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ABSTRACT

Determining the intrinsic dimension of a hyperspectral image
is an important step in the spectral unmixing process, and
under- or over- estimation of this number may lead to incor-
rect unmixing for unsupervised methods. It is known that
most real images contain noise that is not i.i.d. across bands,
and so methods that assume i.i.d. noise are often avoided.
However, this problem may be alleviated by implementing a
noise whitening procedure as a pre-processing step. In this
paper we will investigate one particular noise whitening ap-
proach, as well as a noise removal approach, and consider
how the application of these methods may improve several
methods for determining the intrinsic dimension of an image,
including Malinowski’s Empirical Indicator Function [1],
Random Matrix Theory [2], and Harsanyi-Farrand-Chang
[3].

Index Terms— Hyperspectral Unmixing, Random Ma-
trix Theory, Intrinsic Dimension, Noise Whitening.

1. INTRODUCTION

Determining the intrinsic dimension (the dimension of the
signal subspace) of an image is important for the processing
of many different types of data, including chemical unmixing,
extracting speech signals, unmixing minerals and unmixing
environmental landscapes, among many others.

A common model used to unmix hyperspectral images is
the linear mixing model. This model assumes that each pixel
in the image is made up of a linear combination of “endmem-
bers”. Mathematically, consider the reflectance measured in
each pixel i as a vector xi = [xi1, . . . , xip]T for 1 ≤ i ≤ N .
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The linear mixture model states that, for each pixel i,

xi =
K∑
j=1

aijvj + ni (1)

where aij represents the proportion of endmember vj in the
mixed pixel i, ni represents the noise present in pixel i, and
K is the number of endmembers. We assume Gaussian noise,
as do [4, 5]. In general, the number of endmembers K is
unknown and chosen arbitrarily depending on the application
and the knowledge of the scene. However, an incorrect esti-
mation of this number can dramatically affect the accuracy of
the unmixing [5]. Thus, an important first step is to estimate
the number of endmembers (or constituents) K that are actu-
ally contained in the image, using the observed image rather
than any prior knowledge of the scene. The intrinsic dimen-
sion is a good first estimation for the number of endmembers.

We consider the eigenvalues of the observation covariance
matrix S, defined by

S =
1
N

N∑
i=1

(xi − x̄)(xi − x̄)T , (2)

where x̄ = 1
N

∑N
i=1 xi. It is extremely difficult to distinguish

between a small signal eigenvalue and a large noise eigen-
value, and several methods have been developed to address
this problem. We will consider: Malinowski’s Empirical In-
dicator Function (EIF) [6] [1]; the Harsanyi-Farrand-Chang
(HFC) method [3]; and the Random Matrix Theory (RMT)
method [2]. However, these methods proved to be sensitive to
the structure of the noise in the image [2, 3]. Chang et al [3]
modified HFC to include a noise-whitening pre-processing
step, and we will investigate the effect of including this step
in all the methods.

2. METHODS

2.1. Noise Whitening

Roger [7] used a residual based estimation in order to ap-
proximate the noise covariance matrix. Chang et al use



this method [6] to estimate the noise covariance W =
diag{1/ζ2

1 , . . . , 1/ζ
2
p}, where {ζ2

j } are the diagonal ele-
ments of S−1. Then the sample covariance may be whitened
by:

SW = W−1/2SW−1/2. (3)

The resulting noise becomes uncorrelated and its variance
equal to 1 in each band [6].

2.2. Noise removal

As described in [8], the noise may be approximated on a per
pixel basis, using multiple regression theory as follows:

Let Xi be a column vector containing all pixel values at
band i. Let X∂i be a (N × (p − 1)) matrix, where X∂i =
[X1, . . . , Xi−1, Xi+1, . . . , Xp]. Then the pixel values for
each band i can be expressed in terms of the pixel values for
all other bands, so that Xi = X∂iβi + εi, where βi is the
regression vector and εi is the modeling error. This error, εi,
may be used to approximate the noise, per pixel, in the ith

band. (Dias and Nascimento [8] use βi = [X∂i]#Xi, where
# indicates the pseudo-inverse.)

2.3. Random Matrix Theory

This method assumes i.i.d. noise, and we will attempt to im-
prove the results using the methods described above.

In Random Matrix Theory, research has been done into
the largest eigenvalue of a Random Matrix. Since we are as-
suming Gaussian noise, the largest observed eigenvalue due to
noise can be thought of as the largest eigenvalue in a Random
Matrix. According to Johnstone [9], the largest eigenvalue of
a Random Matrix satisfies the following condition with prob-
ability 1 in measure:

λ ≤ σ2(µN,p + s(α)σN,p) (4)

where σ is the variance of the Gaussian noise, α is a signif-
icance level and s(α) may be found by inverting the Tracy-
Widom distribution (in [4] α = 0.5%). This inequality holds
when p and N tend towards infinity, and p/N = c fixed [9].
Then, for real valued data,

µN,p = N−1(
√
N − 0.5 +

√
p− 0.5)2 (5)

σN,p = N−1(
√
N − 0.5 +

√
p− 0.5)×

(
√
N − 0.5

−1
+

√
p− 0.5

−1
)1/3 (6)

Note that these parameters do not depend on the number of
endmembers, K, and they are fully determined by N and p,
which are known.

Then, if the eigenvalues {λj}j=1,...,p of the non-centered
observation covariance matrix are sorted in descending or-
der, so that λ1 ≥ λ2 ≥ . . . ≥ λp, K is defined as the
largest index such that, for all j ∈ Z, 1 ≤ j ≤ K, λj >

σ2(µN,p + s(α)σN,p). This method assumes i.i.d noise, and
was shown in [2] to give mostly poor results in application to
a real hyperspectral image. However, if we first whiten the
data, then the noise variance becomes 1 in each band, fulfill-
ing the i.i.d. criterion. Therefore the sorted, whitened signal
eigenvalues may be tested, for all j, by

λj > µN,p + s(α)σN,p (7)

Note that in the case of hyperspectral imagery, N is very
large in proportion to p, so σN,p in equation (6) becomes very
small, and therefore the right hand side of equation (4) is not
sensitive to the choice of the confidence interval α. For all
experiments, α is fixed at 0.5% and so it will not be regarded
as a user-determined threshold. (Different values for α were
tested, with no effect on the results.)

2.4. Malinowski’s EIF

As in RMT, this method assumes i.i.d. noise, and we will
evaluate the effect of whitening on this method. Malinowski
[1] derived functions to determine IE (Imbedded Error) and
IND (Indicator function) in order to evaluate if a matrix is
factor analyzable. His application is in the field of chemistry,
but Chang and Du [6] apply this to hyperspectral images with
some success. Chang and Du define Malinowski’s Empirical
Indicator Function as:

EIF (q) =
(
∑p
j=q+1 λq)

1
2

N
1
2 (p− q) 3

2
(8)

KEIF = arg min
q
{EIF (q)}, (9)

where {λq} are the sorted (descending) eigenvalues of the ob-
servation covariance matrix. In [6],

RE(q) = (
L∑

j=q+1

λq)
1
2N

−1
2 (L− q)

−1
2 (10)

IND(q) = RE(q)(L− q)−2 (11)

Malinowski [1] states that the origins of Equations (8) and (9)
are unknown. This method assumes i.i.d. noise, and Chang
and Du [6] did whiten the data, with improved results, but
the authors concluded that the results were not good enough
(overestimation) on the real experiments that were tested.

2.5. Harsanyi-Farrand-Chang

HFC does not assume i.i.d. noise, but Chang [6] states that
the results may be improved by the whitening procedure dis-
cussed above.

This method is based on the premise that the eigenvalues
of the centered and non-centered covariance matrices will be-
come the same when the data is centered at zero. Since we
assume that the noise has zero mean, this means that the two



sets of eigenvalues will converge at the point where signal
ends and noise begins. However, computationally, the differ-
ence between the two sets is never zero, and so a false-alarm
probability PF is derived in order to find the threshold.

PF =
∫ ∞
τ

p0(z)dz (12)

PD =
∫ ∞
τ

p1(z)dz, (13)

where τ is the detection threshold. The false alarm probability
is fixed (user-determined) to determine τ , and the detection
power PD is maximized. Once τ has been determined, the
two sets of eigenvalues are said to converge if they differ by
less than this threshold, and their convergence determines K.
Note that for each band, the two eigenvalues are compared
with a different τ . We calculate τ using the integrals given
above, given that p0(z) ≈ N(0, σ2

zL
), and σ2

zL
≈ 2

N (λ̂2
l +λ

2
l ),

where the two λ values represent sorted eigenvalues from the
centered and non-centered covariance matrices.

More sophisticated noise approximations may be used,
and a whitening process is used as a pre-processing step.
This method performed the best of all algorithms analysed
in Wu et al, with its only issue being its dependence on a
user-determined threshold.

2.6. Signal Subspace Estimation

This method was introduced by Dias and Nascimento [8], and
removes the noise, as opposed to whitening it. They use mul-
tiple regression theory to accurately determine the noise value
per pixel (described above). The signal covariance matrix is
calculated by subtracting the noise vector from the sample
vector at each pixel, and using the difference to form a co-
variance matrix. The intrinsic dimension of the image is then
calculated as follows,

KSSE = arg min
1≤i≤p

{(rTP ′(i)r + 2trace[P (i)Cn/N ])} (14)

where r is the mean pixel vector over the image, P (i) =
[e1, . . . , ei], where {ej} are the endmembers ordered (de-
scending) by the singular values of the estimated signal cor-
relation matrix, P ′(i) = [ei+1, . . . , ep], and Cn is the noise
covariance matrix.

This method has the advantage of not requiring any user-
determined thresholds, and was shown to provide accurate re-
sults on synthetic and real data [8].

3. EXPERIMENTS

We have compiled a synthetic dataset, made up by randomly
selecting 5 out of 18 minerals chosen from the JPL spectral
library. The proportions of each endmember in each pixel are
random, with the only restrictions being the non-negative and

sum-to-one conditions that are enforced on the proportions.
Then, by iterating this method, testing may be done on many
different “images”, since the endmember combinations and
proportions differ for each iteration, and both are randomly
selected from a uniform distribution for each iteration. We
also varied our values for p, N , and σ in these images.

When creating the synthetic set, with uncorrelated, non-
i.i.d. noise, we tested the accuracy of the noise removal
method for determining the noise in a particular pixel, and
we tested the accuracy of the noise whitening matrix with
regards to approximating the noise variance in each band.
The removal method seemed a more accurate approximation
per pixel (Figure 1 shows theN(0, σ2) distribution in a single
pixel) than the whitening method over the image (Figure 2
shows the approximation to σ2 in variance per band), but both
methods accurately approximated the noise.

Fig. 1. A comparison between the simulated noise in a pixel
(blue), to the approximated noise in a pixel (red) using the
noise removal method for approximation. Note the good
agreement produced by the method.

Fig. 2. A comparison between the noise variance per band
simulated in an image (blue), to the approximated noise in
the image (red) using the noise whitening method for approx-
imation. This also seems to be a good approximation.

Using the noise removal approximation to create a whiten-
ing matrix resulted in severe overestimation ofK in simulated



Table 1. RMT, EIF, HFC (with FD = 10−4, 10−3, 10−2) and
SSE applied to Cuprite, with and without whitening. Where
the result is given as *, the method failed to converge. Our
whitening method is not applicable to SSE.

KOriginal KWhitened

RMT * 37
EIF 75 25
HFC 22, 24, 30 19, 24, 27
SSE 27 -

sets, when using RMT and EIF. When the noise variance was
calculated on the image scale, and used in the same way as the
whitening method, then accurateK was achieved for both the
i.i.d. methods being tested. The noise removal approximation
method used in SSE was not applicable to HFC and vice
versa. This is because SSE relies on explicit approximations
per pixel, and the off diagonal elements in the estimate of the
noise covariance matrix using the noise removal approxima-
tion seemed to cause errors in HFC, which were minimised
by the forced diagonal matrix in the whitening method.

When the whitening method was applied to RMT and EIF,
the methods were accurate up to the same noise levels as HFC
(standard deviation 0.025 for mean signal values ≈ 0.5), for
a test image with 10,000 pixels and 200 bands. The methods
were also accurate for variable noise per band, with difference
in standard deviation up to 3 times the mean standard devia-
tion, at the worst noise levels. So the simulated tests show
positive results for whitening the i.i.d. methods.

We also tested our methods on an AVIRIS flight scene
collected over Cuprite, Nevada in 1997. This dataset is avail-
able online1. The image contains 350 × 350 spatial pixels,
with 189 spectral bands. Wu et al. [5] determined the num-
ber of endmembers in this scene to be between 22 and 28.
Also, ground truth collected by Swayze et al. found at least
18 substances [10] (which may not include rarer minerals).

Dias and Nascimento [8] specifically compared SSE and
HFC (whitened) under a number of different scenarios, in-
cluding a smaller subset of Cuprite, and found that SSE is
more likely to pick up rare minerals, so its slightly higher
value for K is likely to be more accurate. As may be seen
in Table 1, the whitened RMT slightly overestimates K, but
the results are significantly improved from the failure to con-
verge in the original case. The whitening success can be seen
in EIF, which is comparable (K = 25) to SSE (K = 27) and
Chang (K = 19 − 27). This method is also computationally
less expensive than either method, particularly SSE.

4. CONCLUSION

Methods assuming i.i.d. noise have often been avoided for
application to hyperspectral imagery, since this assumption is

1aviris.jpl.nasa.gov/html/aviris.freedata.html

mostly incorrect for real hyperspectral images [6]. We have
shown that a simple whitening pre-processing step eliminates
the i.i.d. assumption in two methods, particularly EIF, and
these methods are applicable to hyperspectral data, with ac-
curate results in real images. The advantage of these methods
is that they are computationally very fast, and simple to im-
plement. They do not rely on user-defined thresholds, and
give results comparable with much more complicated algo-
rithms. However, not all whitening methods are applicable,
and so this pre-processing step should be chosen with care.
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