
Anomalous transient behavior from an inhomogeneous
initial optical vortex density

Filippus S. Roux

National Laser Centre, CSIR, P.O. Box 395, Pretoria 0001, South Africa (fsroux@csir.co.za)

Received December 9, 2010; revised February 11, 2011; accepted February 11, 2011;
posted February 14, 2011 (Doc. ID 139463); published March 22, 2011

Inhomogeneous optical vortex densities can be produced in stochastic optical fields by a combination of coherent
and incoherent superposition of speckle fields. During subsequent propagation, the inhomogeneity in the vortex
density decays away. However, the decay curves contain oscillatory features that are counterintuitive: for a short
while, the inhomogeneity actually increases. We provide numerical simulations and analytic calculations to study
the appearance of the anomalous features in the decay curves. © 2011 Optical Society of America
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1. INTRODUCTION
The statistical properties of optical vortices in random optical
fields have been studied by various authors [1–5]. Although
this work includes monochromatic and nonmonochromatic,
two-dimensional and three-dimensional, theoretical, numeri-
cal, and experimental work, it mostly focuses only on random
(i.e., speckle) fields. As such, the vortex densities in these
fields remain constant during propagation. Other kinds of sto-
chastic optical fields differ from speckle fields in that their
vortex densities undergo transient behavior. In general, such
stochastic optical fields start from initial conditions that differ
from that of a speckle field, and then during propagation this
field eventually evolves into a beam with properties much like
that of a speckle beam. Treating the propagation distance con-
ceptually like a time axis, one can view this as a system evol-
ving from some initial nonequilibrium state through some
transient behavior to a final state that is in equilibrium.

Here, we consider such nonequilibrium stochastic optical
fields. In particular, we are interested in the transient behavior
of the optical vortex fields. Since this evolution happens dur-
ing propagation of the optical beam through a linear medium,
one may be led to believe that the transient behavior would be
rather simple, perhaps just an exponential decay of the inho-
mogeneities that disturb the equilibrium until the homogene-
ity that represents the equilibrium state is restored. However,
recently transients that contradict this simple behavior have
been observed in numerical simulations [6]. These transients
contain more structure than just exponential decay and, there-
fore, merit a deeper investigation.

For this purpose, we present in this paper the case of a
nonequilibrium stochastic optical field that lends itself to both
numerical simulation and analytical investigation. The latter is
made possible by the fact that the initial conditions in this sce-
nario can be expressed in terms of Gaussian random func-
tions. As a result, one can use statistical optics methods [7] to
analyze the evolution of the stochastic vortex field and com-
pare the results with the results from the numerical simula-
tions. The fact that one can study the evolution analytically
provides more credibility of what has been observed in nu-
merical simulations. It also allows a deeper investigation into

the origin of the anomalous transient behavior. In particular,
we are interested in the evolution of the vortex density, which
is defined as the number of optical vortices (regardless of
their topological charge) per unit area on the transverse plane
perpendicular to the direction of propagation.

In this paper, we describe the experimental setup with
which such a beam can be produced (Section 2). Then, we
describe the numerical simulation in Section 3 for the evolu-
tion of this stochastic optical beam, and we show that it pre-
dicts anomalous transient behavior. Using a statistical optics
method in Section 4, we compute the evolution of the vortex
density for the same beam and show that it gives the same
anomalous transient behavior. We investigate some of the
properties of the vortex density evolution in Section 5 and
end with some conclusions in Section 6.

2. EXPERIMENTAL SETUP
When a stochastic vortex field is produced by direct phase
modulation of a plane wave, using a spatial light modulator
or a diffractive optical element, the resulting beam directly
behind the element does not have a Gaussian distribution. To
perform statistical optics calculations for such a beam is chal-
lenging, because the simplifications that Gaussian statistics
allow cannot be employed. The initial beam needs to have
the properties of a speckle beam to allow the required simpli-
fications that enables statistical optics calculations.

However, one can produce an optical beam with a nonuni-
form vortex density using speckle beams. The optical setup to
produce such an inhomogeneous stochastic beam is shown in
Fig. 1. The input beam is divided by a 50=50 beam splitter. The
two resulting beams are each passed through a ground glass
plate and spatially filtered (shown as circular apertures) to
produce different sized speckles (hence, different vortex den-
sities) in the two beams. The two beams are also mutually in-
coherent. Mach–Zehnder interferometers are used to produce
sinusoidal interference patterns in each of the beams. The two
beams are then (incoherently) recombined such that the dark
bands of one interference pattern overlaps with the bright
bands of the other. Because of the different vortex densities,
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the combined beam has a periodically varying vortex density
and a constant average intensity.

The vortex density that is obtained at the output of this set-
up represents the initial state of the beam ψ in at z ¼ 0. We now
consider the subsequent evolution of the vortex density due to
free-space propagation of this optical field. One can model the
initial state of the optical field ψ in as

ψ inðx; y; z ¼ 0Þ ¼ ψ1ðx; yÞ sinð2πa0xÞ þ ψ2ðx; yÞ cosð2πa0xÞ;
ð1Þ

where ψ1ðx; yÞ and ψ2ðx; yÞ are speckle beams with different
sized speckles and a0 is the spatial frequency of the interfer-
ence fringes. The two speckle beams can be expressed in
terms of their spectra:

ψnðx; yÞ ¼ F−1f~χnðaÞAnðaÞg n ¼ 1; 2; ð2Þ

where F−1f·g represents the inverse two-dimensional Fourier
transform, að¼ ax̂þ bŷÞ is the two-dimensional transverse
spatial frequency vector, ~χnðaÞ is a random complex function
(Gaussian white noise) on the spatial frequency domain, and
AnðaÞ is an aperture function or spectral envelope function
with different widths for n ¼ 1; 2, respectively. For computa-
tional convenience, we assume a Gaussian envelope:

AnðaÞ ¼
1
Wn

exp

�
−jaj2
W2

n

�
n ¼ 1; 2; ð3Þ

where Wn represents the width of the spectral envelope.
The random complex functions obey the following statisti-

cal properties:

h~χnðaÞi ¼ h~χmða1Þ~χnða2Þi ¼ h~χ�mða1Þ~χ�nða2Þi ¼ 0; ð4Þ

h~χmða1Þ~χ�nða2Þi ¼ Δ2
aδmnδða1 − a2Þ; ð5Þ

for m;n ¼ 1; 2, where Δa is the correlation width on the
spectral domain.

The angular spectrum of the initial optical field (at z ¼ 0) is
therefore given by

GinðaÞ ¼
i~χ1ða − a0; bÞ

W1
exp

�
−ða − a0Þ2 − b2

W2
1

�

−
i~χ1ðaþ a0; bÞ

W1
exp

�
−ðaþ a0Þ2 − b2

W2
1

�

þ ~χ2ða − a0; bÞ
W2

exp

�
−ða − a0Þ2 − b2

W2
2

�

þ ~χ2ðaþ a0; bÞ
W2

exp
�
−ðaþ a0Þ2 − b2

W2
2

�
ð6Þ

and the optical field at arbitrary z is obtained by Fresnel pro-
pagation of the initial optical field, which can be written as

ginðx; y; zÞ ¼
ZZ

GinðaÞ exp½−i2πðaxþ byÞ

þ iπzλða2 þ b2Þ�dadb; ð7Þ

with λ being the wavelength.

3. NUMERICAL SIMULATION
In the numerical simulations, the input stochastic optical field
[ψ inðx; y; z ¼ 0Þ in Eq. (1)] is represented by a sampled com-
plex-valued function, consisting of an array of 512 × 512 sam-
ples, shown in Fig. 2. The random spectral functions ~χnðaÞ are
generated as two-dimensional arrays of normally distributed
complex values. The Fourier transform of the angular spec-
trum, produced according to Eq. (6), then gives an inhomoge-
neous speckle field with periodic boundary conditions.
Hence, the resulting input stochastic optical field does not
expand during propagation.

The free-space propagation of the input stochastic optical
field is simulated with a numerical implementation of a Four-
ier optics-based beam propagation algorithm [8,9]. It propa-
gates the initial stochastic optical field through free space
over logarithmically increasing distances. At each point, the
vortex distribution is determined by locating all the optical
vortices inside the 512 × 512 sample window that represents
the stochastic optical field at that propagation distance. A vor-
tex extraction procedure is used that produces a 512 × 512 ar-
ray of integers equal to 1 where vortices are located and zeros
everywhere else. This array is regarded as a vortex density
function. From these vortex distributions, one then extracts
the specific spatial frequency components in which we are in-
terested using a two-dimensional Fourier transform. In all the
numerical simulations, the wavelength is chosen small enough
to stay within the paraxial limit. The same simulation is

Fig. 1. (Color online) Setup to produce an inhomogeneous initial
vortex density. It consists of two Mach–Zehnder interferometers that
are used to produce interference patterns in two mutually incoherent
speckle fields with different speckle sizes, which are then combined
to give a sinusoidal variation in the vortex density.

Fig. 2. Example of the (a) intensity and (b) phase of the initial optical
field used in the numerical simulation, showing the variations of the
speckle sizes and vortex density. The parameter values are a0 ¼ 2,
W1 ¼ 64, and W 2 ¼ 16.
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repeated hundreds of times starting from different two-
dimensional random arrays to produce averaged curves with
standard deviations for the Fourier components.

The numerically simulated evolution of the vortex density
defined in Eq. (1) is shown by the curves in Fig. 3. For this
case, the parameter values are a0 ¼ 2, W1 ¼ 64, and W2 ¼
16 in units defined by the sample spacing of the Fourier do-
main. The wavelength was selected to be equal to one sample
spacing on the spatial domain.

Figure 3 shows, as a function of logarithmic propagation
distance, three Fourier components: the global average vortex
density Vð0Þ, the fundamental spatial frequency (amplitude of
the sinusoidal variations in the vortex density) VðkxÞ, and the
first harmonic Vð2kxÞ, where kx ¼ 4πa0. The global average
vortex density remains constant except for some relatively
small transient variations. As expected, the fundamental spa-
tial frequency component decays during propagation, but the
decay curve contains some additional oscillations, colocated
with the transients in the global average vortex density. The
first harmonic remains close to zero, but also contains some
variations that are colocated with those in the other two
components.

The presence of the oscillations in the decay curve indi-
cates that the transient behavior of this stochastic vortex
field is more intricate than what one naively might have an-
ticipated. Therefore, it qualifies as a case with anomalous
transient behavior.

4. ANALYTICAL EVOLUTION
A benefit of producing the initial vortex density through the
interference and incoherent superposition of speckle beams is
that one can assume that the initial optical field has a Gaussian
distribution. Therefore, one can employ statistical optics
methods [7] to compute the evolution of the vortex density.
Here, the random complex functions ~χnðaÞ have Gaussian dis-
tributions. We now use the properties of these random func-
tions, as presented in Eqs. (4) and (5), to obtain the vortex
density as a function of x and z—being one-dimensional, the

vortex density remains independent of y. We closely follow
the approach of [1,5] in our analysis.

The vortex density is obtained through local averaging of
the number of first-order zeros in the optical field. One can
define this average with the aid of an integration of the pro-
duct of Dirac delta functions containing the real and imagin-
ary parts of the optical field in their arguments. However, the
gradients of the real and imaginary parts of the field are not
orthogonal or equal to 1 at the locations of the vortices. There-
fore, one needs to multiply the product of Dirac delta func-
tions with the magnitude of the Jacobian determinant. The
resulting expression for the vortex density in an arbitrary
optical field over a small area A is then given by [1]

VA ¼ 1
A

Z
A
δðψrÞδðψ iÞj∂xψ r∂yψ i − ∂xψ i∂yψr jdxdy; ð8Þ

where ψr and ψ i are, respectively, the real and imaginary parts
of the optical field ψ .

It is more convenient to use additional Dirac delta functions
to replace the derivatives of the real and imaginary parts in the
Jacobian determinant with auxiliary integration variable.
Each of the Dirac delta functions is now expressed in terms
of its inverse Fourier transform. In compact notation, the
resulting integral then has the form

VðxÞ ¼
Z

exp½i2πp · ðq − ~UÞ�jq2q5 − q3q4jd6pd4qjq1¼q2¼0; ð9Þ

where x represents the three spatial coordinates ðx; y; zÞ,

~U ¼ ½ψr;ψ i; ∂xψ r; ∂xψ i; ∂yψr; ∂yψ i�; ð10Þ

p ¼ ½p1; p2; p3; p4; p5; p6�; ð11Þ

q ¼ ½q1; q2; q3; q4; q5; q6�; ð12Þ

and the averaging over the small area A has been dropped.
Note that q1 and q2 are actually superfluous and can be set
equal to zero right from the start. However, for notational con-
venience we keep them until the end.

Because of the way in which the initial beam is formed,
hψrψ ii ≠ 0. For this reason, it is more convenient to work with
the complex optical field and its complex conjugate, instead
of the real and imaginary parts of the optical field. Therefore,
we express the stochastic term in the exponent as

i2πp · ~U ¼ iπðP† ~Wþ ~W†PÞ; ð13Þ

where

P ¼
2
4p1 þ ip2
p3 þ ip4
p5 þ ip6

3
5 and ~W ¼

2
4 ψ
ψx

ψy

3
5; ð14Þ

with ψx ¼ ∂xψ , etc., and where the dot-product is now implicit
in the notation.

Employing the properties of Gaussian distributions to eval-
uate part of the exponential function [7], one obtains

Fig. 3. (Color online) Numerically simulated evolution of an inhomo-
geneous vortex density, shown in terms of the Fourier coefficients
Vð0Þ, VðkxÞ, and Vð2kxÞ, where kx ¼ 4πa0, plotted as a function of
logarithmic propagation distance. The curves are obtained from the
average over hundreds of simulations with the error bars indicating
the standard deviations.
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hexpð−i2πp · ~UÞi ¼ expð−π2P†h ~W ~W†iPÞ; ð15Þ

where

h ~W ~W†i ¼ M ¼

2
64
hψψ�i hψxψ�i hψyψ�i
hψψ�

xi hψxψ�
xi hψyψ�

xi
hψψ�

yi hψxψ�
yi hψyψ�

yi

3
75: ð16Þ

Thanks to Eq. (4), we have that h ~W ~WT i ¼ h ~W� ~W†i ¼ 0.
One can now evaluate the six Fourier integrals over p to

obtain the probability density:

FðQ;Q†Þ ¼
Z

expði2πp · q − π2P†MPÞd6p ¼ expð−Q†M−1QÞ
π3 detðMÞ ;

ð17Þ
where

Q ¼
2
4 q1 þ iq2
q3 þ iq4
q5 þ iq6

3
5: ð18Þ

The vortex density is then given by

VðxÞ ¼
Z

FðQ;Q†Þjq2q5 − q3q4jd4qjq1¼q2¼0: ð19Þ

It remains now to compute the ensemble averages in
Eq. (16) in order to obtain an expression for the probability
density in Eq. (17). For this purpose, we use Eqs. (1)–(7) to
calculate the ensemble averages for all the elements in M
as a function of z. The only nonzero elements are

hψðxÞψ�ðxÞi ¼ 2π þ πCðxÞ½h1ðzÞ − h2ðzÞ�; ð20Þ

hψxðxÞψ�ðxÞi ¼ 2π2a0SðxÞ½ð1þ iπzλW2
2Þh2ðzÞ

− ð1þ iπzλW2
1Þh1ðzÞ�; ð21Þ

hψxðxÞψ�
xðxÞi ¼ π3½CðxÞð4a20 − TðzÞW2

2Þh2ðzÞ
− CðxÞð4a20 − TðzÞW2

1Þh1ðzÞ
þ 8a20 þW2

1 þW2
2�; ð22Þ

hψyðxÞψ�
yðxÞi ¼ π3½W2

1 þW2
2 þ CðxÞW2

1h1ðzÞ − CðxÞW2
2h2ðzÞ�;

ð23Þ
where

TðzÞ ¼ 1 − 4π2λ2a20z2; ð24Þ

CðxÞ ¼ cosð4πa0xÞ; ð25Þ

SðxÞ ¼ sinð4πa0xÞ; ð26Þ

hnðzÞ ¼ expð−2π2λ2a20z2W2
nÞ: ð27Þ

Substituting the ensemble averages in Eqs. (20)–(23) with
Eqs. (24)–(27) into Eq. (17), and using that in Eq. (19), one
obtains the vortex density after evaluating the four q integrals.
Finally, we obtain

VðxÞ ¼ πfW2
1 þW2

2 þ CðxÞ½W2
1h1ðzÞ −W2

2h2ðzÞ�g1=2
2f2þ CðxÞ½h1ðzÞ − h2ðzÞ�g3=2

f4½4

− ½h1ðzÞ − h2ðzÞ�2
− π2λ2ðCðxÞf2þ CðxÞ½h1ðzÞ − h2ðzÞ�g½W4

1h1ðzÞ
−W4

2h2ðzÞ� þ SðxÞ2½W2
1h1ðzÞ −W2

2h2ðzÞ�2Þz2�a20
þ f2þ CðxÞ½h1ðzÞ − h2ðzÞ�g
× fW2

1 þW2
2 þ CðxÞ½W2

1h1ðzÞ −W2
2h2ðzÞ�gg1=2: ð28Þ

We now use Eq. (28) to compute (numerically) the curves
for the Fourier components that were considered in Fig. 3.
The results of these calculations are compared with the re-
sults from the numerical simulation in Fig. 4. The numerical
results are shown as discreet points with error bars and the
analytical curves are shown as solid curves. Apart from a
slight offset in the magnitude of the larger densities, the ana-
lytic curves follow the numerical curves precisely. The offset
of approximately 4% is attributed to a small, but inevitable,
inefficiency in the vortex extraction process that is used in
the numerical simulations. Vortices in random optical fields
can have any morphology (anisotropy), and when the vortices
become too anisotropic, the numerical vortex extraction pro-
cedure fails to identify them as vortices. The statistical optics
calculations and the numerical simulations are therefore in
good agreement with each other.

5. PROPERTIES OF THE EVOLUTION
The initial vortexdensityatz ¼ 0 [h1ð0Þ ¼ h2ð0Þ ¼ 1] is givenby

VðxÞ ¼ π
4

�
1þ 8a20

½W2
1 þW2

2 þ CðxÞðW2
1 −W2

2Þ�
�

1=2

× ½W2
1 þW2

2 þ CðxÞðW2
1 −W2

2Þ�; ð29Þ
which implies that the pure sinusoidal variation for the
vortex density at z ¼ 0 is only a good approximation if a0 is
small compared to ðW2

1 þW2
2Þ1=2=8.

Fig. 4. (Color online) Comparison of the analytically calculated and
numerically simulated evolution of an inhomogeneous optical vortex
density, shown in terms of three Fourier coefficients of the optical
vortex density function: the global average vortex density Vð0Þ, the
fundamental spatial frequency VðkxÞ, and the first harmonic
Vð2kxÞ, where kx ¼ 4πa0. The numerical results are shown as discreet
points representing the average values over several simulations with
the error bars indicating the standard deviations. The solid curves re-
present the analytical results.

624 J. Opt. Soc. Am. A / Vol. 28, No. 4 / April 2011 Filippus S. Roux



The equilibrium state is obtained in the limit z → ∞

[h1ðzÞ ¼ h2ðzÞ → 0] and is given by

VðxÞ ¼ π
4
ðW2

1 þW2
2Þ
�
1þ 8a20

W2
1 þW2

2

�
1=2

; ð30Þ

which corresponds to the initial vortex density with CðxÞ ¼ 0.
Next, we determine how the anomalous oscillations depend

on the three parameters a0, W1, and W2. Provided that a0 is
small compared toW0 andW1, one can see from Eqs. (27) and
(28) that a0 only serves to scale z. Within the small a0 limit, the
amplitude of the anomalous oscillation is therefore invariant
to the value of a0.

We focus on the amplitude of the x variation as an indica-
tion of the anomalous oscillations. For this purpose we com-
pute the difference between VðxÞ for CðxÞ ¼ 1 and CðxÞ ¼ −1.
The small a0 limit is applied by expanding the latter result to
subleading order a0, and then the result is normalized with
respect to its value at z ¼ 0. This leads to the following
expression:

ΔVðzÞ ¼ 2½h1ðzÞ þ h2ðzÞ�
4− ½h1ðzÞ− h2ðzÞ�2

− 8a20

�π2λ2z2½W4
1h1ðzÞ−W4

2h2ðzÞ� þ 2½h1ðzÞ− h2ðzÞ�
f4− ½h1ðzÞ− h2ðzÞ�2gðW2

1 −W2
2Þ

�
:

ð31Þ
In Figs. 5 and 6, we plotΔVðzÞ for various values ofW1 and

W2, respectively. In Fig. 5, we see that, for larger values ofW1,
the amplitude of the anomalous oscillation grows larger with
larger average vortex density, and the oscillation shifts to
smaller propagation distances and it also extends over slightly
larger ranges of propagation distance. On the other hand, in
Fig. 6, we see that the amplitude of the anomalous oscillation
grows smaller for larger values of W2 and the average vortex
density at the oscillations also becomes smaller, but these
anomalous oscillations remain more or less at the same pro-
pagation distances, while spreading out over a wider range of
propagation distances.

6. CONCLUSIONS
Perhaps the most pertinent observation is the fact that, thanks
to the agreement between analytical and numerical results,
the anomalous transient behavior is a physical effect and
not just a numerical artifact. Nevertheless, it would be worth-
while to reproduce these results in an experimental setup.
Although the setup itself is not too difficult, the observation
of the vortex distribution over logarithmically increasing dis-
tances may present some challenges.

The only way in which the initial optical field differs from a
speckle field is the correlations that exist in the initial field.
These correlations are responsible for setting up the initial
variation in the vortex density, and they are also responsible
for the anomalous transient behavior. Apart from these corre-
lations, there is no observable difference between this optical
field and a homogeneous speckle field. In fact, the scintillation
index (given by hI2i=hIi2 − 1, where I is the intensity), which is
always equal to 1 for a speckle field, is also equal to 1 for the
stochastic optical field that we consider here. The unity scin-
tillation index is a clear indication that the Gaussian distribu-
tion of the stochastic optical field remains the same over all
propagation distances. One can only observe the nonequili-
brium behavior of this stochastic optical field by looking at
the vortex density (or the speckle sizes), as shown in Fig. 2.

The propagation-dependent evolution of the vortex density
derives from the propagation-dependent correlation functions
in Eqs. (20)–(23). Viewed as a stochastic process, this beam is
not stationary and therefore also not ergodic even though it is
constructed out of speckle fields that are ergodic. In fact, the
only reason for the loss of ergodicity/stationarity lies in the
lateral correlations that are produced in the initial optical
field. As far as the author knows, this is the first proposal
of such an optical field.

The correlation functions in Eqs. (20)–(23) are computed as
ensemble averages. Because of the loss of ergodicity, these
correlation functions cannot be computed as time (or spatial)
averages. In fact, the autocorrelation function of the beam
profile of a deterministic optical beam propagating through
free space is independent of the propagation distance. This
follows immediately from the Wiener–Khintchine theorem,
which states that the autocorrelation function is the Fourier
transform of the power spectral density. Being the modulus

Fig. 5. (Color online) Curves of the normalized amplitude variation
ΔVðzÞ for different values of W1, with W2 ¼ 16 and a0 ¼ 1.

Fig. 6. (Color online) Curves of the normalized amplitude variation
ΔVðzÞ for different values of W2, with W1 ¼ 64 and a0 ¼ 1.
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squared of the angular spectrum, the latter does not depend
on the propagation distance. As a result, the correlation func-
tions that one would compute for a single instance of the
stochastic optical field under consideration would be indepen-
dent of propagation distance even though the vortex density
evolves as a function of propagation distance.

The experimental setup proposed here can be modified to
produce a different initial stochastic optical field. One can, for
instance, introduce a relative tilt between the overlapping in-
terference patterns. The effect would be to create a nonuni-
form topological charge density. In this way, one would be
able to investigate the evolution of inhomogeneous topologi-
cal charge densities using statistical optics.
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