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  Abstract 

 

Information about the distribution of grass foliar nitrogen (N) and phosphorus (P) is 

important to understand rangeland vitality and to facilitate the effective management of 

wildlife and livestock. Water absorption effects in the near infrared (NIR) and shortwave 

infrared (SWIR) region pose a challenge for nutrient estimation using remote sensing. 

The aim of this study was to test the utility of water removed (WR) spectra in 

combination with partial least square regression (PLSR) and stepwise multiple linear 

regression (SMLR) to estimate foliar N and P, compared to spectral transformation 

techniques such as first derivative, continuum removal and log transformed spectra 

(Log(1/R)). The study was based on a greenhouse experiment with a savanna grass 

species (Digitaria eriantha). Spectral measurements were made using a spectrometer. D. 

eriantha was cut, dried and chemically analyzed for foliar N and P concentrations. A 

non-linear spectral matching technique was used to model the leaf water spectra, while 
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the WR spectra were determined by calculating the residual from the modelled leaf water 

spectra and observed leaf spectra. Results indicated that WR spectra yielded a higher N 

retrieval accuracy than a traditional first derivative transformation (R2=0.84, RMSE=0.28 

and R2=0.87, RMSE=0.25, compared to R2=0.59, RMSE=0.45 and R2=0.59, RMSE=0.45 

for PLSR and SMLR models, respectively). The highest P retrieval accuracy was derived 

from WR spectra using SMLR (R2=0.64, RMSE=0.067), while the traditional first 

derivative and continuum removal resulted in R2=0.47, RMSE=0.07 and R2=0.40, 

RMSE=0.08, respectively. Only when using PLSR did the first derivative result in a 

higher P retrieval accuracy (R2=0.47, RMSE=0.07) than the WR spectra (R2=0.43, 

RMSE=0.070). It was concluded that the water removal technique could be a promising 

technique to minimize the perturbing effect of leaf water content when estimating grass 

nutrient concentrations.  

 

Keywords: savanna ecosystem, nitrogen concentration, phosphorus concentration, water 

removal, continuum removal, bootstrapping 

 

1. Introduction 

 

Information about the distribution of grass nutrient concentration is crucial to 

understand rangeland health and facilitates effective management of wildlife and 

livestock. Several studies have established that grass nutrient concentration influences the 

feeding patterns and distribution of wildlife and livestock species in savanna rangelands 

(Drent and Prins 1987; Owen-Smith and Cooper 1987; McNaughton 1988; McNaughton 
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1990; McNaughton and Banyikwa 1995). Large herbivores are known to concentrate in 

nutrient rich sites in Southern Africa, e.g. termite mounds, sodic sites, sites beneath large 

trees (Owen-Smith and Danckwerts 1997; Grant and Scholes 2006; Treydte et al. 2007). 

Furthermore,  studies showed that herbivore diversity increases with increasing soil fertility 

(Ollf et al. 2002) and that foliar nutrient concentration generally correlates positively with 

soil nutrient levels (Penning de Vries and Djiteye 1982). 

 

Foliar nitrogen (N) and phosphorus (P) concentrations are important environmental 

factors for herbivores. The effect of increased N supply on dry matter production as well as 

protein content is well documented in agricultural literature (Marschner 1995), while P is 

one of the main requirements for lactating mammals (McNaughton 1990). Mapping both N 

and P would allow computing of the N:P ratio, which is a key indicator of nutrient 

limitation in vegetation (Koerselman and Meuleman 1996; Ludwig et al. 2001). Estimating 

N and P could therefore provide information on which nutrient is limiting for wildlife and 

livestock production in a particular landscape (Prins and van Langevelde 2008).  

 

In order to identify where foliar N and P become important, hyperspectral remote sensing 

has been employed in various biomes, such as grasslands and savannas (Mutanga and 

Skidmore 2004; Mutanga et al. 2004a; Mutanga et al. 2004b; Bogrekci and Lee 2005; 

Ferwerda et al. 2005; Mutanga et al. 2005; Mutanga and Kumar 2007; Numata et al. 

2009; Skidmore et al. 2010), forests (Martin and Aber 1997; Schlerf et al. 2010) and 

agricultural areas (LaCapra et al. 1996; Thenkabail et al. 2000; Hansen and Schjoerring 

2003; Huang et al. 2004; Zarco-Tejada et al. 2004; Wang et al. 2009). Most of the 
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spectral absorption features that have been identified and used for N and P estimation are 

located in the near infrared (NIR) and shortwave infrared (SWIR). For example, N has 

absorption features centred at 430 nm, 460 nm, 640 nm, 660 nm, 910 nm, 1510 nm, 1940 

nm, 2060 nm, 2180 nm, 2300 nm, 2350 nm, dominating in the SWIR region (Curran, 

1989). The main leaf biochemicals absorbing in the SWIR region (1000-2500 nm) 

include lignin, cellulose, starch and proteins (Curran 1989; Kokaly and Clark 1999; 

Kumar et al. 2001). However, the accuracy of the estimation of N and P using NIR and 

SWIR absorption features is highly influenced by the reflectance of leaf water content, 

masking the subtle absorption features of other biochemicals (Gao and Goetz 1994; Gao 

and Goetz 1995; Fourthy and Baret 1998).  

 

Several techniques have been used to minimize the effect of leaf water content on the 

remote sensing of foliar biochemicals, including spectral transformation such as vegetation 

indices, continuum-removed spectra, first derivative spectra and log-transformed spectra. 

Studies have estimated N using vegetation indices such as red edge position, which 

depends mainly on chlorophyll concentration (Clevers et al. 2002; Mutanga et al. 2004a; 

Cho and Skidmore 2006; Numata et al. 2009), assuming a positive correlation between leaf 

N and leaf chlorophyll concentration (Vos and Bom 1993; Yoder and Pettigrew-Crosby 

1995). This approach is limited as it depends on the leaf or plant phenology, meaning the 

relationship will deteriorate as leaves senesce (Wang et al. 2009).  

 

Derivatives, continuum-removal, and log transformed spectra (Log(1/R)) enhance 

absorption features of foliar biochemicals, while minimizing atmospheric, soil background, 
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and water absorption effects, as well as data redundancy (Yoder and Pettigrew-Crosby 

1995; Dawson and Curran 1998; Cho and Skidmore 2006). For example, Log (1/R) is 

preferred to reflectance because it is linearly related to absorbing components (Hruschka 

1987; Yoder and Pettigrew-Crosby 1995). Studies such as Yoder and Pettigrew-Crosby 

(1995) showed a strong relationship between Log (1/R), as well as the first derivative 

Log (1/R)’, and N concentration. Fourty and Baret (1998) argued that transforming 

reflectance into their corresponding absorbance values improved the accuracy of 

estimates. Continuum removal has also been successfully applied to enhance absorption 

features for foliar N and P estimations (Kokaly and Clark 1999; Curran et al. 2001; 

Mutanga et al. 2005).  

 

Water affects the absorption features for many foliar biochemicals when using fresh 

leaf spectra , and the removal of these effects has been recommended to increase the 

accuracy of foliar biochemical estimation in the SWIR (Gao and Goetz 1994; Gao and 

Goetz 1995; Dawson et al. 1998; Kokaly and Clark 1999; Mutanga and Skidmore 2004; 

Zhao et al. 2006) . Absorption by these chemicals, including lignin, starch, protein, and 

cellulose, is not very strong (weak absorbers) and so is generally masked by water 

absorption in fresh leaves (Kumar et al. 2001; Zhao et al. 2006). However, in dry leaf 

spectra, foliar biochemical absorption is generally highly differentiated and well correlated 

to the concentrations of foliar chemicals (Card et al. 1988; Elvidge 1990). Encouraging 

results have been attained using spectral transformations, e.g. normalized band depth 

(Kokaly and Clark 1999; Curran et al. 2001; Mutanga et al. 2004a). However, leaf water 
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still poses a challenge when using fresh leaf spectra to estimate biochemical concentrations 

(Fourthy and Baret 1998; Johnson 2001). 

 

To overcome the masking effect of leaf water, Gao and Goetz (1994; 1995) 

successfully removed water absorption effects from fresh leaf spectra to estimate leaf 

components such as lignin and cellulose. They developed a non-linear least-squares 

spectral matching technique that calculates a fresh leaf spectrum as a non-linear 

combination of a leaf water spectrum and a dry matter spectrum. In a follow-up study, 

Schlerf et al. (2010) modified the technique and applied it successfully to estimate nitrogen 

concentrations in Norwegian spruce needles and named it the water removed approach 

(WR).  To further adapt and apply this technique to the spectra of grass species common in 

savanna ecosystems the current study was undertaken. 

 

Although stepwise multiple linear regression (SMLR) has been successfully used in 

foliar biochemical estimations, it has some limitations including multicollinearity, linear 

relationship assumptions, over-fitting (Curran 1989; Martens and Naes 2001) and difficulty 

in transferring the predictive models to other data sets (Grossman et al. 1996). To overcome 

these limitations many studies recommend the use of partial least square regression (PLSR) 

(William and Norris 1987; Hansen and Schjoerring 2003; Cho et al. 2007; Asner and 

Martin 2008). The advantage of PLSR is that the spectra are decomposed into latent factors 

using the response variable to reduce the data dimensionality problem in the model 

development process (reflectance spectra typically have a large number of bands 

constituting as many  independent variables) (Geladi and Kowalski 1986; Geladi et al. 
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1999). The utility of PLSR in foliar biochemical estimation for N and P has been 

demonstrated, and both regression techniques (SMLR and PLSR) with various transformed 

spectra have been successfully applied (Huang et al. 2004; Asner and Martin 2008). 

However, the performance of PLSR, SMLR and WR spectra when estimating foliar P and 

N remains to be established.  

 

The main aim of this study was to test the utility of water removed spectra (WR) in 

combination with PLSR and SMLR for estimating foliar N and P, and compare this to 

other existing spectral transformation techniques such as log (1/R), first derivative (FD), 

continuum removal (CR) and also the original reflectance (R). The study intended to 

quantify the retrieval accuracy of foliar N and P of a typical savanna grass grown under 

controlled conditions in a greenhouse. Reflectance spectra were collected using a visible 

– SWIR spectrometer. The hypothesis was that water removed spectra significantly 

increased the retrieval accuracy of nutrients, compared to first derivative of reflectance 

(or other spectral transformations).  

 

2. Material and Methods 

 

A grass species (Digitaria eriantha) was sown in pots and grown for four (4) months 

in a greenhouse. Soil water content as well as N and P fertilization were adjusted to 

produce high variation in foliar water, N and P. Reflectance measurements were acquired 

with a spectrometer. Foliar N and P concentrations were analyzed in the laboratory. 
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Various spectral transformation techniques were applied including WR spectra using 

PLSR and SMLR and a bootstrapping approach for validation. 

 

2.1 Greenhouse experiment 

 

2.1.1 Setup and sampling 

The experiment was set up to produce high variation in foliar N and P concentrations, 

and foliar water content. A multiple factorial design was used (2x3x3) with 5 replications 

to ensure that each water treatment included at least 30 samples, generating a total of 90 

samples (Morrison 2001). The selection of the grass species (Digitaria eriantha) was 

based on its wide occurrence in African savanna ecosystems and its importance as forage 

for livestock and wild herbivores. D. eriantha is a perennial grass species which grows 

either as a dense tussock, with or without extended stolons or as continuous stoloniferous 

sward. It can grow in a wide range of soil types from sands to heavy clays. Natural 

compost was mixed with fine red and sandy soils to form a basic stratum for sowing the 

grass seeds. Samples of this soil mix were taken to South Africa’s Agricultural Research 

Council (ARC) for chemical analysis to determine its chemical composition. Then 

various levels of nutrients, based on Venter (1990) as well as Scholes and Walker (2004), 

were added. Limestone ammonia nitrate (N: 284 g/kg) and superphosphate (P: 83g/kg) 

were used for fertilization. Soil water levels were manipulated using different watering 

regimes, when the grass was fully grown and flowering. The various levels of water 

treatment applied were: (i) high level, where plants were watered twice a day, (ii) 

medium level, with plants watered once every two days and (iii) low level, with plants 
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watered once or twice a week. This was done for two weeks to ensure contrasting levels 

of water content, P and N concentrations in the soil, and hence in the grass leaves. The 

temperature was kept between 27 and 300C to mimic savanna ecosystems. 

 

2.1.2 Spectral measurements 

 

Canopy spectral measurements were taken for each pot using a FieldSpec ® 3 Portable 

Analytical Spectral Device (ASD®) spectrometer with a spectral range extending from 350 

to 2500 nm, and a 1 nm bandwidth (www.asdi.com). Measurements were taken in a dark 

room to minimize wall reflections. A halogen lamp mounted on a tripod with a fixed 

illumination angle of 45 degrees was used as illumination source. Given the pot diameter of 

15 cm, the canopy reflectance was measured by pointing the fibre optic with a field of view 

of 25 degrees in a nadir position, from about 33 cm above the grass canopy, to ensure that 

only spectral measurements of the grass canopy were taken. A white reference panel 

(spectralon) was used before each spectral measurement to convert spectral radiance into 

reflectance. Measuring followed the protocol used by e.g. Cho et al. (2007b), Mutanga et 

al. (2003) and Vaipasha et al. (2005). A single spectral measurement included an average 

of 10 scans. Each pot was rotated whilst 5 spectral measurements were taken and averaged 

to account for illumination differences and bi-directional reflectance effects (Wang et al. 

2009).  
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2.1.3 Chemical analysis 

 

For each pot all grasses were cut at the base and oven dried at 800 C for 24 hours. The 

dried grasses were sent to the Agricultural Research Council’s Institute for Tropical and 

Subtropical Crops (ARC-ITSC) for chemical analysis. N and P were analyzed using the 

wet or acid digestion method, using perchloric and nitric acid for P and sulphuric acid for N 

(Giron 1973; Grasshoff et al. 1983). 

 

2.2 Data Analysis 

 

2.2.1 Spectral transformation techniques 

 

The spectral reflectance data were pre-processed before transformation. Spectral 

smoothing was performed with the commonly used Savisky-Golay filter (Savitzky and 

Golay 1964), adding a second order polynomial least square function and 3-band window 

to remove signal noise. To compare the water removed (WR) spectra with the other 

spectral transformation techniques, taking some of the absorption features in the visible 

spectrum into account; the spectral region from 500 to 2450 nm was selected for data 

analysis. 

 

Commonly used spectral transformation techniques such as log transformed spectra 

Log (1/R), first derivative, and continuum removal, were computed. Log (1/R) was 

determined by calculating a log function of the spectral reflectance’s reciprocal (Hruschka 
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1987; Yoder and Pettigrew-Crosby 1995; Fourthy and Baret 1998). The first derivative of 

the spectral reflectance was derived using a first-difference approach. A first-difference 

transformation of the reflectance spectrum calculates differences in reflectance between 

adjacent wavebands. More details on this can be found in Dawson and Curran (1998). The 

continuum removed spectra were derived by applying a convex hull or a continuum line to 

the reflectance spectra connecting local spectral maxima (Kokaly and Clark 1999; Kokaly 

2001; Mutanga et al. 2004a).  

 

To reduce water absorption effects on weak biochemical absorption, the water 

removed spectra (WR) were derived from a non-linear least-squares spectral matching 

technique calculating a fresh leaf spectrum as a non-linear combination of a leaf water 

spectrum and a dry matter spectrum (Gao and Goetz 1994; Gao and Goetz 1995), modified 

by Scherlf et al. (2010), using the following equation: 

 

Rmod(λ)=(A+B λ)exp-(CwKw(λ) + CdmKdm(λ))     (1) 

 

where Rmod(λ) is the modelled reflectance for wavelength , Cw the water content, Kw 

the absorption coefficient of water, Cdm the dry matter content, Kdm the absorption 

coefficient of dry matter content, and A and B background model coefficients. A, B and 

Cw were unknowns determined using the mathematical optimization procedure called 

nelder-melder simplex method (Mathews and Fink 2004; Mathworks 2009). The 

absorption coefficient of water and the absorption coefficient of protein or dry matter 

were obtained from the PROSPECT leaf model (Jacquemoud et al. 1996). The leaf water 
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contribution to the total fresh leaf reflectance was modelled by filling in the three 

unknowns A, B, and Cw in equation (1), whilst setting Cdm at zero. Finally, the residual 

spectra between measured reflectance Rmes(λ) and modelled reflectance Rmod(λ) were 

computed as the water removed spectra WR(λ): 

 

WR (λ) = (Rmes(λ)- Rmod(λ))/ Rmes(λ)      (2) 

 

The modifications by Schlerf et al. (2010) included the use of known and published water 

and protein absorption coefficients and incorporating nelder-melder simplex methods to 

determine the unknowns as indicated above. This study adopted the same technique for 

the savanna grass species. WR (λ) was used for analysis and compared with the other 

transformations of the spectra. 

 

2.2.2 Regression analysis and bootstrapping 

 

Two commonly used regression techniques were selected for data analysis, i.e. 

partial least square regression (PLSR) (Naes and Martens 1985; Geladi and Kowalski 

1986; Naes et al. 1986; William and Norris 1987; Martens and Naes 1989; Ehsani et al. 

1999; Geladi et al. 1999; Martens and Naes 2001; Viscarra Rossel 2008) and stepwise 

multiple linear regression (SMLR) (Grossman et al. 1996; Martin and Aber 1997; Kokaly 

and Clark 1999; Huang et al. 2004; Schlerf et al. 2010). To compare the retrieval 

accuracy of foliar N and P using the various spectral transformation techniques, a 

bootstrapping approach was used (Efron 1983). The advantage of bootstrapping is that it 
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can be used efficiently when only a limited number of samples are available. 

Bootstrapping was used as an alternative to the split method since it iteratively resample 

the data set to be used for model development, making it a good technique for assessing 

model accuracy (Verbyla and Litvaitis 1989). In this study, PLSR and SMLR were 

integrated with bootstrapping to derive calibrated and validated models. To integrate 

PLSR and bootstrapping, bagging-PLSR  was implemented using the Parles 3.1 software 

(Viscarra Rossel 2007; Viscarra Rossel 2008). SMLR was integrated with bootstrapping 

using Mathworks (2009). 

 

Using bagging-PLSR, independent or predictor variables were mean-centred to 

normalize them prior to further statistical analysis. The leave-one-out cross validation, as 

defined by the lowest root mean square error (RMSE), was used to determine the optimal 

number of factors or latent variables to be used for model development (Cho et al. 2007; 

Viscarra Rossel 2008; Darvishzadeh et al. 2008a). This Optimal number of factors was 

then used for model development and validation with the number of bootstraps equalling 

1000. Bootstrapping with SLMR also used 1000 iterations and was implemented in 

Mathworks (2009). Only significant wavelengths were used in the model development 

using SMLR. Wavelengths were selected using the conventional rule for selecting 

independent variables in SMLR (“in” if p<0.05, and “out” if p>0.01). 

 

For both models (PLSR and SMLR) the retrieval accuracy was defined by the 

bootstrapped mean of the coefficient of determination (R2) and the RMSE. The 

confidence interval at a 95% confidence level was calculated for both R2 and RMSE.  
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3 Results 

 

3.1 Performance of WR spectra for foliar N estimation using PLSR and SMLR 

 

Generally, the WR technique used in combination with PLSR yielded the highest N 

retrieval accuracy (R2=0.84; RMSE=0.28, 17% of the mean), compared with other 

spectral transformation techniques (Table 1). The 95% confidence interval (CI) of the N 

retrieval accuracy (RMSE, 95% LCI=0.25 and UCI=0.33) confirmed the outperformance 

of the WR technique plus PLSR over other techniques. A similar trend with a slightly 

higher accuracy was obtained when the WR technique was combined with SMLR, 

producing the highest retrieval accuracy overall (R2=0.87; RMSE=0.25, 15% of the 

mean; Table 1). The second most important spectral transformation for N estimation after 

the WR technique was continuum removal, producing a RMSE of 0.30 (18% of the 

mean), and a 95% confidence interval varying from 0.24 to 0.31, when using PLSR. 

Similar trends were obtained when the continuum removal was combined with SMLR 

(R2=0.78; RMSE=0.34, 20% of the mean). The poorest performances were obtained with 

the first derivative, the Log(1/R), and the original reflectance spectra, with an R2 of 

around 0.6 and a RMSE varying between 0.43 and 0.48 (about 26% of the mean; Table 

1). 

(Table 1) 

N retrieval accuracies were not significantly (t-value=-0.18, df=8, p=0.859) different 

between PLSR and SMLR approaches. On average the PLSR accuracies were slightly 
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higher than those of the SMLR, with a higher R2 and a lower RMSE. Generally, the 

results consistently demonstrated the high performance of the WR technique.  

 

More bands were selected using SMLR and WR spectra (about 11 bands) to estimate 

N concentration, than for other spectral transformations (Table 2). Many of the important 

bands for all spectral techniques were located in the known absorption features for 

protein and N (Curran 1989; Kumar et al. 2001) (see Table 2 and Figure 1). For N 

estimation, Figure 1 depicts the PLSR weights plotted with the grass canopy spectra of 

the highest performing spectral transformations, namely WR and continuum removal. 

The original reflectance curve was added to Figure 1 for reference. 

(Table 2) 

(Figure 1) 

 

3.2 Performance of WR spectra for foliar P estimation using PLSR and SMLR 

 

Generally, the WR technique yielded the highest P retrieval accuracy compared to 

other spectral transformation techniques. Contrary to what was observed with WR-PLSR, 

the WR-SMLR technique yielded a higher coefficient of determination (R2=0.64) with a 

slightly higher P retrieval accuracy (RMSE=0.06, 18% of the mean; Table 1). This 

suggests that overall the WR technique minimized water masking effects on features 

sensitive to P. The WR technique had a higher accuracy compared to the continuum 

removal technique (RMSE=0.07, 20% of the mean), which again was the second 

performer with an about 27% lower R2 value (Table 1). Using PLSR, the first-derivative 



 

 16

transformation produced the highest estimates of P with a RMSE of 0.068 (20% of the 

mean), slightly higher than the WR technique with its RMSE of 0.070 (20.6% of the 

mean). Continuum removal and PLSR yielded a RMSE of 0.08 (22% of the mean). The 

lowest performing spectral transformation techniques for estimating P with PLSR were 

Log (1/R) and original reflectance, with a RMSE of 0.08 (24% of the mean) and of 0.07 

(20% of the mean), respectively. Again P retrieval accuracies using SMLR were not 

significantly different (t-value=-1.1095, df=8, p=0.299) from those using PLSR. Log 

(1/R) and original reflectance generally obtained poor results with both regression 

techniques. 

 

Using the WR technique, the stepwise regression technique yielded the highest 

number of bands for estimating P concentrations compared to the other transformation 

approaches. Some of the selected bands corresponded with known absorption features of 

starch, as cited in Curran (1989) and Kumar et al. (2001) (Table 2), as was also observed 

in the PLSR weights noted in Figure 2. For P estimation, Figure 2 depicts the PLSR 

weights plotted with the grass canopy spectra of the highest performing spectral 

transformations, namely WR and the first derivative spectra. The original reflectance 

curve has been added to Figure 2 for reference.   

(Table 2) 

(Figure 2) 
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3.3 Foliar P and N concentrations in grass canopies 

 

A high variability of foliar N and P was observed in the samples of D. eriantha 

cultivated in the greenhouse and treated with various nutrient and water levels. 

Descriptive statistics for foliar N and P are detailed in Table 3; the mean foliar N and P 

concentrations were 1.68% and 0.34% of dry matter respectively. The distribution of both 

N and P foliar concentrations across all treatments were normal, as tested by the 

Kalmogorov-Smirnov normality test (p>0.05, 4.39 and 2.16 chi square test, respectively). 

 

(Table 3) 

 

4 Discussion 

 

4.1 WR spectra for estimating foliar N  

 

This study demonstrated the potential of the WR approach as one of the spectral 

transformation techniques that could be used to increase the accuracy of foliar N 

estimation. By reducing the water effect across the fresh leaf spectra this technique 

enhances weak or subtle absorption features. The regions of the electromagnetic spectrum 

most affected by water are the NIR and SWIR, important regions for distinguishing 

various biochemical concentrations. This was illustrated by the selection of more bands 

in the SWIR region being related to foliar N concentration when using WR instead of 

reflectance (Table 2, Figure 1). Some of these bands correspond to known absorption 
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features cited by Curran (1989) and Kumar et al. (2001) due to several absorption 

mechanisms including electron transition in the visible region, C-H stretch of the 2nd 

overtone mainly in the 1100-1300 nm region, and C=O, O-H, N-H, C-O, C-H as well as 

C-C for the region within 1300-2380 nm (Kumar et al. 2001). Generally this study 

showed the applicability of the WR technique for savanna grass species, with a higher R2 

of 0.87 for N estimation compared to the results (R2=0.52) attained by Schlerf et al. 

(2010). Gao and Goetz (1994; 1995) successfully implemented the WR technique for 

lignin and cellulose estimations, highlighting the importance of minimizing water effects 

on the SWIR. The WR technique is easy to implement but requires a careful and proper 

parameterization of the least square spectral mixture analysis model to provide reliable 

results (Gao and Goetz 1994). 

 

The continuum removal technique yielded the second highest accuracy for 

estimating foliar N concentrations with both PLSR and SMLR. Continuum removal 

enhanced the differences in absorption strength (Clark and Roush 1984; Schmidt and 

Skidmore 2001; Schmidt et al. 2004). The highest R2 obtained in this study using 

continuum removal was 0.81. This is consistent with the N retrieval accuracy of forest 

sites reported by Kokaly and Clark (1999), where an R2 of 0.75 to 0.94 was attained 

using continuum removal and continuum removal-derived indices. This study attained 

higher accuracy results for N based on continuum removal than a study by Mutanga et al. 

(2005) on Cenchrus ciliaris grown in the greenhouse. Estimating N with Log (1/R) 

yielded a higher retrieval accuracy than with reflectance, but not as high as with the WR 

and continuum removal techniques. Yoder and Pettigrew-Crosby (1995) showed Log 
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(1/R) performed accurately estimating N concentrations, compared to reflectance. Similar 

results were also attained by Fourty and Baret (2001). They argued that by transforming 

reflectance to absorbance Log (1/R) values the accuracy of biochemical estimates was 

improved. Log (1/R) is likely to be used instead of the original reflectance because of the 

linear relation between the absorbing components and its contribution to the Log (1/R) 

value at the wavelength absorbed (Hruschka 1987). However, the present study shows the 

performance of WR to be higher to that of Log (1/R). 

 

4.2 WR spectra for estimating foliar P  

 

The performance of the first derivative and WR techniques in terms of P retrieval 

accuracy highlights the importance of reducing the influence of water on the fresh leaf 

spectra. As shown in Table 2 and Figure 2, many bands highlighted by the models as 

sensitive to P correspond to known absorption features of starch. The relationship 

between P and starch is understood to be based on an energy molecule rich in P called 

adenosine triphosphate (ATP), which is used in starch formation (Heldt et al. 1977; Sava 

Stankovic 1978; Larcher 1980; Okita 1992). The energy from the sun is converted into 

chemical energy stored as a form of ATP and then used to bond with carbon dioxide 

(CO2) and hydrogen to form starch (Larcher 1980). To date, few studies have focused on 

the estimation of P using remote sensing. Bogrekci and Lee (2005) used wavelengths 

from 225 to 2550 nm, while Mutanga and Kumar (2007) showed that bands in the SWIR 

were more sensitive to P, which is similar to the findings in this study. The high precision 

of N and P estimation using the WR technique is evident from the lower confidence 
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limits of the correlation coefficient and the RMSE derived from the bootstrapping 

technique (Table 1). 

 

4.3 Comparing PLSR and SMLR for foliar N and P estimation 

 

PLSR consistently performs well in estimating N. Comparative studies using both 

PLSR and SMLR indicated the predictive power of PLSR. For example, Bogrekci and 

Lee (2005) showed that PLSR had a higher P accuracy than SMLR on grass leaves. This 

study showed different results, with the SMLR-WR technique yielding a higher accuracy 

for P than the PLSR-WR did. SMLR is normally confounded with difficulties 

transferring the predictive models to the other data sets or other areas (Grossman et al. 

1996). On average, including all other spectral transformation techniques, PSLR still 

showed its high predictive power. Hansen and Schjoerring (2003) concluded that PLSR 

can be used as an alternative univariate statistical technique. This is mainly because 

PLSR minimizes the multicollinearity effects by decomposing the spectral data into non-

collinear latent variables. Over-fitting may be minimized using PLSR by selecting an 

optimal number of latent variables rather than having more redundant explanatory 

variables (Viscarra Rossel 2007; Viscarra Rossel 2008).   
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5 Conclusion 

 

The estimation of N, P, and N:P at landscape level forms an important objective to 

facilitate investigation into the feeding patterns and distribution of wildlife and livestock 

in African savannas. The study tested the applicability and performance of the water 

removal technique in estimating P and N concentrations on grass canopies and compared 

this technique with other spectral transformation techniques such as first derivative, Log 

(1/R) and continuum removal, as well as the original reflectance. This study suggests that 

the water removed approach is a useful technique to retrieve foliar N and P 

concentrations from grass in savannas, especially N which was consistently estimated 

with high accuracy by both SMLR and PLSR. This study focused on a single species; 

future studies should consider multiple species at field, airborne or satellite level to test 

the utility of the water removed technique at landscape level in savanna ecosystems. 
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Tables and Figure captions 

Tables 

Table 1: The performance of various spectral transformations for estimating N and P 

using PLSR and SMLR combined with the bootstrapping technique 

Spectra   r² LCI 95% UCI 95% RMSE LCI 95% UCL 95% 
*no. of factors or 

bands 
N vs. PLSR 0.81 0.68 0.94 0.30 0.26 0.35 8 
N vs. SMLR 0.78 0.69 0.78 0.34 0.33 0.38 4 
P vs. PLSR 0.40 0.38 0.41 0.08 0.06 0.08 6 

CR 

P vs. SMLR 0.37 0.18 0.38 0.07 0.07 0.09 2 

N vs. PLSR 0.59 0.48 0.70 0.45 0.39 0.53 3 

N vs. SMLR 0.59 0.48 0.70 0.45 0.39 0.53 9 
P vs. PLSR 0.47 0.46 0.48 0.07 0.06 0.08 7 

FD 

P vs. SMLR 0.25 0.12 0.27 0.08 0.08 0.09 4 

N vs. PLSR 0.62 0.50 0.74 0.43 0.38 0.50 6 

N vs. SMLR 0.60 0.54 0.62 0.45 0.43 0.50 4 

P vs. PLSR 0.17 0.16 0.18 0.08 0.07 0.10 4 
Log(1/R) 

P vs. SMLR 0.00 0.01 0.10 0.09 0.92 0.10 1 
N vs. PLSR 0.60 0.49 0.71 0.44 0.38 0.52 4 

N vs. SMLR 0.55 0.48 0.56 0.48 0.46 0.57 4 

P vs. PLSR 0.18 0.17 0.19 0.08 0.07 0.10 4 
R 

P vs. SMLR 0.10 0.01 0.11 0.06 0.09 0.10 3 

N vs. PLSR 0.84 0.71 0.97 0.28 0.25 0.33 6 

N vs. SMLR 0.87 0.82 0.88 0.25 0.24 0.31 11 

P vs. PLSR 0.43 0.42 0.44 0.07 0.06 0.08 5 
WR 

P vs. SMLR 0.64 0.48 0.64 0.06 0.05 0.07 9 
N=Nitrogen, P=Phosphorus, CR=continuum removal, FD=first derivative, R=original reflectance, 
WR=water removed spectra. *factors for partial least square regression (PLSR) and bands for stepwise 
multiple linear regression (SMLR) 
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Table 2: Wavelengths selected using SMLR, marking wavelengths corresponding to 

known absorption features. 

Spectra vs. N/P Selected wavelengths for N and P estimation using SMLR 

CR vs. N 732 1057 1836 2129*        
CR vs. P 744 785          
FD vs. N 549 673* 734 1666* 1807 1908 2260 2290 2374*   
FD vs. P 839 1204* 1667* 2450        

Log(1/R) vs. N 504 605 698 1396        
Log(1/R) vs. P 638* 691 878         

R vs. N 511 604 696 1394        
R vs. P 640           

WR vs. N 522 675* 1087 1159 1299 1360 2014 2038 2056* 2141* 2342 
WR vs. P 935 1036 1209* 1974* 2061* 2296 2320* 2364 2379     

CR=continuum removal, FD=first derivative, R=original reflectance, WR=water removed spectra. 
*Known absorption features protein / N for nitrogen (N) and starch for phosphorus (P) (Curran 1989). 
 

Table 3: Descriptive statistics of foliar N and P for Digitaia eriantha  

Measured Variables No. of Obs. Min Max Mean StDev 

Nitrogen (N%) 90 0.65 3.73 1.68 0.25 

Phosphorus (P%) 90 0.17 0.63 0.34 0.07 
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Figures 

 
Figure 1: Partial least square regression (PLSR) weights showing the contribution of 
each wavelength in the development of models for nitrogen (N) estimation using a) 
continuum removal (CR) spectra (N vs. CR), b) reflectance (R) spectra (N vs. R), c) WR 
(water removed) spectra (N vs. WR), plotted with the grass canopy reflectance for 
reference. The more positive the weight is on a particular wavelength, the more 
contribution it has towards the model development (and vice versa). Vertical lines 
indicate known N absorption features as listed in Curran (1989) 
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Figure 2: Partial least square regression (PLSR) weights showing the contribution of 
each wavelength in the development of models for estimating P using a) first derivative 
(FD) spectra (phosphorus (P) vs. FD), b) reflectance (R) spectra (P vs. R), c) water 
removed (WR) spectral data (P vs. WR), plotted with the grass canopy reflectance for 
reference. The more positive the weight is on a particular wavelength, the more 
contribution it has towards the model development (and vice versa). Vertical lines 
indicate known of starch absorption features as listed in Curran (1989). 
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