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SUMMARY

We describe the development of a 3D parallel Fluid–Structure–Interaction (FSI) solver and its ap-
plication to benchmark problems. Fluid and solid domains are discretised using and edge-based
finite-volume scheme for efficient parallel computation, with a hybrid of node- and element-based
strains calculated in the solid model for accuracy. The Pressure-Projection Artificial Compress-
ibility Split (PACS) algorithm [1] is used in the fluid domainand re-derived in an Arbitrary-
Lagrangian–Eulerian (ALE) reference frame. A preconditioned GMRES algorithm is developed
for matrix-free solver acceleration. The fluid and structural domains are strongly coupled with
a fast mesh-movement technique employed in the fluid domain.The solver is parallelised for
distributed-memory architectures.

Key Words: Fluid–Structure Interaction, preconditioned GMRES, ALE

1 INTRODUCTION

Many physical systems involving fluid flows are in truth strongly dynamic systems where there
exists an intimate coupling between fluid and structural or solid domains. Examples are flutter
in aircraft wings and cardio-vascular and respiratory systems in the human body. Phenomena of
interest range from large-deformation structural response to dynamic induced stresses and non-
linear flow behaviour. Fluid–Structure-Interaction (FSI)modelling is a branch of Computational
Mechanics which aims at accurately calculating these effects in a quantitative manner. Though
recent years have seen much research going into the development of FSI modelling technology,
the efficient and robust modelling of large-scale, strongly-coupled multiphysics systems which
involve complex geometries is still some way off. In this work, we develop and evaluate a new
fully-coupled, matrix-free methodology as a first step to addressing this challenge.

2 METHOD

Our FSI strategy is fully coupled in the sense that information is transferred at solver sub-iteration
level, leading to a fully-converged solution at each timestep where both dynamic and kinematic
continuity – i.e. continuity of forces and velocities – is satisfied at the fluid/solid interface. Spatial
discretization of the fluid and solid domains is entirely independent, although in this work we
have chosen to use a finite-volume scheme for both, in the interests of coding efficiency and



simplified parallelisation. That is, we are able to use a single solver code in a manner which
allows independence in terms of both discretization as wellas solution strategy for the fluid and
solid domains, while ensuring strong coupling via a simple interface data transfer method. In the
case of the solid, large non-linear deformation is allowed for via a total-Lagrangian formulation.
The fluid governing equations are written in an Arbitrary-Lagrangian–Eulerian coordinate system
to allow efficient and unified modelling of the entire fluid-solid system.

The non-linear unified governing equations are spatially discretized via a hybrid-unstructured
edge-based finite volume method whose spatial accuracy is formally of second order. In the inter-
est of both computational and programming efficiency, the chosen spatial discretisation algorithm
should be naturally applicable to any part of a fluid or solid mesh. This is achieved by employing
a purely edge-based compact discretisation methodology, which holds the additional advantage
of being computationally considerably more efficient than element-based approaches while being
ideally applicable to massively parallel distributed memory machines. In the case of the solid
domain, a hybrid elemental/nodal strain approach was implemented in the interests of accuracy.
In this method, shear strains are calculated by integratingaround elements to obtain derivatives,
while longitudinal strains are obtained in the standard node-based finite volume approach of inte-
grating around dual-cells. The former prevents large errors at boundaries while the latter prevents
odd-even decoupling from occuring.

Second-order accuracy is also attained in temporal discretization and results in an implicit solution
algorithm. This is of critical importance in order to ensurea fully coupled solution procedure,
which is effected in a matrix-free manner via the use of dual-timestepping. The pseudotime-
integration required for the solid domain to calculate displacement from acceleration is done via a
second-order accurate single-step procedure [2]:
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In the case of the fluid, the Pressure-Projection Artificial Compressibility Split (PACS) algorithm
[1] is used. As mentioned, the three-step scheme is extendedfor moving meshes as follows.
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whereu denotes the flow velocity,v the mesh velocity, andV the cell volume. Theτ super-
script denotes the current pseudo time-step and∆tτ the psedo-timestep size,c2 is the artificial-
compressibility pseudo-acoustic velocity [3]. The sourcetermS contains the second-order accurate
dual-timestepping term.

The solver is accelerated using a GMRES algorithm with preconditioning based on [4], providing
matrix-free operation at a much lower cost than Jacobi iterations. The algorithm is parallelised for
distributed-memory architectures using MPI.

Finally, the coupled FSI solver is applied to strongly-coupled large-displacement FSI benchmark
problems from literature.



3 CONCLUSIONS

A high-performance solver has been developed to accuratelypredict flows and stresses in strongly-
coupled fluid–solid systems involving large structural deflections.
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