Advances in geospatial analysis platforms and tools:

Creating space for differentiated policy and investment responses

Presenter: Johan Maritz

Researchers: Alize Le Roux, Elsona van Huyssteen, Johan Maritz,

Maria Coetzee, Gerbrand Mans, Helga Goss

CSIR, Built Environment, Planning Support Systems

Introduction

- The importance of spatial dimension in planning objectives
- Understanding of complex spatial relationships
- S.A policy focused on need for alligned collaborative & coordinated targeted investment
- Need for tools, methods & procedures to support collaborative, coordinated and integrated planning and decision-making
- Geo-information(GI) science and analysis to support planning analyses tasks and related decision making processes

our future through science

Outline of presentation

- SA planning context and challenges need for enhanced understanding of the complex spatial dynamics of social, economic and environmental patterns within SA
- 2. Typical geo-science challenges
- 3. Targeted responses and collaborative innovations
- Value and contribution to support policy development, strategic planning and investment

Outline of presentation

- 1. SA planning context and challenges need for enhanced understanding of the complex spatial dynamics of social, economic and environmental patterns within SA
- 2. Typical geo-science challenges
- 3. Targeted responses and collaborative innovations
- 4. Value and contribution to support policy development, strategic planning and investment

1. SA planning context and challenges

- Related to key government (MTSF) priorities
- Typical fields in which this work is situated
 - Service delivery and improved quality of life
 - Viable and resilient development in rural areas
 - Sustained economic growth and regional development
 - Challenges of rapid urbanisation and unprecedented urban growth
 - Improved governance 3 spheres alignment

1. SA planning context and challenges ...

- Questions often asked / challenges raised when addressing development and policy priorities:
 - Where are settlements growing, where are service delivery backlogs increasing? Where will this happen in space?
 - What is the accessibility of various settlements to socioeconomic opportunities and services?
 - How can governance and investment responses be coordinated in time and in space between three spheres, multiple departments, agencies of government?

1. SA planning context and challenges ...

- Need for enhanced understanding of complex dynamics of social, economic and environmental spatial patterns within South Africa:
 - Current magnitudes, past trends and future implications
 - To access and 'making sense' in data scarce environments and capacity constrained contexts
 - To enable temporal analysis (given change in admin boundaries), cross border regional analysis, and crosssector analysis

Outline of presentation

 SA planning context and challenges – need for enhanced understanding of the complex spatial dynamics of social, economic and environmental patterns within SA

2. Typical geo-science challenges

- 3. Targeted responses and collaborative innovations
- 4. Value and contribution to support policy development, strategic planning and investment

2. Geo-science challenges

- To enable more rigorous and spatially nuanced socioeconomic data analysis to answer questions such as:
 - What is where? How much is where? How do these relate?
 - Spatial data availability and analysis on areas that are not bound by administrative areas - analysis across data sectors, scales, time and boundaries
- Ability to access and process large amounts of data and information for integrated planning purposes
- Easy communication, access to- and display of spatial data (visualisation) to answer specific policy questions
- Simulations of future trends

2. Geo-science challenges (...continued)

Example 1: Need to compare varying types of spatial data

Mpumulanga's *economic* statistics (per Magisterial District, 2001)

Absence of common analysis zones and databases – e.g. for comparing conomic and other territorial statistics

Mpumulanga's ecosystem statistics (per water catchment)

2. Geo-science challenges (...continued)

Example 2: Need for spatial data availability for IDPs

Data and analysis gaps leading to more serious gaps downstream...

Outline of presentation

- SA planning context and challenges need for enhanced understanding of the complex spatial dynamics of social, economic and environmental patterns within SA
- 2. Typical geo-science challenges
- 3. Targeted responses and collaborative innovations
- 4. Value and contribution to support policy development, strategic planning and investment

3. Targeted responses and collaborative innovations

Geospatial Analysis Platform (GAP)

A demarcation of South Africa into more than 25 000
 "mesozones" of approximately 50 km² in size (about 7 x 7 km), nested within important administrative and physiographic boundaries.

Geo-Web

Analysis tools & aggregate data

GAP Example 1: Population density

GAP Example 2: Regional economic context

- Role of area in broader functional region,
- relative size / importance of e.g. economic activity and poverty in relation to country as a whole,
- opportunities and threats in nearby and further away localities

Spatial Relational Analysis

Web portals

Web-based portals that provide:

- Interactive maps
- Tables
- Databases
- Frameworks

CSIR 2010 Slide 18

Outline of presentation

- SA planning context and challenges need for enhanced understanding of the complex spatial dynamics of social, economic and environmental patterns within SA
- 2. Typical geo-science challenges
- 3. Targeted responses and collaborative innovations
- 4. Value and contribution to support policy development, strategic planning and investment

Example 1: National Spatial Development Perspective

Developed with The Presidency

• Need: Inform strategic plans, guide infrastructure investment decisions

(Areas of national economic significance and concentrations of

people living in poverty)

• Innovation: Use geospatial platform & spatial relational analysis,

aggregated data

Value: Strategic planning guidance for national, provincial, local

spheres. Rolled out to all 9 provinces, all district and metro

municipalities

Example 2: Policy question: Former Bantustan areas

- Developed on request of The Presidency (2009)
- Need: To determine the progress in quality of life of former Bantustan areas, compare development indicators
- Innovation: GAP, aggregated data, spatial relational analysis to compare data over time, in spite of no data capturing on former borders since 1994
- Value: Address policy question re. Comparative development between the former Bantustan areas and the rest of SA

Example 3: Toolkit for Integrated Planning (TIP)

- Developed collaboratively with DST, HSRC & municipalities
- Need: Support IDPs & SDFs & sector plan development
 Access to all local and district municipalities in country
- Innovation: Spatial planning information web/portal
- Value: Address spatial planning data and analysis gap Capacity building

Example 4: LEDET geo-spatial medium client

- Developed for Limpopo Economic Development and Tourism (LEDET)
- Need: Ability to view multiple data dimensions
- Innovation: Medium client integrating background mapping with live layers that can be compared, can initiate remote (server) processing for inclusion to data parcel
- Value: Serves as a delivery mechanism (where no GIS tools are available)

Conclusion

- Proven need for evidence-based planning
- Significant progress made in geo-science innovations over last few years, within CSIR and within domain
- Highly data intensive, thus urgent need for better data management, sharing and access by all stakeholders
- Importance of collaborative innovations, that require innovative solutions and has specific value
- Geo-science innovations (spatial data, analysis planning support systems) not the only answer but can contribute significantly
- Advances in geo-science can create 'space' for differentiated policy and investment responses

Thank you

For more information:

www.csir.co.za/Built_environment/Planning_support_systems

