (z, p) is

EL(p.2) = a{Ju_1(qr)é; cos(Ak;z/2) expli(m — 1)g]
+idyg(gr)é- sin(Ak.z/2) expli(m + D]},
(1

where o = itexp(ik,z), t is the Fresnel transmission coefficient
for the normal incidence.

When a left-hand polarized beam is incident on the crystal,
the transverse component of the refracted field E_(z, p) is
found in a similar manner and is equal to

E_(p,2) = a{Jui1(gr)é_ cos(Ak,z/2) expli(m + 1)g]
+iJu_1(gr)ey sin(Ak.z/2) expli(m — Del},
(12)

2.3 Analysis of Bessel Vortex Beam Transformation

Equations (11) and (12) were obtained in Ref. 4 and express
an interesting feasibility of uniaxial crystals to transform the
order of the topological charge of Bessel vortex beams. In the
case of a right circularly polarized incident beam, the order of
the Bessel vortex beam increases by two units and, for the left
circularly polarized beam, it decreases by two units. Such a
transformation takes place, as is seen from Eqgs. (11) and (12),
when fulfilling the condition sin(Ak,L/2) = 1, where L is the
crystal thickness. The minimal crystal thickness is obtained
from Ly, = 7/Ak,, where Ak, = ko, — k.;. The relationship
between Ly, and the cone angle y;, of an incident beam is
shown in Fig. 1 As is seen from Fig. 1, the transformation of
the order of the BB requires a crystal thickness of ~1 cm.

It is important to note that BBs of various orders have

1.5 -

1.24

cm

0.9 4

min’

0.3 A

20 25 3.0 35 40 45 50
Cone angle

Fig. 1 Dependence of the minimal thickness of the LiNbOj3 crystal
necessary for the full transformation of the order of Bessel function
on the cone angle of an incident Bessel beam.

It can be seen from Eqgs. (11) and (12) that in an arbitrary
section of the crystal, the amplitude ratio is described by sim-
ple harmonic functions that allows one to form, if necessary,
superpositions of two Bessel beams that differ on order by 2.

Using Egs. (11) and (12), and considering the special case
of m = =% 1 for right- and left-circularly polarized incident
BBs, we obtain

E(p,z) = a[Jo(gr)é, cos(Ak.z/2)
+iJy(gr)e_ sin(Ak,z/2) expRig)], (13)

E_(p,z) = alJo(gr)é_ cos(Ak;z/2)
+iJa(gr)e, sin(Ak.z/2) exp(—2ip)]. (14)

In this particular case, the transformation is of the type
Jo(gp)—J2(qp) exp( £ 2ip), and the output beam contains
a vortex of order 2. From Eq. (13), it follows that at a def-
inite thickness of the crystal (L = w/Ak;), a right circularly
polarized incident Jy beam is converted into a left circularly
polarized Bessel beam J, (with a vortex of order 2) at the out-
put of the uniaxial crystal. Physically, it can be related to the
exchange of the angular momentum between orthogonally
circularly polarized Bessel beams in an anisotropic crystal:
the spin angular momentum ( 4-/) of the right—circularly po-
larized (¢,.) zero-order BB (Jy) is converted into the orbital
angular momentum of the J, BB (I = 2%) having left—circular
polarization (e_) (- spin angular momentum). Thus, while
the overall angular momentum is conserved, orbital angular
momentum is created through the generation of a high-order
Bessel vortex beam.

Let us study briefly the case where the incident beam
is linearly polarized. Summarizing Eqs. (13) and (14), we
obtain

E(p, 2) ~ Jo(qr)és cos(Ak.z/2) + i Jo(qr) sin(Ak.z/2)
x [€] cos(2p) + €, sin(2¢)]. (15)

Asisseen from Eq. (15), the field at z = O is linearly polarized
along the x-axis parallel to the vector &;. In the case where
the full transformation takes place [sin(Ak,L/2) = 1], from
Eq. (15) we obtain

orthogonal polarizations [see Eqgs. (11) and (12)], which al- > - - - .
lows one to separate them from each other easily in practice. E(p, L) ~ J(qr)le1 cos(2¢) + € sin(2¢)]- (16)
Optical Engineering 059001-3 May 2011/Vol. 50(5)
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()

(b)

Fig. 2 (a) Calculated and (b) experimentally obtained azimuthally modulated Bessel vortex beam of the second order.

This field [Eq. (16)] is linearly polarized but with its direc-
tion of polarization rotated through an angle 2¢ while the
azimuthal angle changes by ¢. The intensity of such a beam
is proportional to J,(gr)?. In the case where at the output of
the crystal the polarizer is set up with the transmission axis
y||é> (i.e., crossed with the polarization of incident beam),
then the output field is expressed by

E(p, L) ~ J(qr)sin(Ak,L/2)é, sin(2¢). a7

It follows from Eq. (17) that the intensity of the output field
is modulated in the azimuthal angle, ¢. Figure 2(a) shows the
calculation of the field intensity according to Eq. (17) and
the corresponding experimentally measured intensity distri-
bution [Fig. 2(b)]. The experimental setup is described in
previous work.?? Clearly, there is very good agreement be-
tween the theory and the experimental observations.

Thus, uniaxial crystals may be considered as “mode con-
verters” of sorts, where an input BB may be transformed
into a higher order BB carrying orbital angular momentum.
Such transformers are characterized by high efficiency (up
to 100%), minimal distortion of the output field, and the pos-
sibility of transforming an array of input Bessel beams in
parallel.

3 Generation of Bessel Vortices in the Process of
Three-Wave Mixing

Bessel beams hold considerable potential in NL optics,
namely, for second harmonic generation (SHG),*** opti-
cal parametric generation,’®3’” and Raman conversion®**°
to name a few. One might reasonably expect that NL optical
processes open more possibilities to generate and transform
Bessel vortex beams. Apart from the practical importance,
for example, to create optical tweezers, there are a number of
physical problems related to generalization of the spin-orbital
interaction within NL optical crystals.

3.1 Full-Conical Phase Matching

Uniaxial crystals, discussed in Sec. 2 with respect to linear
optical processes, allow one to perform the generation and
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transformation of vortices using NL optical interactions, par-
ticular the process of second harmonic generation as well as
the processes of sum and difference frequencies generation.>
The peculiarity of using BBs for second harmonic generation
consists of the need to fulfill the transverse and longitudinal
phase-matching conditions.>* 33 In the case where a BB prop-
agates along the direction of the phase matching for plane
waves or Gaussian-type beams, the simultaneous fulfillment
of these conditions, strictly speaking, is unrealizable. The
reason for this is that BBs are made up of plane waves trav-
eling on a cone, and it is quite possible for the cone angle
to be larger than the angular width of the phase-matching
condition. The result of this is the breaking of the azimuthal
symmetry of the NL interaction and, as a consequence, the
intensity distribution of the second harmonic generation. As
may be expected, the asymmetry increases concomitantly
with the cone angle of the BB.

There exists a simple way of achieving azimuthally sym-
metrical generation of the second harmonic by BBs. To vi-
sualize this, it is helpful to consider the geometry (of inter-
action), where the direction of phase velocity of the incident
Bessel beam coincides with the optical axis of the crystal
(see Fig. 3). In addition, consider the case where the BB cone

Optical axis

Bs Zm(p)
Bso(p)

Fig. 3 Geometry of full conical phase-matched SH generation when
wave vectors cone of Bessel beam at fundamental Bs,,(p) and second
harmonic frequencies Bsp,(p) coincides with the phase-matching
cone of uniaxial crystal.
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angle, v, and cone angle, 6, of the phase-matching direction
in an uniaxial crystal are equal.

In the scheme shown in Fig. 3, the process of oo-e type
SHG takes place due to the collinear interaction. Thus, the
second harmonic generation along the longitudinal axis is
fulfilled for all azimuthal angles (or equivalent, for all waves
traveling on the cone) within the region of (0-27). Because
of the axial symmetry of interaction, the SH field is a Bessel
beam with the same cone angle 6 that provides the max-
imum of the overlap integral with BB of the fundamental
frequency.** Note that the analysis of the oe-e type interac-
tion is fully analogous.

3.2 SHG of BBs in Hexagonal Symmetry Crystals

One should note that in the analysis of Sec. 3.1 (see Fig. 3),
an implicit requirement is that a BB with a large-cone angle is
require for the condition of full conical phase matched SHG
to be met. For example, in the case of BBO, the required angle
is ~23 deg for near-infrared laser radiation (1.06 um). For
this reason, it is necessary to perform a full vectorial analysis
of the SHG process, which we consider in this section.

One should note that optimal conditions are realized for
SHG of high-order BBs when a circularly polarized BB is
incident on the crystal. From the Maxwell equations, it fol-
lows [see Eqgs. (7) and (8)] that the transverse component of
the eleictrical field for such beams can be expressed in the
form E; 1 (p, 2) = €4 Jo(gp) exp(ik.z).

From the boundary conditions (see Sec. 2.1), it follows
that the incident beam excites in the crystal equally weighted
TH- and TE-polarized BBs, denoted by in§ices “o’land “e”,
respectively. The transverse components E |, and E | .of the
electric field for these beams are expressed as [see Eqgs. (1)
and (2)]

=, Au .koz > N .
Eio=i %[JO(QP)@ + J(qp)e_ exp(2i )],
S . A exp(ike.z)
Elo =i cos(y,
o=l o)
x [Jo(@p)es — Jr(gp)e- exp(2i )], (18)

where A, are the amplitudes, w(q) =27 fOR[Joz(q,o)
+ J22(q,0)] p dp is the normalization multiplier, and R is the
beam radius. Here, the longitudinal components E, ; = 0 and
Ee, = 2(golee) sin(ye)Ji(gp) explip], where ¢, and ¢, are
the principal values of the dielectric permittivity tensor of the
crystal.

Using Eq. (18), we have calculated the nonlinear dielectric
polarization P,; = d;E;Ey, where d;j are components of
third-rank dielectric susceptibility tensor. In the case of oe-
e nonlinear interaction for hexagonal symmetry crystals of
point group Cg, we obtained the following:

Py(p, 9, 2) = A10(2)A1c(2) fo(p, ) expli(koz + ke)z], (19)

where

= 2d i e 0 - .

falp,0) = mwll (gp){esJo(g1p) expli(p — @o)]
wi(gr) &.(w)

—e_Jx(qi1p)expBig +igo)},

d=./d}, +dis, 1t8(po) =dis/du. (20
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As is seen from Eq. (19), transfer to vectorial BBs intro-
duces a component of the nonlinear dielectric susceptibility
d;s in the SHG process. Its appearance is determined by the
nonzero azimuthal component of the electric field of a TH-
Bessel beam. Note that it is absent in an extraordinary plane
wave; this peculiarity of vector BBs opens, in principle, the
prospect of increasing the efficiency of the three-wave mix-
ing process due to use of maximal values of NL coefficients.

On the basis of the form of NL polarization [Egs. (19)
and (20)], the spatial structure of the SHG TH beam can
be specified. In the general case, the solution of Maxwell’s
equations for the e-wave in a crystal can be written as Eq (2).
A comparison of Egs. (19) and (20), and Eq. (2) shows that
the coincidence of their azimuthal dependence takes place
at m = 2. Consequently, the second harmonic field can be
represented as

E' _ lAz(Z)
V)
—e_J3(q2p) exp(3ip)] exp(iky.z), 2D
where w(q2) = 27 [ [J2(q20) + J2(q20)] p dp.

Here, the function A,(z) is described by the following
equation for slowly varying amplitudes

0A»(2)
0z

cos(y2)[J1(g2p)e+ exp(ie)

=iA0Ale [g011(q2) + g123(q2)] exp(—i Ak;z),

(22)

where Ak, =k, — ko, — ke

The peculiarity of the SHG in the case of vector Bessel
beams is a relatively complex structure of the overlap inte-
grals that determine the so-called transverse phase matching
of interacting beams. In the examined case, the overlap inte-
grals are described by the following expressions:

2de,(w)tg(ye) exp(—i ¢o)
wi(g1)vwa(q2)e.(w)

R
X / Jo(g10)J1(q10)J1(g20)p dp, (23)
0

go11(q2) =

2de(w)tg(ye.) exp(i o)
wi(gvwa(g2)e ()

R
X / Jo(q10)J2(q10)J3(q20)p dp.
0

g123(q2) =

As is seen from the integrand expressions in Eq. (23), the
overlap integrals go11(q2) and g23(q2) are responsible for
the generation of the first- and third-order Bessel beams (of
the SHG field), respectively, and by Jy, J;, and J, of the
pump fields (at the fundamental frequency). The numeri-
cal simulation of the integrals in Eq. (23) shows that they
have maximum at ¢g; + ¢» = ¢3, a transverse wave number
approximately the same as that for the interaction of zeroth-
order Bessel beams. Note that the above relation between
transverse wave numbers g; + g, = g3 points to a collinear
type of phase matching for plane-wave components of Bessel
beams (see Fig. 3).

From the comparison of the field incident on the NL crys-
tal and the SHG field, it follows that in this NL process there
occurs a transformation of the BB order (see Fig. 4). Thus,
in crystals of the Cg class symmetry at the oe-e interaction
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Jy(@)e, Ji2w)e,  J,(2w)e.
Ce /A

Optical \l z
axis \/

Two Bessel beams of
double frequency

Incident Bessel beam

Fig. 4 Transformation of the order of Bessel function at oe-e interac-
tion of vector Bessel beams in uniaxial crystal of Cg-symmetry.

there takes place the following transformation of the order
of BBs (or equivalently the generation of high-order BBs):
Jo(w)ey — J1Rw)expip)e, +J32w)exp(Bigp)e_.

Next, let us consider the interaction of the oo-e type.
The calculation of the NL polarization for the SHG fre-
quency gives px = 0 and pyy = 0, while the longitudinal
component is nonzero and equal to p,, = —4d,s A%Jo(qlp)
J2(q2p) expikoz + 2igp).

It is necessary to stress that this component of the NL
polarization is absent in the case of plane waves, and its
appearance is determined by the difference of polarization of
the ordinary and extraordinary plane waves and the TE- and
TH-polarized BBs.

From the known NL polarization, one can find the longitu-
dinal component of the SHG field: E», ~ J2(q2p) exp(2ip).
The transverse component is obtained from the solution of
Maxwell’s equations and coincides with Eq. (21). Conse-
quently, in the SHG process there occurs a transformation of
the BB order, as illustrated in Fig. 4.

3.3 Second Haromnic Generation of Bessel Beams
in Trigonal Symmetry Crystals

The nonlinear polarization vector for SHG of type o-ee in
crystals of symmetry 3m point group can be represented in
the form as of Eq. (19), where

folp, @)
go(w)

_ ge(w)
_ 2i x explig] + e_Ja(q1p) expli3¢]] +

W@ | 4y, cos(ye)[e- I3 q1p) + &4 72(q1)
X exp[4i<p]

dys sin(y.) Jigp)[esJo(q1p)

(24)

From Eq. (24), it is found that the SHG field is the super-
position of two components:

Ex(p,9) = Ef (0, 9) + E; (0, 9), (25)
where

ES (0, 9) = [/1(q20) exp(ip) + Ja(qap) exp(dig)] &5,
(26)

E5 (0, 9) = —[Jo(q20) + J3(q2p) exp(ip)] é_. 27)

As is seen, there are two components (see Fig. 5) of the
second harmonic radiation: one contains the left—circularly
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(/o) J, 2w))e.

Jo(@)2,
C3m

......
Optical
axis

Incident Bessel beam (‘]l (2w);J, (2"3)) e,

Fig. 5 Superposition of four Bessel beams of different orders gener-
ated by circularly polarized Bessel beam of the zeroth order.

polarized SHG field, while the other contains the right—
circularly polarized SHG field. Using Eqgs. (24) and (25), it is
feasible to obtain equations for the slowly varying amplitudes
in the usual way and to calculate the overlap integrals, but
even from the from of the solution of Eq. (25) it follows that
the oe-e type of interaction in crystals 3m is accompanied by
arich set of transformations of the BB order, namely, a right—
circular polarized zeroth-order BB generates a superposition
of high order BBs of the first and fourth orders with the
polarization orthogonal to the incident beam. Moreover, an
additional third-order BB is generated with the polarization
coincident with that of the incident beam (see Fig. 5).

It is interesting to consider the amplitude and phase struc-
ture of the generated BB superpositions. Following Egs. (26)
and (27), the second harmonic intensity is azimuthally inho-
mogeneous and governed by

I(x, @) ~ J5(x) + JH(x) + J5(x) + J7(x)
+ 2 [Jo(0)J5(x) + Ji(x)Ja(x)] cos(Be),  (28)

where x = g, .

Interference patterns produced by second harmonic radi-
ation and a spherical reference wave are shown in Figs. 6 and
7. As is seen in the field depicted in Fig. 6(a), the vortex is
localized in a narrow central area. In the case of interference
with a BB of the third order [Fig. 6(c)], with BB of first order
[Fig. 7(a)] and of the fourth order [Fig. 6(b)], there is an
observable helical structure with an additional modulation.
Here the axial vortex shifts from the beam axis. Near the axis,
there appear m vortices, where m is the order of the BB. The
presence of a BB of the zeroth order with the maximum in the
center in Eq. (26) suppresses the local minimum of intensity
in the beam center [Fig. 6(d)]. Mutual influence of vortices
of the first and fourth order in Eq. (26) [Fig. 7(c)] destroys
the helical picture [Fig. 7(b)]. The resulting intensity of the
field of second harmonic is characterized by an azimuthal
modulation of the third order and absence of intensity nulls.

i L
(a) (b)

(d)

Fig. 6 Spatial structure of the left-polarized component of the
second-harmonic vortex field revealed at interference with spheri-
cal reference wave: (a) interference with the field exp(3ip), (b) with
the zeroth-order BB in Eq. (1), (c) with the third-order BB in Eq. (1),
and (d) with total field Eq. (1).
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(d)

Fig. 7 Spatial structure of the right-polarized component of the
second-harmonic vortex field revealed at interference with spheri-
cal reference wave: (a) interference with the first-order BB, (b) with
fourth-order BB in Eq. (2), (c) with the total field in Eq. (2), and
(d) spatial distribution of the intensity of the second harmonic field
Eqg. (2).

4 Experimental Results

We make use of BBO, a uniaxial crystal of 3m point group
symmetry in order to test the full azimuthal phase-matching
condition. The phase-matching angle was 6, = 22.8 deg for A
= 1.064 um. The crystal was cut perpendicular to the optical
axis and had a thickness of 5 mm. The angular width of phase
matching (665) was equal to 0.51 mrad, which practically
excludes the possibility of SHG in the traditional scheme
when a BB propagates along the phase-matching direction.

In order to produce the pump BB, the necessary cone angle
in air was y = 39.9 deg. To achieve this, use was made of a
refractive axicon with a base angle of 5 deg and a specially
manufactured conical mirror for increasing the cone angle
up to the necessary value [(Fig. 8(a)]. It should be noted that,
for obtaining BBs with large cone angles, it is promising
to invoke reflective axicons in a combination with a conical
mirror [Fig. 8(b)].

The source was an Nd:yttrium—aluminum-garnet laser
(wavelength of 1.064 um) outputting a Gaussian beam with
an angular divergence of 8 ~ 0.8 mrad, pulse duration of
50 ns, and energy of 20 mJ.

Figure 9(b) shows the experimentally measured inten-
sity distribution of the SHG in the far field with the aid
of a Fourier-transforming lens. For comparison, Figure 9(a)
shows the calculated Fourier-spectrum field E(p,¢) described
by Eq. (25). The key feature of the order of generated Bessel
function is seen to be the number of lobes in the intensity
distribution that proves the calculation performed before.
Clearly, the theoretical and experimental results are in good
agreement.

5 Discussion and Conclusions

We have studied, theoretically and experimentally, the dy-
namics of high-order vortex generation and transformation
when Bessel beams propagate or nonlinearly interact in uni-

(a) (b)
Fig. 8 Variants of experimental scheme: Ax, axicon [(a) refractive

and (b) reflective]; CM, conical mirror; and NLC, nonlinear crystal
(BBO).
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(a) (b)

Fig. 9 Far-field intensity distribution of second harmonic, generated
in BBO crystal: (a) calculation and (b) experiment.

axial crystals. The theoretical description in the linear regime
of vortex generation and transformation has been carried out
using exact solutions of Maxwell’s equations. Without taking
into account the processes of diffraction, which is justified
when considering BBs used in real experiments with crys-
tals, it is possible to simplify the final equations describing
the BB transformation.

As aresult, a visual comparison can be made of the trans-
formation of BBs and plane waves in uniaxial crystal, namely,
the equation for the full transformation [sin(Ak,;/2) = 1] of
BBs polarization coincides with the corresponding equation
for a half-wave plate sin(AkL/2) = 1. The distinction of
these equations consists in the replacement: Ak, — Ak, as
a consequence of the conical nature of Bessel beams. Here,
the novelty is in the fact that unlike plane waves, it is im-
possible to change the circular polarization of a BB into an
orthogonal component while simultaneously preserving the
spatial structure of the beam. This property of Bessel beams
is demonstrated certainty, for example, by Egs. (7) and (8),
which describe Bessel beams obtained by superposition of
TE and TH modes of the same order. On the other hand,
rigorous solutions of Maxwell’s equations for TE and TH
Bessel modes in uniaxial crystal (see Table 1) contain com-
binations of Bessel functions the order of which differs by
two units. Hence, it follows that the passage of the Bessel
beams through the half-wave plate can be accompanied by
the change of the order of Bessel function only by two units.
The advantage of using “pure” Bessel beams, but not their su-
perpositions differing by transverse wave number, is the pos-
sibility of practically full energy transformation of Bessel
beams, their order change being from order m to order m
4 2 (also the order of screw dislocation or topological
charge), similarly to the full transformation of the polar-
ization state of plane waves using half-wave plates. It is clear
that for superpositions of BBs, which differ by transverse
wave number, the full transformation of polarization as well
as the order of Bessel functions is unachievable, and only a
periodical oscillation is possible of the field structure in the
coordinate z, as is described by others.!” It is worth noting
that the use of an analogous approach for biaxial crystals
also allows one to effectively transform the order of Bessel
functions by one unit.*!

The problem of transforming the BB order in the pro-
cess of nonlinear interactions of BB is much more complex,
with the majority of papers in this direction considering the
case when the BB propagates in the same direction of phase
matching as for plane waves.”3*3% The complexities appear
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with the description of vector BBs, which in general, given
that they may propagate in an arbitrary direction in an uni-
axial crystal, are not eigenmodes of the crystal. Here, the ex-
clusion is the case of the propagation along optical axis and
the SHG is realized for the condition of full conical phase
matching. From the results presented here, we have outlined
how to solve the problem of the generation and transforma-
tion of high-order BBs in a rigorous manner. Here, unlike the
linear propagation, there appear many possibilities for the
manipulation of Bessel vortex beams.

In conclusion, it is shown, theoretically and experimen-
tally, that when a circularly polarized zeroth-order BB prop-
agates along the optical axis of uniaxial crystals, ~100%
of its energy is converted, under certain conditions, into a
second-order BB. Because of transversal invariance of the
proposed crystal-based scheme, it is possible to transform
several Gaussian input beams into an array of vortex beams
simultaneously. The high radiation damage threshold of crys-
tals makes it possible to use them in the generation of pow-
erful optical vortex fields.

We have considered the frequency doubling of BBs by
making use of a new full conical phase-matching condi-
tion. This scheme allows putting into practice the nonlinear
frequency transformation of Bessel beams having a cone
angle of several tens of degrees. Peculiarities of frequency
doubling of Bessel vortices under the conditions of the full
conical phase matching have been investigated for uniaxial
crystals of hexagonal and trigonal symmetry. This new type
of frequency doubling of Bessel vortex beams has been ex-
perimentally realized in a uniaxial BBO crystal, where the
incident zero-order Bessel light beam at the fundamental fre-
quency was directed along the optical axis of the crystal and
its cone angle set equal to the conical phase matching angle.

The SHG by Bessel beams in the conditions of full conical
phase matching allows one to generate Bessel vortex beams
of various orders, as well as their linear superpositions. The
selection of the field structure of the SHG is realized by
means of the mechanism of the transverse phase matching,
while the longitudinal phase matching in the scheme un-
der study did not depend on the azimuthal angle. The par-
ticular cases of hexagonal and trigonal symmetry crystals
(Ce and 3m point group) differ by axial symmetry of the ef-
fective nonlinear dielectric susceptibility (d., coefficient). In
general, there is an azimuthal dependence of SHG efficiency
when der = degr(¢). The result of this would be an additional
azimuthal modulation of the second harmonic field and novel
possibilities of transformation of Bessel vortices.

Let us point out some advantages of the conical phase-
matching condition for BBs over traditional phase matching:
(i) more effective components of the nonlinear susceptibility
tensor can be involved in the nonlinear process and (if) sub-
micron spatial structure of the second harmonic field can be
realized. In addition, the advantage of the axial-symmetric
scheme is the absence of walk-off effect and, hence, the dis-
tortion of the second harmonic intensity distribution. Conse-
quently, crystal-based transformers of the Bessel beam order,
such as linear analogs, would be characterized by a high qual-
ity of the output optical signal.

We should point out that the generated vector Bessel
beams are characterized by a rather small-scale ring struc-
ture. For example, in the experiments described here, the
diameter of the main maximum of BB of the zeroth order
was ~0.58 um and the diameter of the dark axial field for
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the first-order BB was ~0.93 pwm. Undoubtedly, such beams
would be interesting for applications in microscopy and for
the creation of optical tweezers.
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