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Abstract

This thesis presents work completed on the design of control and vision com-
ponents for use in a monocular vision-based human-following robot. The use
of vision in a controller feedback loop is referred to as vision-based or visual
servo control. Typically, visual servo techniques can be categorised into image-
based visual servoing and position-based visual servoing. This thesis discusses
each of these approaches, and argues that a position-based visual servo control
approach is more suited to human following.

A position-based visual servo strategy consists of three distinct phases:
target recognition, target pose estimation and controller calculations. The
thesis discusses approaches to each of these phases in detail, and presents a
complete, functioning system combining these approaches for the purposes of
human following.

Traditional approaches to human following typically involve a controller
that causes platforms to navigate directly towards targets, but this work ar-
gues that better following performance can be obtained through the use of a
controller that incorporates target orientation information. Although a purely
direction-based controller, aiming to minimise both orientation and transla-
tion errors, suffers from various limitations, this thesis shows that a hybrid,
gain-scheduling combination of two traditional controllers offers better target-
following performance than its components.

In the case of human following the inclusion of target orientation informa-
tion requires that a definition and means of estimating a human’s orientation
be available. This work presents a human orientation measure and experi-
mental results to show that it is suitable for the purposes of wheeled platform
control. Results of human following using the proposed hybrid, gain-scheduling
controller incorporating this measure are presented to confirm this.
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Uittreksel

Die ontwerp van 'n visiestelsel en beheer-komponente van 'n enkel-kamera ro-
bot vir die volging van mense word hier aangebied. Die gebruik van visuele
terugvoer in die beheerlus word visie-gebaseerde of visuele servobeheer genoem.
Visuele servobeheer tegnieke kan tipies onderskei word tussen beeld-gebaseerde
servobeheer en posisie-gebaseerde visuele servobeheer. Altwee benaderings
word hier bespreek. Die posisie-gebaseerde benadering word aanbeveel vir
die volging van mense.

Die posisie-gebaseerde servobeheertegniek bestaan uit drie duidelike fases:
teiken herkenning, teiken oriéntasie bepaling en die beheerder berekeninge.
Benaderings tot elk van hierdie fases word hier in detail bespreek. Dan word
'n volledige funksionele stelsel aangebied wat hierdie fases saamvoeg sodat
mense gevolg kan word.

Meer tradisionele benaderings tot die volging van mense gebruik tipies 'n
beheerder wat die platvorm direk laat navigeer na die teikens, maar hier word
geargumenteer dat beter werkverrigting verkry kan word deur 'n beheerder
wat die teiken oriéntasie inligting ook gebruik. 'n Suiwer rigting-gebaseerde
beheerder, wat beide oriéntasie en translasie foute minimeer, is onderhewig
aan verskeie beperkings. Hier word egter aangetoon dat 'n hibriede, aanwins-
skedulerende kombinasie van die twee tradisionele beheerders beter teiken-
volging werkverrigting bied as die onderliggende twee tegnieke.

In die geval van die volging van mense vereis die insluiting van teiken orién-
tasie inligting dat 'n definisie van die persoon se oriéntasie beskikbaar is en
dat dit geskat kan word. 'n Oriéntasie maatstaf vir mense word hier aange-
bied en dit word eksperimenteel getoon dat dit geskik is om 'n platvorm met
wiele te beheer. Die resultate van die volging van mense wat die voorgestelde
hibriede, aanwins-skedulerende beheerder gebruik, met hierdie maatstaf, word
ter ondersteuning aangebied.
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Chapter 1

Introduction

1.1 Background

The ability of a mobile robot to track and follow a moving target is required in
a wide variety of applications, particularly when the coordination of multiple
robots is required. Cooperative robotics requires that individual robots are
aware of the positions and behaviours of surrounding agents prior to any useful
collaborative action. One of the more common tasks required by cooperative
agents is formation control, defined by Das et al. (2002) as the problem of
controlling the relative positions and orientations of robots in a group, while
allowing the group to move as a whole. Many different formations have been
proposed, but the leader-follower formation is one of the most common.

The leader-follower formation control task requires that a mobile robot
follows a target, maintaining a specified range and relative orientation. Such
a task is particularly useful for robotic convoys, where a lead vehicle is tele-
operated and a cascade of agents follow, allowing the transport of supplies
or vehicles through dangerous areas, without the need to risk human lives.
Leader-follower formation control is also envisaged to be of great use in intel-
ligent transportation systems.

Although introduced in the context of cooperative robotics, the leader-
follower formation control definition also applies to the case of uncooperative or
unpredictable targets. Uncooperative targets range from elusive, manoeuvring
objects to collaborating independent agents without the ability to communi-
cate their intentions. A good example of the latter is that of a human-following
robot.

Robots equipped with the ability to follow humans could prove particularly
useful, especially within the service robotics industry. Robotic mules could
follow humans out to a point and then move back and forth ferrying burdens.
Another potential application is in search and rescue, where a robot follows
teams of medics, and returns stabilised patients to field hospitals, with only
a single medic required to walk alongside, leaving the others free to continue
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work on other patients in a disaster area.

If these applications are to become a reality, human-following robots not
only need to detect, recognise and track humans in real time, but also navi-
gate towards them in an intelligent manner. This is particularly challenging,
as humans are classed as uncooperative targets, since they lack the ability to
communicate with robotic vehicles. As a result, an efficient means of percep-
tion and target recognition is crucial.

Human-following robots are typically equipped with a diverse and varying
combination of sensors for locating and recognising targets. Light detection
and ranging (LIDAR), for example, provides accurate bearing measurements
but suffers from potential ambiguity in target recognition. Electronic teth-
ering techniques that use radio frequency identification (RFID) are effective,
but require that the human followed wear a tracking device and still need a
secondary sensor for greater measurement accuracy. As a result many systems
employ vision, selected for its ability to provide abundant information about
the robot’s environment passively, and at relatively high speeds.

The control of mobile robots using vision in the feedback loop falls into the
well-studied field of visual servo control. At present two types of visual servoing
strategies are popular, image-based visual servoing (IBVS) and position-based
visual servoing (PBVS). IBVS refers to the control of a system using calcula-
tions performed in the image plane, by making use of image coordinates. PBVS
defines control strategies in terms of the vision system’s position relative to
some reference coordinates in the observed world.

Various types of vision system or camera placement are used in conjunction
with these visual servoing strategies. These include fixed location vision sys-
tems, pan-tilt and eye-in-hand configurations. The eye-in-hand configuration
refers to a vision system fixed to the controlled system, where camera motion
is constrained to movements made by the controlled system.

The primary application of visual servoing is to control the motion of an
effector relative to a target. Two strategies of motion control are used, point-
to-point positioning and pose or direction-based motion control, the primary
difference being that target orientation is taken into account in direction-based
motion control. The inclusion of target orientation information in the control
strategy introduces numerous benefits, many of which will be addressed here.

1.2 Problem Statement

The problem addressed in this thesis is the design and implementation of a
suitable visual servo control system that allows a wheeled mobile robot to track
and follow a human. Although human following is the primary application in
mind, efforts are made to maintain generality so as to ease the transition to
arbitrary object following.

It is important to note that visual servo control is reactive and as a result
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advanced path planning and navigation schemes fall beyond the scope of this
work. In addition, no collision avoidance is considered in this thesis, due
to the servoing nature of the controllers implemented. Extensions to control
strategies that allow for collision avoidance are available, however, and could
be used to supplement the human follower without affecting the conclusions
made in this work.

System operation is restricted to indoor environments under relatively con-
trolled lighting conditions. While constrained in size, indoor environments are
potentially cluttered, which makes target detection difficult.

The use of visual information requires that targets be discriminable within
image scenes. As a result, no camouflaged targets are considered and it is
assumed that the targets followed are sufficiently salient.

The primary challenges this work aims to overcome are problems of percep-
tion and target detection in real time, relative orientation estimation, and the
control of a commercially available platform with constrained dynamics. The
restriction to only a monocular vision system introduces further difficulties
with regard to 3D (three dimensional) reconstruction.

Although the platform used for the implementation of the human-following
system is equipped with odometric sensors, the requirement that vision is the
only means of perception and feedback is imposed and odometric informa-
tion is discarded. This restriction allows the human-following system to be
implemented on simpler, less costly vehicles, but adds to the challenges in
implementation.

A requirement that the human-following robot be able to detect targets
when travelling over uneven terrain is also imposed. This requirement arises
from the need to detect the pose of an awkwardly moving human, which can
be considered analogous to detecting a target when traversing uneven terrain.

A direction-based control strategy that incorporates target orientation has
many potential benefits and would prove useful if applied to the human-
following problem. Unfortunately, there is no clear definition of human orien-
tation, but a direction-based control system for human-following requires that
some measure of human orientation be available.

This work presents a visual servoing solution to the human-following prob-
lem. The benefits of obtaining target orientation are made clear, and a con-
trol approach that better exploits these benefits is introduced. A definition
and means of estimating human orientation is presented and the benefits of a
human-following strategy that includes orientation information are evaluated.

1.3 Methodology

A phased and modular approach is used to develop a solution to the human-
following problem. Four primary components — recognition, pose estimation,
tracking and control — were identified as critical to the problem solution after
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analysis of visual servo control literature and background work. Recognition
refers to the detection of the human to be followed. After recognition, pose
estimation extracts the position and attitude of the target, measured relative to
the camera. The position and attitude of the target are then refined through
tracking. A tracking algorithm also allows for position and attitude to be
estimated during brief time periods when no target measurements are made.
Finally, the refined estimates of target information are used by a control system
to generate motion commands for a wheeled platform.

A common procedure is followed in the design of each of these compo-
nents. Initially, various algorithms are identified and compared, based on a
thorough investigation of literature published on the topic. Critical criteria
considered necessary for each component are specified and used to select those
approaches most suitable to the problem. These methods are implemented
and tested through practical experimentation and simulations, before being
reduced to a single solution through verification based on the critical criteria.
The critical criteria predominantly focus on aspects of speed and accuracy,
but also consider the limitations of the available hardware, such as platform
dynamics and vision system constraints.

The benefits of each approach are considered and in many cases, changes
are made to adapt the techniques to the target-following problem. Further
testing of the approaches occurs once integration is complete.

At first, all work is geared towards developing both a direction-based and
point-to-point generalised target-following system and a comparison of the two
is made. Thereafter, attempts at expanding and adapting these approaches are
undertaken, in order to meet the more specific challenge of human-following.

This adaptation is relatively simple in the case of point-to-point target
following, but requires that a measure of human orientation be available for
pose-based following. A definition and measure of human orientation is intro-
duced and validated through practical experimentation.

Further comparisons are made within the human-following domain, in order
to determine whether the benefits identified in the generalised case hold for the
more specific human-following scenario. Finally, the overall human-following
system is validated through experimental testing in various scenarios designed
to test the abilities of the system.

1.4 Aims and Objectives

The primary objectives of this research project are:

e to investigate various object recognition and pose estimation algorithms
and select those most suited to real-time control applications with human
following in mind;
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e to develop an effective mobile object tracking system, which can be im-
plemented on typical differential drive! mobile platforms;

e to analyse the performance of selected object recognition, pose estimation
and control algorithms;

e to identify the benefits of both direction-based controllers and point-to-
point controllers;

e to adapt these controllers to better suit a following application;

e to design and implement a means of determining human orientation, and
evaluate the benefits of a control strategy that utilises it;

e to suitably modify existing mobile platforms so that a leader-follower
tracking configuration can be evaluated therewith.

The end goal of the research is to develop a complete robotic system, which
makes use of dynamic visual servoing on-board a mobile robot, to track and
follow a human leader. All research conducted will be geared towards fulfilling
this objective, but emphasis will be placed on improving the traditional human-
following approach by including orientation information. In doing so three
research questions will be answered.

e Is there any benefit in direction-based control over point-to-point control
for a generic target follower?

e If the benefits are negligible, is it possible to use orientation information
in a modified control scheme in such a way as to enhance them?

e If so, is there a measure of human pose or orientation that makes it
possible to incorporate these benefits into a human-following system?

The use of a vision-based object recognition and pose estimation system
that extracts human pose information will be established if these questions are
answered.

1.5 Contribution

Although the primary goal of this work is to design and implement a visual
servo control system for a human-following robot, novel contributions to the
field of robotics are made. The primary contributions of this work are listed
below.

LA differential drive platform is one where the turning speed of the platform is de-
termined by the speed difference between two wheels, positioned on opposite sides of the
platform.
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A generalised target tracking and following system is designed and im-
plemented.

A hybrid control approach combining the benefits of direction-based mo-
tion control and point-to-point controllers is designed.

A definition of human orientation is introduced, together with a means
of measuring it.

A human-following system incorporating human orientation is imple-
mented and compared with the traditional human-following approach
using point-to-point controllers.

The definition and estimation of human orientation is applicable elsewhere
in field robotics, despite being defined in the context of visual servo control.
Planner-based navigation systems could make use of orientation for human
following, while human robot interaction studies would benefit from the addi-
tional information supplied.

A complete and functioning human-following system could also be used as
the building block in numerous applications, such as the search and rescue
scenario described earlier, where mobile platforms act as human assistants in
disaster areas.

1.6 Thesis Outline

This thesis discusses the use of visual servo control for a human-following
robot. An extensive literature study introducing the components required
for a human-following robot, together with previous human-following work, is
presented in Chapter 2. In Chapter 3, a theoretical analysis and design of the
proposed solution is undertaken. Each of these chapters contains subsections
relating to the four primary system components (recognition, pose estimation,
tracking and control).

Simulated and experimental results verifying and validating the various
system components are presented in Chapter 4, together with an analysis of
the system limitations. Finally, Chapter 5 provides conclusions and recom-
mendations for future approaches, based on the findings of this study.



Chapter 2

Literature Study

In this chapter, literature related to visual servo control and the target follow-
ing problem is discussed. As previously mentioned, the goal of this work is to
utilise visual servo control on-board a wheeled mobile platform to follow a hu-
man target. This requires that a target object is detected and a measure of its
pose relative to some desired configuration made, with motion commands gen-
erated in order to correct any differences between the observed configuration
and the desired one.

Initially, the two primary variants of visual servo control are introduced,
followed by an introduction to object recognition strategies. The components
of a position-based visual servo control system — pose estimation, tracking and
motion control — are discussed thereafter. Finally, work directly relating to
the human-following problem is reviewed.

2.1 Visual Servo Control

The primary objective in visual servoing is to minimise the error between a
desired state and the current state, which is determined through image mea-
surements in conjunction with other relevant information such as camera cali-
bration and motion compensation parameters. Put simply, visual servo control
aims to generate motion commands so that the current scene viewed resembles
an image of the desired scene.

The two main visual servoing approaches, Image-based Visual Servoing
(IBVS) and Position-based Visual Servoing (PBVS), are discussed in detail in
the tutorial by Hutchinson et al. (1996) and in the work of Chaumette and
Hutchinson (2008), which provides a review of visual servoing and tracking
trends.

PBVS methods are more intuitive as they operate in three distinct stages.
Initially, a target object is detected and recognised in the image. Thereafter,
the position and orientation of the target object is determined through the
process of pose estimation. Finally, a control algorithm compares these pose
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measurements to those desired and generates motion commands that cause
the platform to minimise this difference.

IBVS approaches, on the other hand, discard the pose estimation stage of
PBVS. Here, a control algorithm generates motion commands based directly
on errors between the locations of detected features! and their desired posi-
tions. IBVS methods are desirable due to the computational speed gained by
performing all calculations in the image plane, but difficulties in extracting
information regarding rotational motion and the complex control strategies
required make them unpopular. IBVS strategies can also potentially suffer
from stability issues as they are vulnerable to task singularities and can fail to
converge due to the presence of local minima (Chaumette (1998)).

IBVS methods can be designed to ensure that stationary targets are kept
in view, as they perform control in the image plane. Unfortunately, this can
lead to non-ideal camera trajectories. In contrast, PBVS methods allow for
the decoupling of rotational and translational motion, and hence simplify the
control problems associated therewith. Control is performed based on physical
parameters, which results in superior camera trajectories. Unfortunately, as
control is removed from the image plane, it is no longer possible to ensure that
the target object remains visible over the resultant trajectory.

In general though, the controllers used in PBVS present attractive stability
properties. Unfortunately, PBVS approaches require 3D object models and
that 3D localisation problems be solved in real time. Chaumette (1998) notes
that the stability of PBVS techniques is largely determined by the efficacy of
the pose estimation algorithm used.

More advanced approaches to the visual servoing problem are also exam-
ined in the work of Chaumette and Hutchinson (2008) and include hybrid, 2.5D
or partitioned visual servoing approaches, which attempt to combine the best
features of IBVS and PBVS methods. 2.5D visual servoing, first proposed by
Malis et al. (1999), does not require a 3D model of the object and still allows
for a decoupled control law, but is more sensitive to image noise.

2.2 Object Recognition

The discussion of visual servo control strategies assumes that a target object
has already been detected and recognised in the image scene. Unfortunately,
object recognition is an extremely challenging topic in the field of computer
vision and one of the primary difficulties encountered when designing practical
visual servo control systems.

Hutchinson et al. (1996) note that there is a tendency to simplify the object
recognition stages of visual servoing, by making the objects clearly discernible,
so that more attention can be placed on the controller side of visual servoing.

Tmage features or keypoints are salient points in an image, typically located at corners,
edges and areas of sharp contrast.
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Various camera strategies have also been used to simplify the visual servoing
process. An omnidirectional vision system was used by Das et al. (2001) to
ease the recognition and pose determination process. Their vision system made
use of a catadioptric sensor to provide a bird’s-eye-view of the area around a
robot.

Appearance-based object recognition techniques such as colour histogram
matching (Gevers and Smeulders (1999)) are often used in visual servo control
applications because of their ease of implementation. Unfortunately, colour
matching leads to difficulties in extracting reliably positioned feature points
and is subject to mismatches. The use of fiduciary markers alleviates potential
mismatches, but requires interference with the target, which is not always
possible. One of the most common fiduciary approaches, template matching,
involves the design of an easily recognised marker and complementary filter,
which is then correlated with the image scene. Unfortunately, this approach is
often unable to recognise objects when they are viewed from distinctly different
viewpoints.

Geometric object recognition techniques are popular alternatives to ap-
pearance-based approaches. Here, recognition is based on the object shape,
as opposed to its appearance. These techniques rely on edge detection (Torre
and Poggio (1984)) and geometric information of the target for recognition.
Kass et al. (1988) propose the use of a snake or energy minimising spline
that pulls in towards features such as lines and edges, given certain geometric
constraints. Active contour models such as these can prove effective, but are
quite slow and prone to error in extremely cluttered images. Snakes have been
used successfully for leader-follower formation control, however, in the work
of Vela et al. (2009). Here, active contours were used by an Unmanned Aerial
Vehicle (UAV) to track and follow a leader.

Daniilidis and Eklundh (2008) provide a review of 3D vision and recognition
techniques most commonly used in field robotics. Here, recognition strategies
generally rely on appearance-based methods and the extraction of distinct
features. Feature-based approaches generally operate in two stages. Initially,
distinct and key features are detected within the scene. A descriptor of the
region around each feature is then created. Descriptors are compared and an
object is recognised if sufficient matched descriptors are found.

2.2.1 Feature Detectors

A vast amount of literature dedicated to the comparison of feature detectors
is available. This section presents a brief overview of feature detectors that
form the basis of those used in the feature matching schemes considered in this
work.

Ideally, features used should be distinctive, easily recognised, and invari-
ant to changes in both lighting and observer motion (Daniilidis and Eklundh
(2008)). Analysis of the work by Schmid et al. (1998), Trajkovic and Hedley
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(1998) and Zheng et al. (1999) shows that the following parameters are of
interest when quantifying feature detector performance:

detection rate: the percentage of correctly detected features;
localisation: the accuracy of detected feature position;

repeatability rate: a measure of how frequently the same feature is detected
in a scene over varying viewing conditions;

robustness to noise: the ability of features to be detected, despite the ad-
dition of noise to an image;

speed: the time taken for features to be extracted from an image.

One of the earliest feature detectors proposed was the Morevec corner de-
tector (Morevec (1977)). This detector looks for features with extremely low
self-similarity, or patches around features that differ from the feature surround-
ings. Unfortunately this feature detector is anisotropic? as it only measures
similarity in discrete directions. This means that the detection of features is
not rotationally invariant and has poor repeatability.

The Harris or Plessey edge and corner detector (Harris and Stephens (1988))
is an expansion of the Morevec corner detector with better repeatability and
a higher detection rate. The Harris operator is isotropic as it searches for self
similarity in all directions. In addition, the Harris operator results in a less
noisy response than the Morevec detector, as it makes use of a circular Gaus-
sian window function to test for self similarity. The use of this Gaussian also
allows for adaptations to provide scale invariance.

The concept of scale in an image is easily understood. As objects in an
image are viewed from further away, the level of visible detail is reduced. This
reduction in detail can be imitated by a scale-space representation of an image,
as discussed in Appendix A.3.

The multi-scale Harris operator is extremely popular within the computer
vision community and forms the basis for a large variety of feature detectors.
Noble (1989) proposed a filtered keypoint selection criteria for the Harris op-
erator that results in better keypoint localisation. Unfortunately, neither this
approach nor the original Harris operator is affine® invariant.

Mikolajczyk and Schmid (2002) proposed a modification to the multi-scale
Harris operator that provides affine invariance through the use of an affine

2 An anisotropic feature detector is one where the response is direction dependent. This is
not ideal, as differing responses in various directions mean that the detector is not invariant
to changes in rotation. An isotropic detector, which produces the same response over all
directions, is preferable as it results in rotational invariance.

3An affine transformation consists of a linear transformation followed by a translation.
The linear transformation could be a rotation, scaling or shear.
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Gaussian scale-space. This scale space is generated by convolution with non-
uniform Gaussian kernels which simulates heterogeneous scale change in dif-
ferent directions.

Although the modified Harris operators are able to detect good features
that can be found over a variety of viewpoint changes, they do so at the expense
of computation time. This drawback has led to an alternative set of feature
detection techniques. Instead of dedicating time to finding an optimum set of
features that can be detected, and hence matched, from a variety of viewpoints
when using a generic matching scheme, these approaches aim to find less ideal
features suited to a particular matching or tracking technique.

Features from accelerated segment test (FAST), proposed by Rosten and
Drummond (2005), is a method of this type. The FAST detector identifies
keypoints where the intensity of pixels on the edge of a Bresenham circle*
differs greatly from that of the circle centre. The approach is made extremely
fast by optimising the order in which pixels are tested. Unfortunately, this
technique sacrifices feature quality for speed and requires an extremely robust
matching scheme.

Shi and Tomasi (1994) introduced the concept of a feature selection crite-
rion that is based on the operation of the tracking scheme they used to match
features. Their selection criterion is closely related to the Harris operator, but
a better measure when tracking affine feature motions.

Figure 2.1 shows results of the Harris, Harris-Noble and Shi-Tomasi feature
detectors on a sample image undergoing various transformations. The number
of features detected decreases progressively with each detector as the respec-
tive selection criterion is taken into account. The greyscale colour space used
by the figure provides a clue as to the extraction of feature locations. Both
positive maxima (white) and negative minima (black) are used as features in
the traditional Harris operator. The Harris-Noble operator causes features to
emerge as maxima (white), on a positive scale, while the Shi-Tomasi operator
results in features represented by minima (black) on a negative scale.

The use of features or keypoints may not be ideal from an object recognition
perspective. Often, objects do not have single interest points, but larger salient
regions (blobs) instead. In such situations, feature-based recognition strate-
gies could fail. Various blob detectors have been introduced in an attempt
to remedy this. Unfortunately, blob detectors generally lack the localisation
performance of feature detectors and as a result are not suited to visual servo
control applications.

It is clear that there are numerous feature detection schemes available,
each with varying properties. However, the choice of feature detector does
not impact object recognition as significantly as the descriptor or matching
scheme used. The feature detector is merely responsible for selecting points

4A Bresenham circle refers to the midpoint circle algorithm used to draw the points of
a circle in computer graphics.
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Original Image Harris Harris-Nobel Shi-Tomasi

Figure 2.1: Results of the Harris, Harris-Nobel and Shi-Tomasi operators acting on
images subjected to rotational and affine transformations.

of interest in an image, while the matching scheme needs to extract unique
information of the areas about keypoints and then associate this with other
areas containing similar information. In fact, in the author’s opinion, almost
any modern feature detector is suitable for use in a matching scheme, and
increasingly complex detection schemes result in only minor improvements in
matching performance. This is due to the high repeatability of most modern
feature detection algorithms, which implies that sufficient features of similar
types are likely to be detected across images. This ensures that the potential
for matching interest points exists, provided a feature matching scheme is
capable of associating the interest points.

For the purposes of this thesis, the feature detectors used are those sug-
gested by the authors of feature matching schemes. The pairing of feature
detectors with matching algorithms to improve the feature matching perfor-
mance is beyond the scope of this work.
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2.2.2 Feature Matching

The key component in feature-based object recognition is feature matching.
Here, features in a new scene are identified and compared with previously ex-
tracted features of an object. Should sufficient feature matches be found, the
object is assumed to be present in the scene. Unfortunately, since detected
features are nothing more than image coordinates, more information about
features is required before matching can take place. This information is typi-
cally encoded in a descriptor®, and matching occurs by finding highly similar
descriptors.

The choice of descriptors and the information they contain vary greatly
across applications. One of the simplest descriptors available merely involves
the use of an image patch surrounding a feature. Unfortunately, while this
image patch often contains all the information required for matching, further
processing is generally required for it to be used effectively. Mikolajczyk and
Schmid (2005) provide a comparison of some of the most popular feature de-
scriptors available. The Scale Invariant Feature Transform (SIFT), proposed
by Lowe (2004), is one such approach and generally considered the de facto
standard of feature matching in computer vision, producing excellent matching
results over extreme viewing conditions.

The SIFT matching scheme detects features by selecting the maxima and
minima of the difference between images at successive scales. This difference-
of-Gaussians keypoint selector, initially proposed by Lowe (1999), is more ac-
curately classed as a blob detector and lacks the localisation properties of
feature detectors, but is better suited to the SIFT feature matching scheme as
the robust detection allows better matching over more extreme conditions. It
is important to note that the operation of the SIF'T detector is very similar to
that of the Harris feature detector.

After keypoint detection, an orientation and gradient magnitude, based
on pixel differences around the keypoint, is assigned to each feature. Image
gradients are then computed at sub-regions around each keypoint and used to
vote for a general region orientation. These orientations are then accumulated
into a 4 x 4 array of histograms, each consisting of 8 orientation bins. This
128 bin feature vector makes up the SIFT descriptor. Orientations in the
descriptor are measured relative to the keypoint orientation so as to ensure
rotation invariance.

Feature matching takes place by performing a nearest neighbour search
on descriptors. Unfortunately, the large feature vector makes SIFT extremely
slow and ill suited to real-time processing. Beis and Lowe (1997) proposed
an approximation to the nearest neighbour search called Best-Bin-First, which
speeds up the algorithm over large databases, but is still too slow for real-time
applications. Further attempts to improve the processing speed by reducing

5A descriptor is a collection of properties describing the area around a keypoint detected
in an image.
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the dimensionality of the feature vector through Principal Component Analysis
have been made by Ke and Sukthankar (2004), who proposed the PCA-SIFT
algorithm.

The low speed of the SIFT algorithm and its direct derivatives prompted
Bay et al. (2008) to suggest the Speeded Up Robust Features (SURF) detector-
descriptor scheme, a high speed approximation of the SIFT approach. SURF
improves the speed of SIFT dramatically by approximating the difference-of-
Gaussians operator with box filters and the SIFT gradient calculations with
a Haar wavelet. These improvements in speed make SURF a candidate for
use in a human-following system, given the real-time requirements of visual
servo control. Properties of the SURF technique are discussed in much greater
detail in Section 3.2, together with an in-depth treatment of its operation.

The detector-descriptor approach suffers extensively from the trade-off be-
tween speed and descriptor information content. Lepetit and Fua (2006) pro-
posed an extremely fast alternative to computing a descriptor around each
keypoint, formulating the matching problem as a classification problem. Their
approach requires a training step, so is only applicable in cases where knowl-
edge of the target object to be recognised is available beforehand. Initially a
set of views of the target object is generated, by applying known noise and
distortions. Keypoints are located in each view and those not present in all the
views are discarded as they represent poor candidates. This ensures that only
good keypoints are retained and allows for a simple feature detector such as
FAST to be used, as the performance of the feature detector does not impact
the matching process significantly.

The remaining keypoints are then classified using randomised trees with
node tests based on the difference of intensities between two pixels near re-
spective keypoints, an approach similar to that of Amit and Geman (1997).
This randomised tree approach is extremely fast and produces good match-
ing results. Poor matches could potentially occur, however, and an additional
stage where incorrect matches are discarded is required for practical applica-
tions.

The randomised tree approach to feature matching was reformulated as
a semi-naive Bayesian classification problem by Ozuysal et al. (2010). This
reformulation resulted in a feature matching scheme that produced better re-
sults than randomised trees when a larger training set was utilised. This
approach is well suited to the human-following problem as it produces good
results extremely quickly, and the requirement for an initial training stage is
of no concern in this task. More detail regarding the operation of this feature
matching scheme is provided in Section 3.2.

Thus far, only a class of feature matching systems based on recognition have
been considered. A second class of matching systems performing recognition
through tracking needs mentioning. Here, the objective is to track the motion
of features detected in a template image, eliminating the need for lengthy
matching processes.
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The most popular feature tracking algorithms rely on some form of optical
flow to track features from frame to frame. Optical flow is the pattern of
apparent motion in an image scene caused by the relative motion between a
camera and the scene. A comparison of the various techniques for estimating
optical flow provided by Barron et al. (1994) found that the Kanade-Lucas
tracker (Lucas and Kanade (1981)) was the most reliable approach of those
available at the time.

The features of Shi and Tomasi (1994) are specifically designed for use
with the Kanade-Lucas tracker (KLT). The KLT divides images into a set of
small windows and assumes a locally constant optical flow over these. This
assumption results in an over-specified set of equations governing individual
pixel optical flow. These equations are solved in a linear least squares method
by calculating image derivatives along all dimensions.

The KLT is suited to a target-following application as it is extremely fast,
but lacks the recognition performance of direct matching algorithms. More
detail on the KLT operation is provided in Section 3.2.

2.3 Pose Estimation

Position-based visual servoing techniques require that the pose of a target
object detected in a scene be determined prior to the application of a particular
control algorithm. The process of determining the pose of a target object,
given a set of feature correspondences in two image scenes, is referred to as
pose estimation.

As many pose estimation algorithms rely on perspective camera models, a
brief introduction to projective and perspective camera geometry is provided
in Appendix A.1. Further information on the geometry of computer vision can
be obtained from the excellent text of Hartley and Zisserman (2004).

Figure 2.2 depicts the general feature-based pose estimation problem. Given
a set of corresponding features in two image scenes, the goal is to find the cam-
era rotation and translation between viewpoints. This transformation then
provides target object pose, measured relative to the initial viewpoint.
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Figure 2.2: A feature at world coordinate M is projected onto two images, captured
from differing viewpoints, at image plane coordinates m; and mg respectively. Using
this information, or subsets thereof, the camera rotation R and translation t that
moves the images into a common reference frame needs to be found.

2.3.1 3D - 3D Pose Estimation

The simplest form of pose estimation is one where the 3D locations of feature
correspondences are known. Here, the pose estimation problem reduces to the
problem of finding the rotation and translation that causes the 3D features of a
template or reference object to best overlap with those of the recognised object
in a different scene. This is a relatively easy task and can be performed through
the application of Procrustes® analysis. The Procrustes orthogonal problem,
solved by Schénemann (1966), is that of finding an orthogonal matrix mapping
between two matrices in linear algebra.

Schénemann (1966) showed that if x and y are matrices consisting of the
3D co-ordinates of features in the respective scenes, they can be related by a
scale A, rotation R and translation t such that

x = ARy + t. (2.3.1)

6In Greek mythology, Procrustes was a bandit who invited passers by to stay in a
bed in his stronghold, and then stretched them on the rack or amputated body parts so
that they would fit (Plutarch (1914)). The similarities between this and the problem of
transforming point clouds onto a common axis to ease their comparison led to the term
statistical Procrustes analysis.
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Appendix B.1 shows how the scale, rotation and translation matrices are
calculated by applying singular value decomposition. This calculation is a
single pass approach and does not provide the best solution in the presence of
noise introduced by inadequate feature localisation. Zhang (1992) introduced
the Iterative Closest Point (ICP) algorithm which improves on the Procrustes
estimate by recursively estimating the transformation between feature point
clouds.

Unfortunately, determining the 3D locations of features requires at least
two cameras in a stereo configuration, or that the relative distance between
features be known beforehand. In this work, the use of multiple cameras
is both undesirable and unnecessary, while the requirement that the relative
distance between features be known restricts the pose estimation problem to
rigid objects.

2.3.2 2D - 3D Pose Estimation

The requirement that the 3D locations of features in both image scenes be
known can be relaxed slightly, by considering a set of techniques that find
the transformation between the image coordinates of the detected object and
known 3D coordinates of the target in its reference configuration. These ap-
proaches are more complex than 3D - 3D pose estimation techniques as they
need to take perspective camera effects into account while estimating the trans-
formation.

The mapping between world and image plane can be described by camera
intrinsic, rotation and translation matrices, as discussed in Appendix A.1:

X

— K [R]t] (2.3.2)

> K

Y
A
1

Here, [X,Y, Z]T are the 3D world coordinates projected onto the image
plane at image coordinates [z/),y/A]". K is the intrinsic camera matrix ob-
tained through a calibration process such as the one described in Appendix
A.2. The rotation matrix R contains three degrees of freedom corresponding
to the roll, pitch and yaw motions used to align the camera centred axis with
a reference frame. The aligned frame is then shifted into place using the three
degree of freedom translation matrix t.

The 2D - 3D pose estimation techniques simply reduce to a problem of
solving for the six degrees of freedom in the rotation and translation matrices,
given the world and image plane coordinates. It is clear that this is possible if
at least six non-coplanar feature correspondences are available, but solutions
using n points have been presented, leading to the 2D - 3D pose estimation
problem being termed the perspective-n-point or PnP problem by Fischler
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and Bolles (1987). Quan and Lan (1999) presented a family of linear n-point
solutions, emphasising the conditions under which a unique solution to the
problem can be obtained.

In general, far more than six features are available, and the problem is
solved in a least squares sense using many points to counter noise, so the benefit
of solutions using a minimal number of points is unclear. Often, however, not
all feature correspondences are good matches and a robust solution is required.
Many robust approaches, such as the Random Sample Consensus (RANSAC)
algorithm proposed by Fischler and Bolles (1987), attempt to find the best set
of matches with which to solve the problem, and iterate over different subsets of
feature matches in doing so. Reducing the required number of feature matches
for each potential solution can vastly improve on the algorithm run time in
such an iterative approach.

DeMenthon and Davis (1995) introduced a method, termed Pose from Or-
thography and Scaling with Iterations (POSIT), which determines the pose
of an object using four or more non-coplanar points. Object pose is initially
estimated by approximation of the perspective camera projection with a scaled
orthographic projection and then improved through an iterative process. The
POSIT algorithm is notable as it does not require an intrinsic camera matrix.
Extensions to the POSIT algorithm that allow the pose of an object to be
determined when the correspondences between features are not known have
been made by David et al. (2002).

Object pose can also be determined without knowledge of an intrinsic cam-
era matrix by performing camera calibration each time a target object is de-
tected in an image scene. This calibration process is discussed in great detail
by Hartley and Zisserman (2004). Initially, the camera projection matrix is
estimated using six or more point correspondences. Thereafter, the camera
calibration, rotation and translation matrices are extracted through QR de-
composition.

While notable, the ability to determine pose without requiring an intrinsic
camera matrix is of no particular importance in a target-following application
where knowledge of the target and camera can be made available beforehand.
Although possible, obtaining knowledge of the 3D locations of features on a
target object prior to the following task is not necessarily desirable though,
and a pose estimation scheme that operates directly on the 2D locations of
feature points in the target and template image is preferred.

2.3.3 2D - 2D Pose Estimation

2D - 2D pose estimation with a moving camera forms part of a collection
of techniques known as structure from motion. Here, a mapping between
correspondences in views is used to extract the scene structure and camera
motion. Although this definition appears to refer to the act of building up the
structure of a static environment using a moving camera, it also applies to the
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task of determining the structure and relative motion between an object and
camera.

The primary objective in structure from motion is to solve for the essential
matrix E which satisfies the condition X] E &, = 0 for any pair of correspond-
ing normalised points X; and X, in two image scenes (Hartley and Zisserman
(2004)). A normalised point is one which has had the intrinsic camera ef-
fects removed through multiplication by the inverse of the camera calibration
matrix,

% =K 'x. (2.3.3)

The most common approach to estimating the essential matrix solves the
problem in a least squares manner, using at least eight point correspondences.
The eight-point algorithm is discussed in detail by Hartley and Zisserman
(2004). As in the case of 2D - 3D pose estimation, typically more than eight
points are used and the problem solved robustly. Less point correspondences
can be used to solve for the essential matrix by incorporating motion con-
straints, with the benefit of faster algorithms.

Despite having six unknowns (three rotation angles and three translation
values), the essential matrix has five degrees of freedom. This is due to a
scale ambiguity, caused by the homogeneous representation of image coordi-
nates. Hartley and Zisserman (2004) show how the essential matrix can be
factorised to obtain four camera projection matrix solutions, from which rota-
tion and translation components are easily extracted. Finally, a single solution
is selected by taking into account a logical constraint in computer vision: the
object viewed must be in front of the image planes.

The structure from motion problem can be simplified by incorporating a
prior of expected structure. Faugeras and Lustman (1988) show how the use
of a piecewise planar approximation to the environment eases the calculation
of camera motion. The assumption that objects are planar may seem limiting,
but this is not always the case, as explained in Section 3.4. If x; and x, are
the homogenised coordinates of corresponding features from two image scenes,
they are related by a homography H as

Hartley and Zisserman (2004) show that coplanar points in two images are
all related by the same homography and show how this homography can be
estimated using the direct linear transform (DLT'). The work of Faugeras and
Lustman (1988) is notable as it provides a means of decomposing a homography
and extracting the physical 3D rotation and translation between planes related
by the homography. A similar decomposition is presented by Ma et al. (2003).
The homography-based approach to pose estimation is discussed in detail in
Section 3.3 as it is directly applicable to the target following problem. The
DLT algorithm and Faugeras decomposition are listed in Appendices C.1 and
C.2 respectively.
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2.4 Target Tracking

Typically, pose estimates are noisy and require additional refinement prior
to use as set-points in a control algorithm. Refinement usually takes place
through the application of a tracking algorithm or filter with a predictive
component. The Kalman filter (Kalman (1960)) is a useful tool for fusing state
measurements with predicted behaviour and is commonly used in autonomous
navigation systems. Thrun et al. (2005) provide an excellent discussion on
Kalman filtering in the context of mobile robotics.

The extended Kalman filter (EKF), McGee and Schmidt (1985), is a non-
linear extension to the Kalman filter, which allows for state estimation by
linearising models about the current estimate. More details regarding the ex-
tended Kalman filter can be found in Appendix D.1.

The extended Kalman filter operates under the assumption that measure-
ment and prediction noise is Gaussian. In some cases, this assumption is in-
valid and a better approach is to represent noise distributions using particles.
The operation of particle filters is easily understood by considering a partic-
ular variant, the sequential-importance-sampling re-sampling (SIS-R) particle
filter algorithm, discussed in detail by Ristic et al. (2004).

At first, particles are initialised randomly according to prior knowledge or
from a uniform set. At each time step, a motion model predicts the state of
each particle. An observation model then assigns a weight to each particle and
a best estimate of the current state is drawn from the particle distribution.
Finally, a new set of equally weighted particles is selected by re-sampling the
particle distribution.

While the particle filter is able to approximate non-Gaussian noise distri-
butions better than the extended Kalman filter, it is significantly slower as
motion and observation models need to operate on multiple particles. More-
over, the memory requirements of particle filter algorithms are excessive, as
the performance of the algorithm is dependent on the number of particles used.
The computational complexity of particle filter algorithms has caused a pref-
erence of the extended Kalman filter for real-time applications, and is widely
acknowledged as the workhorse of navigation (Levy (1997)).

2.5 Motion Control of Wheeled Robots

Problems relating to the motion control of wheeled robots have been studied
extensively and as a result a well established set of control strategies are in
use. A review of the most common and more effective strategies for the motion
control of non-holonomic” platforms is presented by Morin and Samson (2008).

7 A non-holonomic vehicle is a vehicle with less controllable degrees of freedom than the
total available degrees of freedom.
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Wheeled robotic platforms are typically modelled as either unicycle-type
robots or car-like robots. Unicycle-type robots have two drive wheels, on
the same axis, which can be driven independently, while car-like robots are
typically rear wheel drive with a front wheel steering assembly. Both kinematic
and dynamic control models are used in conjunction with these chassis models,
but since many platforms already include basic dynamic control, there is a
tendency to make use of higher level kinematic control models and to decouple
kinematics and dynamics.

The kinematic models of unicycle-type and car-like robots are discussed
in the review of Morin and Samson (2008) and shown in Equations 2.5.1 and
2.5.2 respectively, using Newton’s notation:

& = uy cos(h)
Xuni =3 Y=u sin(6) (2.5.1)
0 = (%)

& = uq cos(0)

. ;= uy sin(0

Xear = ‘z_ E( ) (2.5.2)
~ T ltan(¢)
¢ = ugy

Here, z and y represent the position of the centroid on the drive wheel axis, 6
the orientation of the robot, [ the distance between front and rear axles in a
car like robot model, and ¢ the orientation of the steering mechanism in a car
like model. These parameters are illustrated graphically in Figure 2.3.

Y
L> X
¢
0 0
l
Unicycle Model Car Model

Figure 2.3: A graphical interpretation of the variables z, y, 6, ¢ and I, which
parametrise the two motion models commonly used to describe wheeled platforms.
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The control systems implemented in this thesis all assume a unicycle model,
as the target following is implemented on a differential, skid steer® platform.
They should, however, directly extend to the control of car-like platforms.
The control inputs u; and uy in the unicycle model are the skid steering plat-
form’s forward and angular velocity, and hereafter are referred to as v and w
respectively, for greater clarity.

The control of wheeled robots described by these models has been divided
into two strategies: simple point-to-point positioning without control of orien-
tation and direction-based motion control, taking orientation into account.

Direction-based motion control allows for the tracking of a reference tra-
jectory provided it is feasible. A trajectory is considered feasible if it solves
the robot’s kinematic model for a set of control inputs, i.e. the trajectory to be
followed could have been created by a vehicle with the same kinematics as the
robot to be controlled (Morin and Samson (2008)). Various control strategies
that asymptotically stabilise feasible reference trajectories are discussed in the
work of Morin and Samson (2008), Petrov and Parent (2006) and Ma et al.
(1999).

The work of Petrov and Parent (2006) is of particular interest as the authors
apply an adaptive control strategy to the problem of reversing a platoon of
vehicles where the lead vehicle undergoes constant velocity manoeuvres. This
is accomplished by using a motion model incorporating bearing measurements
of the lead vehicle, which are extracted from visual data or a suitable range
sensor. In contrast, Ma et al. (1999) perform control in the image directly,
by extending the kinematic model of the vehicle to one which includes the
dynamics of ground plane curves.

Point-to-point positioning, which does not take relative orientation into
account, is the most common approach for moving towards set-points on non-
feasible trajectories. Here, platforms merely move directly towards set-points,
with orientation uncontrolled.

Maya-Mendez et al. (2006) propose a direction-based control strategy which
forgoes asymptotic stability and instead moves towards practical stabilisation,
a strategy which allows for small tracking errors so that non-feasible reference
trajectories can be tracked. This approach essentially causes a platform to
move towards various set points sampled from the trajectory, along paths
which potentially deviate from the original non-feasible trajectory, but in such
a way as to cause the end pose of the platform to be near that originally
extracted from the trajectory.

8Skid steering refers to the turning of a vehicle by adjusting the speed of wheels or
tracks on opposite sides of a platform. Note that this definition differs slightly from that
of a differential drive vehicle, since skid-steered vehicles have multiple wheels or tracks on
each side of the platform.
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2.6 Related Work

Thus far, emphasis has been on describing the individual components which
can be used to build up a human-following system. Complete approaches,
solving the human-following problem in its entirety, are now considered, along
with the challenges human following entails.

Almost all vision-based human-following systems use a position-based vi-
sual servo control approach, with the human initially detected and located in a
3D coordinate frame. Platform navigation is considered a separate task, with
the robot controlled to move towards the measured human position.

Early examples of vision-based human-following robots made use of simple
template matching schemes (Hirai and Mizoguchi (2003)) or colour-based blobs
with contour models (Schlegel et al. (1998)) for target detection and recogni-
tion. The latter approach uses stereo-vision in order to obtain an absolute scale
representation of the human’s position. In the single camera case, however, ab-
solute scale is typically not available and alternative distance measurements,
such as the size of detected blobs (Latif et al. (2009)), are incorporated for
navigation.

These approaches, and other early ones, suffer potential target ambigu-
ity in the presence of multiple persons or cluttered environments, mainly due
to detection and recognition schemes that are not particularly robust. More
recently, feature-based approaches have been applied to the problem with im-
pressive results presented by Chen and Birchfield (2007).

Purely vision-based human-following systems typically lack the following
performance of those using multiple sensors and fused layers of detectors to
maximise available target information. FExamples of human followers using
multiple sensors include the work of Germa et al. (2009), who combined RFID
trackers with complementary visual refinement, and Dai et al. (2008), who
boosted their visual tracking with laser leg detection. For the purposes of
this thesis, however, only the vision component of multi-layered trackers is
considered, with the option to expand left as future work.

The above-mentioned approaches, and many others, merely use some form
of position measurement for navigation. More intelligent navigation schemes
could be implemented, however, if some knowledge of the intended motion of
the human target was incorporated. In fact, results of a preliminary study on
the social acceptance of human-following approaches (Gockley et al. (2007))
indicate that the following of direction is more acceptable to people than point-
to-point path following.

The work of Gockley et al. (2007) used LIDAR to detect a human target,
building human trajectories by analysis of human motion over time. The
platform was then controlled to move along the same trajectories, assuming
they were feasible. This strategy was compared to one in which the platform
moved directly to targets, through an interview process with followed humans.

While building up a trajectory using only positional information is effective,
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a potentially improved trajectory could be generated if human orientation
information is included in some way. A human-following system that includes
orientation information requires that some measure of human body pose be
made.

Unsurprisingly, human pose estimation is a popular topic within the com-
puter vision research community and a large body of work on the subject is
available. While many pose estimation algorithms rely on multiple images
of static scenes with moving humans for pose estimation, a human following
robot requires a pose estimation system that is able to extract target pose in
images captured from a moving camera.

Common approaches to human pose estimation, such as that of Chen et al.
(2009), fit complex articulated body models to image scenes. Lee and Cohen
(2004) combine articulated models with shape and clothing models to detect
upper body pose in single images. Their approach is iterative, with a hypoth-
esis and test framework used to fit models to image scenes.

Agarwal and Triggs (2004), however, reject the model-based approach to
human pose estimation, in favour of an approach that directly fits joint an-
gles to silhouette shape descriptors using nonlinear regression. This approach
is effective, but only provides body joint angles, with the orientation of body
parts not explicitly extracted. Recently, Ferrari et al. (2009) proposed a human
pose estimation scheme for use on unconstrained image sequences in television.
Their approach aims to extract the position and angle of each body part de-
tected in an image. This is accomplished by progressively reducing the search
space in images. Initially, a simple detection process finds the torso in the
image, after which a more advanced model searches for the location of limbs
and other body parts. Note that this approach finds the 2D locations and
angles of body parts and provides no 3D orientation information.

While these and similar techniques are effective and produce commendable
results, the focus in human-following tasks is on simplicity and speed. More-
over, these techniques typically produce a large amount of information, such as
individual limb positions, where a single three-dimensional orientation angle
would prove sufficient for the purpose of controlling a wheeled robot.

A broad overview of the components and approaches to robotic human
followers has been presented here. In Chapter 3, theoretical analysis of the
specific approaches implemented and design of the proposed solution are pre-
sented.



Chapter 3

Theoretical Design and Analysis

The theoretical design and the analysis of the components and systems used
by the human-following robot are discussed here. Initially, the design of a
generalised planar target-following robot is presented, followed by an extension
to the human-following case.

3.1 Visual Servo Control Strategy

A decision needs to be made as to the underlying visual servo control strategy
used, before the complete system design can be presented. Theoretical analysis
is initiated by the evaluation of IBVS control techniques through simulation.
This evaluation is used to determine the suitability of IBVS control systems
to the target-following problem, given the benefits of PBVS methods, and to
aid in the choice of visual servo control strategy.

3.1.1 IBVS Simulations

The simulation presented here takes place in 3D space, under the assumption
of a six degree of freedom (6 DOF') camera. This is far less constrained than the
two degrees of freedom associated with a wheeled terrestrial vehicle, but serves
to illustrate the properties of IBVS control systems when platform dynamics
are not included.

Chaumette and Hutchinson (2008) show that if x = (x,y) represents the
image coordinates of a projected feature at world coordinates (X,Y, Z), the
feature motion induced by camera motion is given by the product of the camera
velocity screw v and a matrix Jy, termed the interaction matrix:

X = Jyve. (3.1.1)
The velocity screw v, = [ix, Ify, ty, W, Wy, wz}T represents the possible mo-

tion of the 6 DOF camera, three translational velocities along Cartesian axes

25



CHAPTER 3. THEORETICAL DESIGN AND ANALYSIS 26

and three rotational velocities about the axes. These axes represent a right-
handed coordinate system centred on the camera image plane, with ¢, pointing
along the optical axis. The velocity of features, X = [z, y]T, is represented in
Newton’s notation.

The interaction matrix is derived in the work of Chaumette and Hutchinson
(2008) and shown to be

xT 2 $2
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with the assumption that the focal length f is equal along both the z and
y axes. The Jacobian of Equation 3.1.2 only relates camera motion to the
velocity of a single feature. In practice, multiple features are present and
interaction matrices are stacked into a single, large Jacobian J, associated
with a set of n stacked feature velocities:
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The knowledge of the effects of camera motion on image feature motion
allows the design of an appropriate control law. Ideally, the controller should
undo all the perspective camera effects and cause the camera to move so as to
position features in a desired configuration. This is accomplished by inverting
the Jacobian, J, which leads to the feedback control law

Ve = J*XP, (3.1.4)

where

X7 = — (x5 — xs%) . (3.1.5)

Here, xg is the set of measured stacked feature positions, and x¢% the set
of desired stacked feature positions. < is a proportional control gain used
to weight the amount of control action used. The vision system is a first
order process, so the gain relates directly to the system time constant, and is
selected so as to obtain a desired response speed. J* is the Moore-Penrose
pseudo-inverse of the Jacobian J.

The operation of the control law is now shown through the use of a Simulink
simulation. The camera focal length is assumed to be unity for convenience,
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and only four hypothetical image features are used. Chaumette and Hutchin-
son (2008) show that at least three points are required to control the six degrees
of camera freedom, but that more than three points are needed to correctly
distinguish between camera poses which may have caused a particular feature
configuration.

Figure 3.1 shows the results of a hypothetical feature positioning task where
features are controlled to move from a fronto-parallel position to an arbitrary
set of desired positions. Feature positions are localised perfectly and it is
assumed that there are no transport delays in the system. A relatively large
gain of 50 was used in these simulations, to show that a fast response time is
achievable in the ideal case.
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Figure 3.1: The motion of features for ideal IBVS control is shown for a hypothetical
control task. Each feature is represented by the corner of a coloured quadrilateral.
The lines connecting corners show the paths followed by features. The desired end
position of the features is marked by the dotted black quadrilateral.

The motion of features is quite smooth, a factor also indicated by Figure
3.2, which shows the difference between the desired and actual feature coor-
dinates for each of the corners of the quadrilateral in Figure 3.1. Note that
steady-state error is exhibited as the feature coordinate errors do not converge
to zero. This is due to the fact that the control law tries to minimise all fea-
ture errors simultaneously, and the existence of non-zero feature error vectors
in the null space of the Jacobian J. This behaviour is clearly undesirable in a
control system.
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Figure 3.2: The positional errors of feature coordinates (both x and y) as they
converge to steady-state for a hypothetical control task when ideal IBVS control is
used.

Figure 3.3 shows the real-world motion of the camera during the control
simulation. The camera coordinates, together with the interaction matrices,
are used by the simulator to calculate the new position of features after each
control input.
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Figure 3.3: The path followed by the camera when ideal IBVS control is used. The
green vectors show the orientation of the camera at the start and ending positions.
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Obtaining the 3D coordinates of the camera, given a set of camera veloc-
ity inputs and a known starting position, is a rather complex process as the
velocities relate to the camera body frame and not an external reference. As
a result, the position and orientation of the camera needs to be obtained by
applying various principles of inertial strapdown navigation, as described in
Appendix E.1.

The simulations presented thus far have assumed that there are no trans-
port delays in the system. In practice, the detection and matching of features
is time consuming and this assumption invalid. Figure 3.4 shows the results
of the same feature positioning task, but including a sampling delay of 80 ms,
corresponding to an image processing frame rate of 12.5 fps, and designing the
controller in the digital domain.
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Figure 3.4: The motion of features for IBVS control with an 80 ms transport delay
is shown for a hypothetical control task. Each feature is represented by the corner
of a coloured quadrilateral. The lines connecting corners show the paths followed
by features. The desired end position of the features is marked by the dotted black
quadrilateral.

The motion of features is still smooth, and Figure 3.5 shows that the fea-
tures do converge to a steady-state in a manner similar to that observed with
no sampling delay.

Note that the features take significantly longer to converge to steady-state.
This is due to the need to drop the proportional gain in the control law to 2.5
so as to reduce response speed enough to ensure stability, given the phase lag
constraints of the added transport delays.
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Figure 3.5: The positional errors of feature coordinates as they converge to steady-

state for a hypothetical control task when IBVS control is used with an 80 ms trans-
port delay.

Figure 3.6 shows the real-world motion of the camera during the control
simulation with transport delays.
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Figure 3.6: The path followed by the camera when IBVS control is used with an
80 ms transport delay. The green vectors show the orientation of the camera at the
start and ending positions.

Analysis of the IBVS control law shows that it requires the distance of each
feature from the camera, along the optical axis. This feature depth is not easily
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obtained, as it requires at least two cameras in a stereo configuration or prior
knowledge of the relative positions of image features on a rigid target in world
coordinates, which is not readily available in target-following applications.

Alternatively, it may be possible to estimate the depth of features by includ-
ing known camera motion constraints and solving pose estimation problems.
Unfortunately, techniques such as these are time consuming, which has led to
the use of a constant value for the depth of features in the control law, in
an effort to avoid the process of depth approximation. Figure 3.7 shows the
results of the feature positioning task, still including the transport delay of
80 ms, but using a constant depth approximation.
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Figure 3.7: The motion of features for IBVS control with an 80 ms transport delay
and a constant depth assumption is shown for a hypothetical control task. Each
feature is represented by the corner of a coloured quadrilateral. The lines connecting

corners show the paths followed by features.

The motion of features is no longer smooth, and Figure 3.8 shows that the
steady-state errors have worsened.
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Figure 3.8: The positional errors of feature coordinates as they converge to steady-
state for a hypothetical control task when IBVS control is used with an 80 ms
transport delay and a constant depth assumption.

Figure 3.9 shows that the real-world motion of the camera during the con-
trol simulation.
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Figure 3.9: The path followed by the camera when IBVS control is used with an
80 ms transport delay and a constant depth assumption. The green vectors show the
orientation of the camera at the start and ending positions.
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The camera motion is no longer smooth, a factor which could potentially
result in the loss of features due to motion blur.

Note that these simulations have assumed a stationary target, but are
easily extended to incorporate moving targets without affecting the simulation
results. Moreover, the effects of noisy or potentially incorrect feature locations
has not been considered, but would worsen the control responses significantly.

3.1.2 Comparison of Visual Servo Control Strategies

The IBVS control simulations of Section 3.1.1 showed some of the limitations
of a traditional IBVS control scheme. Undesirable camera motions can occur in
practical systems because IBVS control only considers the motion of features
in the image plane. Unlike PBVS control strategies, properly implemented
IBVS control laws should ensure that features on a stationary target never
leave the camera field of view, but in practice the jerky motion of the camera
could cause the loss of the features from motion blur.

A primary argument for the use of an IBVS control system over a PBVS
strategy is that there is no need for a pose estimation step. However, IBVS
control laws require information about the depth of features, quantities that
can only be obtained through a process similar to pose estimation. Although
depth can be approximated by a rough estimate of the desired feature depth,
this decreases the performance of the control algorithms, leading to increased
response time and overall greater steady-state errors.

One challenge associated with PBVS control is that of stability!. As PBVS
control is based on a pose measurement obtained through a highly non-linear,
statistical pose estimation process, the stability of these control systems cannot
be guaranteed. However, by ensuring that the relative pose between the target
and camera remains in the most reliable and accurate pose estimation region
through platform motion control, potential stability issues can be mitigated.

Though IBVS control successfully restricts control to the image plane, it
does not easily extend to the inclusion of other sensors and navigation strate-
gies. In contrast, the pose estimation stage of PBVS control produces target
information which can be used for purposes other than control and also allows
for the extension to aspects such as collision avoidance in a more advanced
navigation scheme.

Due to these limitations of IBVS control, a PBVS control approach is
used for the target-following problem. PBVS methods have the benefit of
decoupling image processing and navigation tasks, which allows for smoother
camera motion when used with a suitable control law. While the PBVS method

'Tn this context, the term stability differs slightly from that traditionally associated
with control system design. Throughout this thesis, unless otherwise stated, a reference to
stability refers to the ability of the control system to keep detected features bound within a
camera’s field of view.
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does not ensure that features remain in view, this can be remedied through
intelligent platform and camera motion control.

3.2 Recognition

Having selected a position-based visual servo control approach, the analysis
now shifts to the individual components it requires. The first of these is feature-
based recognition.

Three potential feature recognition approaches are discussed, and their
matching results compared, given the requirements of a target-following appli-
cation. In Section 2.2.2, the three feature recognition techniques, Speeded Up
Robust Features (SURF), a semi-naive Bayesian classifier and Kanade-Lucas
feature tracking were identified as suitable approaches to recognition in this
context, due to their reported speed.

3.2.1 SURF Feature Matching

The operation of the SURF matching scheme, presented by Bay et al. (2008), is
discussed first. The SURF matching scheme relies heavily on integral images,
so an explanation of this concept is provided before explicit SURF matching
details are presented.

An integral image allows for fast calculation of the convolution over rectan-
gular regions. Iy (x, y), the value of an integral image at coordinates (z, v),
is calculated as the sum of all pixels in a rectangle formed by the origin and
the coordinates (z, y) of the input image, I, or

In(z, y) =Y > I(, j). (3.2.1)

i=0 j=0

The integral image only needs to be calculated once, but allows the sum of
intensities in any rectangular region of an image to be calculated using only four
additions (Figure 3.10). This means that the responses of box type filters can
be calculated extremely quickly, as this is essentially a convolution operation.

The SURF feature detector is an approximation of the determinant of a
Hessian matrix,

. _ | Las (.CE, y; o) Lyy (z, v; U)
H(z, y; 0)= Loy(z, v 0) Loo(y v o) (3.2.2)

Here, L., (x, y; o) is the result of the convolution between the image and
the Gaussian kernel second-order derivative, 8‘9—;2 g (o). Both L., (z, y; o) and
Ly, (z, y; o) are calculated similarly. o is a scale parameter relating to the
scale at which the operation is performed (see Appendix A.3 for a discussion
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Figure 3.10: After an integral image has been calculated, the sum of intensities in a
rectangular region is easily calculated using only four additions, >, = A— B—-C+D.

on scale space). Bay et al. (2008) use box filter approximations to these kernel
derivatives to improve computational costs. Figure 3.11 shows the Gaussian
second-order derivative kernels and their box filter approximations. Convolu-
tion of these box filters with an image results in the Hessian approximations,
Dyy, Dyy and D,,.

Figure 3.11: The Gaussian kernel functions (B) traditionally used for feature detec-
tion and the box filter approximations (A) of these utilised by the SURF algorithm.

The SURF detector is then written as
det (Happrox) = Dxnyy - (wDa:y)Q . (323)

w is a weight used to balance the determinant and shown by Bay et al. (2008) to
be approximately 0.9 for 9 x 9 box filters. Filter responses are also normalised.
As discussed earlier, in Section 2.2.1, scale invariance of feature detectors is
acquired by using the detection operator at different scales.
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The use of integral images allows the pyramidal scale space (see Appendix
A.3) representation to be calculated by enlarging the box filters and convolv-
ing with the original image, a much faster process than consecutive blurring,
downsampling and filtering. The scale space is divided into octaves, with each
octave representing a doubling of scale. Each octave is divided into numerous
scales to ensure scale invariance.

After applying the feature detector operation, features are localised by
finding the maxima of the determinant and interpolating in scale and image
space. Unfortunately, the rectangular nature of box filters cause them to main-
tain high frequency information that is traditionally lost over longer viewing
distances, so scale invariance could be limited.

The SURF descriptor is similar to the SIFT descriptor in that it describes
a keypoint by using image gradient information. Initially, Haar wavelet re-
sponses are calculated in the vertical and horizontal directions in a circular
region of radius 60 about the detected feature. Figure 3.12 shows the Haar
wavelets. Note that no diagonal responses are considered, which could limit
the descriptors rotational invariance.

The response strengths in the vertical and horizontal directions are used to
select a dominant orientation for each feature patch by calculating the sum of
all responses within a sliding window as indicated by Figure 3.13. The largest
orientation vector over all sliding windows is then selected as the orientation
of a feature. The SURF descriptor of each feature is measured relative to this
orientation in order to obtain rotation invariance.

Figure 3.12: The figure shows the Haar wavelets used by SURF to estimate the
gradient of regions around a detected feature.

Finally, the SURF descriptor is obtained by dividing a square region su-
perimposed over the circular region used for dominant orientation assignment
into 64 equal square regions. The square region is oriented in the direction
of the dominant orientation. Each of the sub-regions within the oriented
square is then assigned an orientation, but with the horizontal and vertical
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dy

Figure 3.13: The response strengths in the vertical (dy) and horizontal (dz) direc-
tions are used to select a dominant orientation for each feature patch by calculating
the sum of all responses within a sliding window and selecting the largest response
over all the windows.

Haar wavelets rotated into the dominant orientation. Figure 3.14 shows the
orientation-based descriptor for a hypothetical keypoint.

The descriptor is obtained by concatenating the four dimensional vector
consisting of sums of the Haar wavelet responses and their absolute values for
16 larger regions around the keypoint.

In addition to the descriptor, the sign of the trace of the Hessian matrix
approximation for each interest point is stored. Matching of feature points
occurs by conducting a nearest neighbour search to find the most likely can-
didate descriptor match. The nearest neighbour search is sped up by testing
that the signs of two potential interest point matches are the same, before
computing the distance measure. A confirmed match is obtained if the signs
of two interest points are the same and the distance measure between interest
point descriptors falls within a certain threshold.

3.2.2 Semi-Naive Bayesian Classifier

The second feature detector of interest forgoes the descriptor matching ap-
proach and structures the matching as a semi-naive Bayesian classification
problem. This approach, presented by Ozuysal et al. (2010), allows for key-
points to be matched without the intensive pre-processing requirements of the
SURF detection scheme.

The problem is structured as follows. Given a set of image patches centered
about various keypoints, and a new patch around a newly detected point,
classify the new patch, using only a few binary tests, but assuming a classifier
could be trained beforehand.
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Figure 3.14: The SURF descriptor is obtained by finding the Haar gradient ap-
proximation in 64 regions of an image patch centered at the keypoint and oriented
relative to the dominant keypoint orientation. These 64 regions are grouped into 16
larger regions, each containing 4 of the smaller areas. The sums of the horizontal
and vertical gradient components, »_ dx and > dy, together with the sums of their
absolute values, ) |dx| and ) |dy| are calculated for each of these 16 regions. The
4 parameters from each of the 16 image patch regions are concatenated to form the
64 dimensional SURF descriptor.

Let Cy be a class representing multiple views of an image patch about a
particular keypoint. Furthermore, let us assume that N binary feature tests
can be conducted on each of the views of the image patch, and denote the
results of these feature tests by f;, where i = 1,2,..., N. Ozuysal et al. (2010)
use the sign of the intensity difference between two randomly selected pixels
in an image patch as the binary feature test.

Given a set of binary feature test results, f;, of an image patch centered
about a newly detected interest point, we need to select the class k such that
the conditional probability of these feature test results is maximised. Using
Bayes rule, this implies that

k= arg?ax P(Ck| fi, fo, -, [n) = arginax P(fi,fo, .., In|1Cr), (3.24)

assuming a uniform prior P (C' = C}) and neglecting the scaling factor intro-
duced by the denominator P (fi, fo, ..., fn)-

Unfortunately, it is impractical to model the joint distribution of all the
binary feature test results. Ozuysal et al. (2010) propose a compromise that
collects S binary features into M groups of smaller size and assumes inde-
pendence between these smaller sets. Each of these smaller sets is termed a
fern, Fj, with j = 1,..., M. The classification of this semi-naive Bayesian
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formulation is then written as

M
k= argmax P(fi, for - I |C) =[] P (F 1 Ch). (3.2.5)

j=1

3.2.2.1 Training the Classifier

Each binary test on an image patch produces two possible results. This means
that each fern, with S features, will produce 2° results, or a number between
0 and 2° — 1. By generating multiple images of the same patch and per-
forming the binary feature tests, the output of the fern can be modelled as a
multinomial distribution.

The distributions are initialised with a uniform Dirichlet prior, and training
with a particular image updates the distributions for the corresponding class.
Figure 3.15 shows fern training for a hypothetical image patch. After training,
the binary test distributions over possible fern outputs are available for each
class.

.;1 f: .fs T IIIIIIII
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Figure 3.15: The training of a hypothetical fern. Assuming a fern is made up
of three binary feature tests, there are eight possible results. Training the fern on
multiple images of the same keypoint generates a multinomial distribution of the
feature results. Each bin of the multinomial distribution corresponds to one of the
eight possible binary test results.

3.2.2.2 Classifying a New Patch

Figure 3.16 illustrates the classification process graphically for a hypothetical
case, assuming a fern is made up of three binary feature tests and that there
are five possible classes and three ferns. The distributions of each of the five
classes are indicated in different colours.

Initially the binary tests are conducted for each fern (the image columns).
The binary combination of test results for each fern points to a column of
interest in the probability distribution of each class. The selected columns
in each fern are multiplied to form the conditional probability of the image
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Figure 3.16: Given the binary test distributions, a new patch is easily recognised.
The binary tests are conducted on the input patch, and the associated distribution
column is selected for each class in every fern. The fern distributions are then
multiplied to obtain the conditional probability of the image patch belonging to a
class, and the image patch is judged to belong to the class corresponding to the
largest point of the conditional probability distribution.

belonging to a class given the binary feature tests. The bin in which this
distribution is maximised corresponds to the class to which the image patch
belongs (in the illustrated example the image patch has been classified as
belonging to class 3).

In practical use, far more tests, training images and ferns are used, while
image patches are only classified if the conditional probability corresponding
to the most likely class is above a certain threshold. Note that this classifi-
cation approach requires multiple images of the patch around a keypoint for
training. These images are generated by applying known affine, rotation and
scale transformations to a single training patch. As a result, only a simple
keypoint detector is required, as good keypoints are ensured by only using
those which persevere across the transformed images.
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3.2.3 Kanade-Lucas Feature Tracking

The final feature-based recognition strategy of interest is the Kanade-Lucas
Tracker (KLT). The Kanade-Lucas tracker is a popular solution to the optical
flow problem, estimating the apparent motion of features in a visual scene.

Assume [ (z,y;t) is the intensity of a keypoint in image I at time ¢ and
that the keypoint moves to a point I (x + d,,y + 0,;t + &;) in a second scene
over a small time step. The motion of the point can be approximated using a
Taylor series expansion:

ol oI ol

I(x+46,,y+0,:t+0) ~I(x,y;t)+ %@ + a—yéy + E(St' (3.2.6)

Let us assume that the intensity of the moving keypoint remains the same:
I(z,y;t) =1 (x+ 0,y + 0yt +0p). (3.2.7)

This is equivalent to assuming that lighting conditions remain stable and that
glare and shadows are neglected. This means that
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Dividing through by d; gives
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with V, and Vj, the z and y components of the keypoint optical flow. Equation
3.2.10 has two unknowns and cannot be solved without incorporating addi-
tional constraints. Lucas and Kanade (1981) assume that the optical flow is
locally consistent, or that the optical flow remains the same over a small region
of size m x m about each keypoint.

This means that for each region, we can write N = m? equations with
unknowns V, and V,,. This over-specified system can then be solved using a
least squares approach to give

V.l [ X2 Y L1, |- L1, .
v =[5 K| D& waiens ea
ol

Here, I, and I, are the image derivatives 7 and % in the horizontal
and vertical directions respectively, renamed for simplicity. I;, refers to the
change in pixels over time, or the difference between pixel intensities in two
frames. Typically, a Gaussian weighting function is used to add precedence to

the optical flow of the pixel in the region centre.
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Note that the KLT is primarily intended to operate on image streams, and
not in the case where an input image is compared to a template image of a
target captured in a completely different scene. As a result, the matching
strategy discussed thus far, detecting an object in a scene by matching the
scene with a reference image, is no longer suitable. Instead, the KLT needs to
be used with some enrolment phase, where objects of interest are identified,
and features detected are tracked over time.

3.2.4 Comparison of Feature Recognition Schemes

Results of the three feature detection schemes are now critically compared.
Three sets of experiments were conducted, with each targeting a particular
aspect or property required by a target-following system.

3.2.4.1 Speed, Recognition Rates and Match Accuracy

The first test is conducted on a dataset of 320 images with a pixel resolution
of 900 x 680 and aims to test the recognition rate, speed and match accuracy
of each algorithm. The dataset consists of images of a moving planar target
undergoing roll, pitch and yaw motions. The images were captured from a
moving platform so as to better emulate the conditions of target following. In
addition, the dataset contains images of target objects under partial occlusions,
scale changes, as well as images where the target object is not present. Each
image in the dataset was manually annotated with a Boolean value denoting
the presence or absence of the target in the image scene.

Originally, results were obtained using various implementations of the fea-
ture matching or tracking algorithms, coded in both C+-+ and Matlab. How-
ever, in the interests of fair comparison, the decision was made to make use
of the C++ Open Computer Vision Library (OpenCV) for all the experi-
ments presented here. OpenCV, described in detail in the work of Bradski and
Kaehler (2008), contains existing implementations of the SURF feature and
descriptor extraction, the Ferns-based classifier and the KLT feature tracker.
The experiments conducted here were performed on a desktop computer with
a dual core 2.2 GHz processor and 2 GB memory.

Results were obtained by applying each of the three recognition strategies
to each image in the dataset, using a common reference image as a template
for matching. On processing each input image in the dataset, three sets of
information were stored, whether the target was detected in an image, the
locations of matched features in the image, and the time taken to perform
this matching and extract this information. The SURF and KLT algorithms
were supplied with a template image as training information, while the Ferns
classifier was trained using warped images of the same template. The warped
images were generated by applying random transformations encompassing roll,
pitch and yaw rotations of up to 180° and scale changes of up to 200%.
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Table 3.1 shows the results of the first experiment comparing the three
recognition strategies. The recognition rate is the percentage of correct deci-
sions regarding the presence of the target in the dataset, with reference to the
dataset labelling. Speed refers to the average frame rate achieved, while match
accuracy refers to the ratio of clearly correct feature matches in the dataset,
counted manually, to the total number of detected matches.

Table 3.1: Comparison of SURF, Ferns and KLT feature detectors.

Feature Recognition | Speed | Match
Detector || Rate (%) (fps) Accuracy (%)
SURF 94.08 1.54 98.83

Ferns 94.08 4.57 94.79

KLT 61.99 11.86 | 31.63

Both SURF and the Ferns approach resulted in extremely high recognition
rates, while the KLT tracking was not as successful. It must be noted that
the KLT tracker was by far the fastest algorithm, but its low recognition rate
and match accuracy mean that it is not effective enough to be applied to the
target-following problem. The performance of the KLT algorithm could be
improved if it was re-initialised by either the SURF or Ferns algorithms, but
this is beyond the scope of this work. The Ferns approach was a great deal
faster than the SURF algorithm, but at the expense of more false matches, a
factor indicated by the slightly lower match accuracy.

The higher number of false matches exhibited in the Ferns matching is most
likely due to the classifier nature of the matching process. The SURF algorithm
describes the keypoint surroundings in detail, but the Ferns algorithm merely
conducts simple tests and selects a most likely match. This means that the
SURF algorithm would produce keypoints better suited to pose estimation
algorithms, as it appears to localise features more accurately.

Figures 3.17 and 3.18 show selected results obtained by processing images in
the test set, using the three object detection algorithms. The template image
is shown on the left of each image, with keypoint matches to the current
scene marked by green lines. The blue quadrilaterals, superimposed on the
figures by incorporating the homography transformation of Section 3.3, show
the estimated projection of the template image onto the new scene.

Unfortunately, the superior matching accuracy of the SURF algorithm
makes it somewhat less robust to the effects of motion blur. Figures 3.17g
and 3.17h show how many more correct matches are found by the Ferns algo-
rithm when processing a blurry image. This robustness of the Ferns approach
causes it to frequently detect false positive matches, an example of which is
provided in Figure 3.17a.
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) KLT

Figure 3.17: Selected feature matching results obtained by processing image scenes
using the three object detection algorithms of interest.
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Figure 3.18: Selected feature matching results obtained by processing image scenes
using the three object detection algorithms of interest.
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It should be noted that the SURF algorithm performed so well in one par-
ticular case that it was able to locate the logo on the rear of the cereal box
used as a target, which contained only a small part of the template image.
This case, displayed in Figure 3.18q, was marked as a false positive and nega-
tively affected the recognition rate, as the human labelling the dataset did not
consider the object to be present in this image. This particular case is useful
however, as it illustrates the excellent appearance-based matching performance
of the SURF algorithm.

The poor performance of the KLT algorithm is continually exhibited, with
the numerous incorrect feature matches resulting in clearly incorrect projec-
tion estimates. Figures 3.17f and 3.181 show good examples of this non-ideal
behaviour.

3.2.4.2 Robustness to Yaw Motion

The second experiment tests the ability of the feature detectors to detect
objects undergoing yaw motions. Only the SURF and Ferns algorithms are
compared, since the first experiment clearly shows that the KLT is not suited
to the target-following task. Images of a target object mounted on a turntable,
at a fixed distance away from a camera, were captured at 20° intervals and
processed using the two feature matching algorithms. Figure 3.19 shows the
fraction of matches detected correctly over these yaw angles, which are likely
to be encountered in a target-following operation.

Note that different thresholds are used to determine whether a match is
made in each algorithm, so a compensation value is applied for the realistic
comparison of algorithms. In addition, the number of matches detected are
normalised. The figure shows that the Ferns algorithm typically produces more
matches, and so is likely to be better performing, but does not operate over
as wide a range of viewing angles as the SURF algorithm.

3.2.4.3 Robustness to Scale Changes

Finally, the last experiment conducted aims to test the ability of the feature
detectors to detect objects over larger scale changes. Once more, only the
SURF and Ferns algorithms are compared, since the first experiment clearly
shows that the KLT is not suited to the target-following task. The scaled
images were generated by smoothing and downsampling a template image at
scale intervals of 10%. Figure 3.20 shows the fraction of matches detected
correctly over these scales.

Once more, a compensation value is applied for the realistic comparison of
algorithms as different thresholds are used to determine whether a match is
made for each algorithm. The figure shows that the Ferns algorithm typically
produces more matches, and so is likely to be better performing, but does not
operate over as large a range of scale changes as the SURF algorithm.
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Figure 3.19: The figure shows the system robustness to changes in yaw motion.
Note that while the Ferns algorithm returns more matches in general, it does so over
a lower range of yaw motions than the SURF algorithm.
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Figure 3.20: The figure shows the system robustness to changes in scale. Note that
while the Ferns algorithm returns more matches in general, it does so over a lower
range of scale changes than the SURF algorithm. The Ferns algorithm was successful
at a scale of 60%, but failed to obtain any matches at a 70% scale, presumably due
to problems in the training of the classifier at this point.
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3.2.4.4 Selection of Feature Matching Scheme

The comparison of feature matching schemes above shows that the perfor-
mance of the Ferns and SURF algorithms is similar at target viewpoints close
to that of the template or reference image, with good matching accuracy and
recognition rates. However, the SURF algorithm was shown to be more robust
to changes in scale and yaw motion at extremities than the Ferns algorithm.
The ability to detect targets over a wider range of viewpoints is more impor-
tant that being more confident in detection over a smaller range of viewpoints,
as it allows a target-following system greater leeway in navigation.

For this reason, the SURF algorithm is used in the human-following system.
The better matching performance over changes in viewpoint does come at the
expense of speed however, and various adjustments are required before the
algorithm can be applied to a real-time situation.

3.2.5 Improving Matching Speed through Windowing

Though significantly faster than the SIFT algorithm on which it is based, the
SURF matching scheme still requires improvements in speed to be of practical
use. These improvements are obtained through the use of windowing and
resolution adjustments.

Initially, the search for targets is conducted over an entire scene, at full
camera resolution. Once detected, only the region of interest (ROI) in which
the target is expected to appear is searched. This region of interest is obtained
by expanding a window surrounding the detected object by % of its detected
width and height. Further improvements to speed are obtained by searching a
downsampled image of this region of interest, should the target occupy signif-
icantly large regions of the image scene. Should the target be lost, the entire
image is processed at full resolution and the process repeated.

This provides significant speed improvements, and allows the algorithm to
process images at approximately 12 fps, under suitable lighting conditions.
Even greater improvements to execution speed could be obtained if the al-
gorithm was implemented on a GPU (graphical processing unit), but this is
beyond the scope of this work.

3.3 Pose Estimation using Planar Objects

If the target followed is planar?, all features on two views of it are related by
the same homography, H (see (2.3.4)). This homography is obtained using the
direct linear transform (DLT) described in Appendix C.1. A computationally
efficient implementation of the normalised direct linear transform is included

2A planar target is one where all target points lie on the same plane in a 3D world
coordinate system.
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in the C++ Open Computer Vision library (Bradski and Kaehler (2008)) and
used in this work.

Let X, and Xy denote the 3D locations of two sets of co-planar points, with
the point sets related by means of a rotation matrix R, translation vector t:

n denotes a vector normal to the co-planar points Xs. If points X; and Xy
are viewed using a camera with intrinsic matrix K, then the image plane
projections of these points are denoted by:

x; = KX, (3.3.2)
Xo = K71X2. (333)

It can now be shown by substitution in (2.3.4) and solving for H, that the
homography relating the two image plane point sets can be decomposed as:

H=KR+tn") K" (3.3.4)

Initially, the algorithm of Faugeras and Lustman (1988) was used to extract
the rotation and translation relating two views of the detected object from the
homography. This algorithm, described in Appendix C.2, is extremely lengthy
and its derivation complex. An alternative to this algorithm can be used if the
template or reference image is chosen intelligently.

If the template image is captured in a fronto-parallel position relative to
the camera, it will have a surface normal n = [0, 0, 1]*. Let H = K"'HK
be the estimated homography with the intrinsic camera effects removed. Then

H=R+[0 0 t], (3.3.5)

where t = [t,, t,, tZ]T is the translation vector with components along the 3D
Cartesmn axes. If ry, ro and rg are the column vectors of the rotation matrix,
with hl, h2 and h3 the column vectors of the homography matrix with camera
effects removed, then

By By By =[r 1w +[0 0 ¢, (3.3.6)

This means that the first two columns of the rotation matrix are equal to
those of the homography matrix and that the third column of the homography
matrix contains both rotation and translation contributions. It is important
to note that the first two column vectors of the homography matrix are or-
thonormal, as a result of the selected surface normal.

ry = H]_ (337)
ry = hy (3.3.8)
rz + t = ﬁg (339)
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Recalling that the third column of a rotation matrix is equal to the cross
product of the other columns, the translation vector is easily calculated.

rs =I1 XTIg (3310)

t= h3 — I3 (3311)

The translation vector is returned up to scale, because a single camera is
used. However, for the purposes of control, this ambiguity is not a problem
as long as the translation components remain monotonic. A controller will
minimise error in translation by generating proportional motion commands
S0, in a sense, the unknown scale is incorporated in the controller gains.

For the purposes of wheeled platform control, three parameters are of in-
terest:

e t, : the horizontal translation between the template scene and currently
viewed scene,

e ¢, : the depth or distance between the template scene and that currently
viewed, along the optical axis of the camera,

e ¢ : the yaw, or target rotation around the vertical axis of the image
plane.

These three parameters are termed the relative pose between the current
and template scene. ¢ is extracted from the 3 x 3 rotation matrix by breaking
it down into a roll, pitch and yaw configuration. It can then be shown that
the yaw is calculated as

¢ = atan <3) , (3.3.12)

733

where rq3 is the element in the first row and third column of the rotation
matrix. Similarly, 733 is the element in the third row and third column of the
rotation matrix.

Roll, pitch and vertical translation information is unnecessary and hence
discarded. The ability to extract the three parameters of interest indepen-
dently of the unnecessary degrees of freedom is important though, because it
implies some invariance to uneven terrain.
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3.4 Extension to Human Pose Estimation

The generalised target tracking system presented thus far needs to be extended
before it can be applied to human following. In Section 2.5 the various types of
wheeled robot control were introduced. They included point-to-point position-
ing, where robots moved directly to a point without considering orientation,
and orientation inclusive or direction-based control, which causes the robot
to move in such a way as to reach a point with a specific orientation. There
are various benefits to each approach, and the primary goal of this work is to
identify and compare these in the context of human following.

Before control algorithms that accomplish these manoeuvres can be imple-
mented, the concept of human orientation needs to be explored. Let us assume
that the pose of a walking person’s upper body typically indicates travelling
direction. Although humans are capable of walking in directions opposed to
that indicated by their torsos, this is certainly not the norm, and intuitively,
the assumption seems valid. The assumption is justified further by the work
of Anderson and Pandy (2001).

Anderson and Pandy (2001) attempted to simulate human walking on level
ground using a three-dimensional, neuromusculoskeletal model of the body
together with dynamic optimisation theory. They compared their model with
data captured from a variety of sources in human walking trials. This data
showed that the deviation in back angle of a walking person typically remains
within 10°.

As we are interested only in the approximate facing direction of the human,
a complex model of body shape and limb position is not required. A simple
planar fit to the back of the torso contains sufficient information for us to infer
travelling direction.

Our goal is to find a means of fitting a plane through keypoints detected on
the back of a human’s torso. This is a relatively simple task if the 3D locations
of features on the torso are known, but the only information available when a
single perspective camera is used is the 2D locations of detected features on
the image plane.

As discussed in Section 3.3, coplanar features in two views of an object are
related by a homography H. If we were to estimate the homography between
two views of a human torso, we would effectively be measuring the rotation
and translation between two planar regions of the torso.

Although features detected on the back of a human torso are usually not
strictly coplanar, a sufficiently robust method of homography estimation is able
to discard errors induced by this assumption. In addition, a robust measure of
homography is also required to reduce errors caused by the deformable nature
of clothing, which may ripple and warp during motion.

The problem of homography estimation is likely to be over-specified as
typically more than four correspondences are found by the SURF matching
scheme. Many correct matches would be useful in solving for the homography
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in a least-squares sense, but incorrect matches (outliers) can have a drastically
negative effect on such a solution. As a result, an iterative RANSAC-based
approach (Fischler and Bolles (1987)) is used, in an effort to find a homography
that minimises a re-projection error.

In this context RANSAC (short for random sample consensus) operates as
follows. A random subset of four correspondences is drawn from the set of all
available point correspondences and a model homography is determined using
the direct linear transform. This homography is used with a re-projection error
to determine which of the remaining points agree with the model, thereby
forming a consensus set. In this case the re-projection error measures the
error between the original coordinates of matched points and those projected
in both directions under the model homography. If the consensus set is large
enough the final homography is calculated from it as a least-squares solution.
Alternatively, a new subset is chosen and the process is repeated until a large
enough consensus set is obtained or a specified number of iterations is reached,
in which case the final homography is calculated from the largest consensus
set found.

This robust RANSAC-based homography estimation is extremely effective
at obtaining homographies in the presence of a large number of outliers. This
property is especially desirable as many outliers could be present in the human-
following system due to the deformable nature of clothing, the occasional mis-
matched feature and the slight curvature (or deviation from planarity) of a
human torso.

Note that the system requires that relatively salient clothing be worn by
the human, because the detection is feature-based.
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3.5 Tracking

After decomposition a pose vector p = [t,,t.,¢]" is specified. It relates the
current view that the robot has of the human with the desired view, as is
illustrated in Figure 3.21.

reference
image plane
human’s
travelling
t. direction

human

=

robot with PTU

Figure 3.21: A graphical interpretation of the parameters t,, t, and ¢ that specify
the pose vector relating the robot’s position and orientation with the human’s. The
parameter « represents the relative angle between the camera and platform.

t, represents the horizontal translation component between the two camera
views and ¢, the translation component along the initial camera’s optical axis.
The angle ¢ represents the camera yaw, or angle between the human facing
direction and the optical axis of the current camera, and is extracted from the
rotation matrix R through the angle-axis parametrization of a roll, pitch and
yaw motion.

The pose measurements could lose accuracy as the target object nears
the extremal regions over which detection is successful. As a result the pose
estimate needs to be refined further before it can be used in a control algorithm.



CHAPTER 3. THEORETICAL DESIGN AND ANALYSIS 55

This is accomplished through the use of an extended Kalman filter (EKF). The
extended Kalman filter is discussed in detail in Appendix D.1.

The uncertainty, or variance Ry, in the pose measurement is selected as one
third of the typical pose variation in straight line motion, weighted by a factor
w=1-— % Here n; indicates the number of inliers or size of the consensus
set, used to estimate the homography, and n; is the total number of available
matches. The weighting implies that as the size of the consensus set increases
so does the trust in the estimated homography and its decomposition.

An approach similar to that of Yoon et al. (2008) is followed to predict
pose from a history of estimates in previous frames. Yoon et al. (2008) use
this prediction to refine an estimate of the six degrees of freedom in a rigid
object’s pose. Let prp_ix—1 be a pose estimate at time index & — 1. The
predicted pose at time step k is then given by

ot ot
Pijk-1 = <1 + 615:1) Pr-1jk—1 — (5tkk1> Pr—2jk—2 + Ck» (3.5.1)

where 0ty = t;, — t,_1 is the time elapsed between steps k — 1 and k, and (;,
is the zero-mean prediction noise, with covariance Q, associated with time
step k. This simple model assumes that the time rate of pose change remains
constant. Under the assumption that the prediction noise is independent of
pose estimates, the predicted covariance of p, can be written as follows:

i\ i\

Prjp—1 = (1 + > Pp_qjp—1+ <5tk 1) Pj_opp—2 + Qg (3.5.2)

The uncertainty in predicted pose, Qg, is selected as half the uncertainty
in measurement (excluding the homography trust weighting) so as to stabilise
the measurements based on their history. This produces action similar to that
of an exponentially weighted filter.

The measurement model is assumed to be unity, as the pose is measured
directly. This means that the measurement and covariance residuals are:

Yk = Zk — Pklk—1 (3.5.3)
S = Pyt + Ry (3.5.4)

Then, the updated state and covariance estimate is given by:

Pijk = Prjk—1 + Kiyr
Py = (I - Ki)Pprjp—1,

with K = Pk‘k_ls,;l the optimal Kalman gain for a linear system.

Note that only a simple motion model is used to predict the future be-
haviour of the human target. An improved estimate could be obtained if a
better model of human motion was incorporated, but the design and defini-
tion of a suitable model of human motion is an extremely challenging topic in
itself, and thus not addressed in this work.
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3.6 Control

The design of the human-following controllers is now presented. Three con-
troller types are discussed and compared in this thesis, a point-to-point po-
sitioner, a direction-based controller and a hybrid controller attempting to
combine the benefits of both. As discussed previously, the goal of this work
is to examine the benefits of direction-based control over point-to-point posi-
tioning in the context of human following and the human orientation measure
introduced in Section 3.4.

The objective in direction-based control is to generate motion commands
that cause the current view of the target to resemble that of a template or
reference image. Point-to-point control, on the other hand, merely tries to
generate motion commands that maintain a fixed distance from the target. As
discussed previously, it is not possible to extract absolute scale when using a
single perspective camera. However, control systems can be designed using the
extracted structure that does not include scale. In order to simplify this, the
assumption is made that the fronto-parallel template image is captured from
the desired platform position, measured relative to the target.

The human-following system is implemented on a terrestrial skid steering
platform with two available control variables: angular and forward velocity.
Before the controllers are presented, however, one of the fundamental problems
of position-based visual servo control when used with a platform that has
highly constrained motion needs to be addressed. Assuming an eye-in-hand
configuration, one where the camera is fixed to the mobile platform, following
a target may require a trajectory that would result in sight of the target being
lost. Figure 3.22 illustrates this problem.

The problem is remedied by mounting the camera on a pan-tilt unit (PTU).
This essentially adds a degree of freedom in order to facilitate the control
process and allow certain trajectories to be followed without losing sight of
the target. The pan angle of the PTU is of interest for motion control and
is denoted by «. Figure 3.21 shows this angle, which measures the difference
between the camera’s facing direction and the front of the platform.

3.6.1 Pan-Tilt Unit Control

The PTU used in this work is a commercially available unit manufactured
by FLIR Motion Control Systems, formally known as Directed Perception.
The PTU responds to RS232 serial commands for pan and tilt position, and
has adjustable speed settings. The speed of PTU movement needs to be set
with care. Ideally, the PTU should move to a desired position as fast as
possible, or at the least much faster that the highest frequency of platform
controller operation. Unfortunately, moving the PTU too quickly results in
camera motion blur, which severely hampers the detection and matching of
features.
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The PTU is controlled in such a way as to always point the camera towards
the centroid of detected features. The pan and tilt angles required to point
the camera at the target object centroid are calculated as follows.

If s is the size of pixels on the camera CCD (charge coupled device), and f
the lens focal distance in millimetres, the pan angle between a detected point
and the image centre is calculated as:

a = atan <M) . (3.6.1)

¢, is the horizontal image coordinate of the detected centroid and z. the hor-
izontal image coordinate of the image centre.
Similarly, the tilt angle g is calculated as:

f = atan <M) ) (3.6.2)
f

with ¢, the vertical image coordinate of the detected centroid and y. the ver-

tical image coordinate of the image centre.

The pixel size s is usually specified by the camera manufacturer, while the
focal distance f is a property of the lens, also typically provided by the lens
manufacturers. In this work, a Prosilica GigE Ethernet camera with 7.5 pum
size pixels is used together with a 12.5 mm lens.

human target

reference image plane

Figure 3.22: A potential trajectory generated through direction-based control. At
position 2, sight of the target is lost and the following task would fail.
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The PTU continually adjusts its azimuth and elevation so that the centroid
of matched features is centred in the camera frame. From this point on, the
assumption that the target is centred in the camera view is made.

3.6.2 Process Model

The three controllers of interest in this thesis were designed using a linearised
model of the robot and vision system. This model is discussed and presented
here. Figure 3.23 shows the measured parameters with which the robot is
controlled. The figure is repeated so as to facilitate understanding of the
control algorithms presented here.

The model presented here uses a kinematic unicycle motion model (see Sec-
tion 2.5) to describe the motion of the robotic platform. This model assumes
that the dynamics of the platform are negligible. Similarly, it is assumed that
the PTU controller operates significantly faster than the platform, and the
dynamics of the PTU are neglected. Assuming that the PTU controller causes
the camera to face the target at all times, the discretised platform model is as
follows:

te(k) = to(k—1) —vp_1sin(0(k—1)) A,

t.(k) = t,(k—1)—vg_ycos(0(k—1))A

(k) = 0(k—1)+wp14\ (3.6.3)
_ t (k)

o(k) = atan (tz(k))

alk) = (k) = o(k).

Here, 0(k) represents the orientation of the platform. Note that 6(k) is
equivalent to the sum of a(k) and ¢(k). k denotes the current sample, with v
and w representing the forward and rotational velocities of the platform.
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Figure 3.23: A graphical interpretation of the parameters t,, t, and ¢ that specify
the pose vector relating the robot’s position and orientation with the human’s. The
parameter « represents the relative angle between the camera and platform.

It is important to note that while the translations ¢, and ¢, are measured up
to a time-invariant scale in practice, the model presented here does not take this
into account. As a result, all control gains need to be adjusted to accommodate
this unknown scale when control systems are practically implemented.

The model of (3.6.3) needs to be linearised before it can be used to de-
sign suitable control systems. Using Taylor series expansion to expand these
equations, and discarding higher order terms provides a linear model,

(k) = t,(k—1)—0.750 (k — 1) A,

tk) = t.(k—1) —v1A

oK) = 0(k—1)+ w1, (3.6.4)
p(k) = tu(k)

alk) = 0(k) — ¢(k).

The model was linearised about an operating point of t, = 0m, t, = 1 m,
6 = 0° v =0.7m/s and w = 0rad/s. This point was selected as this
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represents the desired configuration between the human target and following
robot. It is assumed that the human travelling velocity will not exceed 1.5m/s
and for this reason a midpoint forward velocity of 0.75m/s was selected for
the linearisation.

The plant model was transformed to the z-domain for the purposes of
digital control design, using a sampling frequency of 12 fps. This leads to the
transfer function,

- 0 o (f_?j_Al%)2 -—

Ay
T 121 B
G(z)=| 0 — (3.6.5)
0.75A2

0 o (1—2z—1)?
0 Ay 0.75A2

L 1—2-1 (1—z—1)2]

where 4; is the sampling time and

t.(z

, v(2)

0(z) | =G : (3.6.6)
) ok

The following sections use this model to select control parameters for each
of the control systems of interest in this thesis.

3.6.3 Point-to-Point Positioning

The first controller presented is a point-to-point positioner. This controller
causes the platform to move towards a desired point, with orientation uncon-
trolled. The use of a position-based visual servo control strategy allows for
simple, decoupled control laws to be implemented. Although the PTU con-
trols both pan and tilt angles, only the pan angle is of interest for platform
motion control.

The forward velocity control law adjusts the straight line speed of the plat-
form, based on the translational difference between the current viewpoint and
the point at which the reference image was captured, along an axis perpen-
dicular to the reference image. The forward velocity control input, v(k), is
obtained through the proportional-integral control law:

U(k) = K1

k—1
(k) +7) tz(m)] : (3.6.7)

with ¢,(k) the vertical translation component of the extracted pose measure-
ment at time k. Here K, is a proportional gain and 7; an integral term that
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rejects cumulative errors introduced by a moving target. As this control system
operates in real time, a minimum acceptable sampling rate is required for the
system to remain stable. The integral term is added at the expense of phase
lag, which increases the required processing rate and necessitates high-speed
image processing. A proportional-integral control law was selected so as to
ensure zero steady-state error to a ramp input, given the first order integrator
between v(z) and ¢,(z2),

Ay

1—2z1

Figure 3.26 shows the controller and control architecture used for forward
velocity control. The parameter K'Ts in the integrator block is equivalent to
the sampling time A; = 1/12s.

G, = (3.6.8)

et >

Plant

Figure 3.24: Control architecture used for forward velocity control.

The parameters of interest in this control law were selected using pole
placement and root locus® design techniques. Figure 3.25 shows the root locus
of the open loop transfer function incorporating the velocity controller. Note
that the forward velocity control loop of the plant has a pole? at z = 1 and a
zero® at z = 0. The proportional-integral controller introduces a pole at z = 1
and a zero was placed at z = 0.9958.

Controller gains and the location of the zero was selected so as to ensure
a system bandwidth of 1.4rad/s, significantly slower than the average image
processing frame rate. This results in a phase margin of 91.7° and ensures
controller stability. This is confirmed by the stable closed loop pole at z =
0.893. The closed loop system has a zero at z = (0. Care was taken to ensure
that the forward velocity control does not exceed the platform maximum of

2m/s.

3A root locus is a graphical visualisation of the motion of system roots as a function of
an adjustable parameter such as controller gain.

4A pole is a point at which a function has a singularity. The poles of a system are used
to examine its stability (in this context stability refers to the ability of system to produce
a bounded output in response to a bounded input). An unstable system is one where the
poles fall outside a unit circle in the z-plane.

5A zero is a point at which a function loses rank. Zeros affect the controllabilty of a
system.
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Figure 3.25: Open loop root locus for forward velocity control.

The platform’s angular velocity input at time step k is generated by the

proportional control law
wi (k) = Ky al(k). (3.6.9)

Assuming the PTU controller keeps the camera pointed at the target centre,
adjusting the rotational speed proportionally to the pan angle, «, ensures that
the platform always points towards the target. Only a proportional controller
is used here to provide zero steady-state error, as the transfer function between
w(z) and «a(z),
A n 0.75A2

1—21 (1 . 271)27
is fourth order and contains an integrator. The open loop transfer function has
two poles at z = 1, with zeros at z = 0 and two more at z = 0.9412. Figure
3.26 shows the controller and control architecture used for rotational velocity
control.

-0.9412
g b 0.089 2 )
(217

K2

G, (3.6.10)

Plant

Figure 3.26: Control architecture used for rotational velocity control.
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Once more, gains were selected using root locus design. Figure 3.27 shows
the root locus of the open loop transfer function incorporating the rotational
velocity controller.
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Figure 3.27: Open loop root locus for rotational velocity control.

The gain was adjusted so as to achieve a system bandwidth of approxi-
mately 2.87rad/s, significantly lower than the average image processing rate,
resulting in a phase margin of 79.1°. The closed loop system is underdamped
with poles at z = 0.0908 £ 0.04881, providing a damping factor of 0.87. This
damping factor was selected so as to ensure that the controlled rotational
velocity does not exceed § rad/s. This reduces the risk of motion blur associ-
ated with a rapidly rotating camera and keeps the rotational velocity within
the limits of the platform. The closed loop has a zero at z = 0.9375.

Figure 3.28 shows the disturbance response of the coupled system to a
target offset by t, = 0.5m, t, = 0.5m and a = 45°, when the target moves
forward in a straight line at 1m/s.
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Figure 3.28: Disturbance response of system to a step change in an offset targets
velocity when using point-to-point control.

The crosstrack error ¢, and relative orientation ¢ eventually converge to
zero in this case, even though these parameters are not actually controlled.
While the point-to-point controller follows the target’s position closely, it does
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not take orientation into account. As a result it may be vulnerable to losing a
sharply turning target.

Table 3.2 shows the gains and time constants used in the point-to-point
control scheme.

Table 3.2: Point-to-point controller parameters.

Parameter \ Value ‘

K, —1.5
Ti —0.075
Ky 2.5

3.6.4 Direction-based Control

The second controller presented regulates both position and orientation. The
forward velocity control input remains the same as that of the point-to-point
positioner, listed in (3.6.7).

The platform’s angular velocity input at time k is generated by the pro-
portional control law

wa(k) = K3[o(k) + a(k)] + Ky t,(k). (3.6.11)

Here ¢(k) is the estimated human facing direction extracted from the homog-
raphy, a(k) the PTU pan angle and t,(k) the cross track error at time step
k. The cross track error is defined by the signed magnitude of the perpen-
dicular line segment between the reference trajectory and the robot. In our
case the reference trajectory is the line passing through the desired camera
centre, oriented in the direction of its optical axis (see Figure 3.23). The cross
track error is therefore equivalent to the horizontal translation component of
the extracted pose measurement.

The proportional gains K3 and K, in Equation 3.6.11 are used to weight the
relative errors in the control law. In general these errors cannot be minimised
simultaneously as they typically represent conflicting goals, so the weighting
needs to be selected such that greater emphasis is placed on minimising cross
track error.

The open loop transfer function for the rotational velocity loop is extracted
from (3.6.5) and given by

0.75A2
Gun = [_(1Zf1)2] ) (3.6.12)
where e
Lb(z)x-i— a(z)] = Gu,w(2). (3.6.13)
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The plant has a pole at z = —1 and a zero at z = 0. Note that the cross track
error t,(z) is related to the integral of ¢(z) + «(z). This allows the system
to be treated as a single-input single-output system with two feedback control
loops, when using the control architecture of Figure 3.29.

z » z »
O » O > b 5 ,W = >
K4 K3

Figure 3.29: Architecture of direction-based orientation controller.

This control architecture allows for each of the gains in the direction-based
control law to be selected independently, by designing each of the control loops
separately.

Figure 3.30 shows the open loop root locus of the inner loop corresponding
to the orientation regulation component of the direction-based controller.
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Figure 3.30: Open loop root locus for orientation regulation.

The proportional gain K3 was selected so that the system bandwidth was
approximately 0.25rad/s. This is significantly lower than the bandwidth de-
signed for in the point-to-point control scheme. This bandwidth was selected
because minimising crosstrack error is more important in the direction-based
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control scheme, and so the response of the orientation regulation loop needs
to be slower than that of the loop regulating cross track error.

The controlled inner loop is closed loop stable, with a pole at z = 0.9792
and a phase margin of 89.4°.

Figure 3.31 shows the open loop root locus of the outer loop corresponding
to the cross track error regulation component of the direction-based controller,
given the controlled inner loop transfer function.
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Figure 3.31: Open loop root locus for cross track regulation.

The proportional gain K, was selected so that the system bandwidth was
approximately 1.757rad/s. Once more, it is important to note that this re-
sults in a much faster response than the orientation regulating loop, because
minimising crosstrack error is more important in the direction-based control
scheme.

The controlled outer loop is closed loop stable, with poles at z = 0.80 4+
0.271, corresponding to a damping factor of 0.468. This damping factor was
selected so that the rotational velocity control does not exceed the platform
maximum for the expected disturbances. A phase margin of 52.3° was ob-
tained.

Figure 3.32 shows the disturbance response of the coupled system to a
target offset by t, = 0.5m, t, = 0.5m and a = 45°, when the target moves
forward in a straight line at 1m/s.
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Figure 3.32: Disturbance response of system to a step change in an offset targets
velocity when using direction-based control.

The direction-based controller causes all the outputs to be controlled, and
results in a significantly faster reduction in cross track error ¢, and relative
orientation ¢ as a result. Unfortunately, while this controller corrects orienta-
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tion, it does so by traversing non-ideal trajectories. These trajectories make
the system vulnerable to losing a fast moving target and are disconcerting as
they often differ greatly from the path followed by the target. A more de-
sirable trajectory is obtained through the traditional point-to-point controller
approach.

Table 3.3 shows the gains used in the direction-based control scheme.

Table 3.3: Direction-based controller parameters.

’ Parameter \ Value ‘
K 3
K, —10

3.6.5 Hybrid Control

Each of the previous controllers has both benefits and flaws. A new controller,
combining the benefits of both these controllers could result in better system
operation. A combined controller can be implemented through gain scheduling,
or by phasing between the two controllers, depending on the target orientation.

Using this phasing approach, the platform’s combined angular velocity in-
put at time step k is generated by the weighted sum

wk) = (@1—2') wi(k) + (1 - @1—’3) wa(k), (3.6.14)

where ¢, is the maximum orientation angle detectable from an image. w;
and wy are the rotational velocity control laws of Equations 3.6.9 and 3.6.11.

Once more, the forward velocity control law remains that of Equation 3.6.7.
The operation of the hybrid controller is explained as follows. Should the
target be turning sharply, emphasis is placed on the orientation-regulating
controller so as to reduce the risk of losing the target during the turn. When
the target orientation does not differ greatly from the platform’s, the point-
to-point positioner, which is less prone to losing a faster moving target, is
preferred.

Figure 3.33 shows the disturbance response of the system to a target offset
by t, = 0.5m, t, = 0.5m and o = 45°, when the target moves forward in a
straight line at 1m/s.
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Figure 3.33: Disturbance response of system to a
velocity when using the hybrid controller.
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The hybrid response looks similar to that of the direction based controller,
but results in a slightly different trajectory. This trajectory, along with those
of the point-to-point and direction-based controllers, is shown in Chapter 4,
together with a more pertinent discussion on the benefits of each controller.

3.7 Summary of System Operation

A summary of the system operation and human-following approach is provided
here for greater clarity. Figure 3.34 depicts a flowchart of the system operation
and helps to show the order in which algorithms are applied.

< Reference ( SURF Feature .
»| »| | Descriptors

Image Extraction

¥

Image > Image ,| SURF Feature N N:?T;’jhr
BEE Dewarping Extraction Sgarch
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h J
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( Calmt?ra ( .l Homogra;?rjy PTU Control
Inrinsics Decomposition
¥
EKF

¥

Platform Control

Figure 3.34: The flowchart illustrates the system operation and flow of information.

Initially, a template or reference image of the human target at the desired
range from the camera is captured. The image of the human target is captured
in a fronto-parallel configuration, so as to ease the extraction of pose. SURF
features and descriptors are extracted and stored in memory for later use.

During system operation, an image scene is retrieved from a calibrated
camera and dewarped. SURF features and descriptors are extracted, only
considering a region of interest within the image scene. The extracted SURF
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descriptors are compared with those of the template image by applying a naive
nearest neighbour search. Confirmed feature matches are then used to extract
a homography mapping features in the reference image to those located in the
image scene, by applying the robust RANSAC-based DLT algorithm.

The extracted homography is used to predict the region of interest in which
the target is next expected to appear, and to find the reprojected template
centroid. The centroid is used to calculate the angle to target, which in turn
controls the motion of the PTU.

The extracted homography is also decomposed into a rotation, translation
measured up to scale, and a surface normal, by incorporating knowledge of
the intrinsic camera matrix. Pose parameters of interest are then used by an
extended Kalman filter to improve upon the pose estimates.

Finally, these pose estimates serve as inputs to a relevant control algorithm,
which provides motion commands to the wheeled platform.

3.7.1 Implementation

Figure 3.35 shows the human-following robot used in this work. A commer-
cially available Pioneer P3-AT mobile platform was used as a base for the
integration of the software components presented here. This platform is con-
trolled via serially transmitted actuation commands, using software provided
by the manufacturer.

Figure 3.35: The mobile platform on which the work described in this thesis was
implemented, together with a still image captured during a following task.

Software was designed in C++ using the Open Computer Vision software
libraries and an open source robotic architecture (Candy et al. (2010)) devel-
oped by the Mobile Intelligent Autonomous Systems Group at the Council for
Scientific and Industrial Research. The software architecture allows for eas-
ier message passing and modular node-based design using a publish /subscribe
framework.
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Experiments were conducted on a Dell Latitude 6400 dual-core notebook
with 2 GB RAM. A Prosilica GigE Ethernet camera was mounted on a com-
mercially available pan-tilt unit, that accepts pan and tilt commands through
serial communications.



Chapter 4

Simulated and Experimental
Results

The results of tests verifying and validating the performance of the selected
problem solution are presented here. Initially, a summary of the object recog-
nition results, presented earlier in Section 3.2.4, is provided, together with a
discussion on the system limitations induced by the object recognition module.
This is followed by simulations and analysis of the pose estimation modules,
together with a discussion and motivation for the certainty measure introduced
in Section 3.5.

Thereafter, the performance of the human pose estimator is discussed by
analysing its performance over variations in angle and scale, followed by a
description of both simulated and experimental results highlighting the per-
formance and benefits of the three control systems presented in Section 3.6.

Finally, complete system results showcasing the performance of the human
follower are provided, together with a discussion of overall system limitations.
The improvements made through the use of the extended Kalman filter tracker
are also highlighted here.

4.1 Object Recognition Limitations

The most important results of the feature-based object recognition system
used in this work were discussed in Section 3.2.4. The following section serves
to summarise these results and list the limitations that the object recognition
system introduces. In addition, the influence of the hardware used in this work
is discussed, together with the trade-offs required in the module design.

A Prosilica GigE Ethernet camera was used to test the object recognition
modules. The camera imposes fundamental restrictions on the system opera-
tion. The first relates to the speed of image capture. Ideally, images should be
captured as quickly as possible, with a very short exposure time so as to limit
motion blur. This requires a large lens aperture, so as to increase the amount

74
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of light entering the camera. If less light enters the camera, the exposure time
needs to be increased, making the camera more susceptible to motion blur.
The feature detection scheme will fail to operate if the image of the target is
too blurred, as features will not be extracted.

Improving the robustness of the feature detection scheme motion blur in-
duced by lighting is beyond the scope of this work, and it is assumed that
lighting can be controlled relatively well. It is still important to recognise the
role of the lens aperture, as the desire for a larger aperture and more light
contrasts with other factors influencing system performance.

The second restriction on system operation results from the depth of field
of the camera. A camera’s depth of field refers to the range over which an
object in an image remains sharp or in focus. The feature detection scheme
will fail to operate if the image of the target is not sufficiently clear, as features
cannot be extracted. The depth of field of a camera is typically increased by
decreasing the aperture size, in contrast to motion blur, which is limited by
increasing aperture size. This means that the depth of field will be limited by
the allowable amount of motion blur in a fixed focus camera.

The final restriction of importance results from the camera’s field of view.
Ideally, the field of view should be as large as possible, to maximise the chances
of detecting targets in a scene. The camera field of view is controlled by design
of the camera lens. The field of view places a theoretical limit on the speed
at which targets can be tracked, as targets will not be detected if they move
across a scene in less time than the object recognition system can process an
image.

An extremely large field of view is not always desirable, however, as much
greater resolution images need to be processed to achieve the same feature de-
tection and matching performance obtained using camera lenses with a smaller
field of view, where targets occupy significantly more pixels. A larger resolution
image results in greater processing time, even if the windowing and resolution
control of Section 3.2.5 is incorporated.

It is clear that the performance of the object recognition system is heavily
dependent on the camera and lens used. Great care needs to be taken to select
camera and lens properties, given the trade-offs discussed above. In general
however, improved object recognition performance can be achieved, through
the use of improved cameras and lenses with more precise optics, although
these are typically more expensive.

Table 4.1 provides a quantitative summary of the system limitations when
detecting the All Bran box target. The optical axis range refers to the distance,
in meters along the camera’s optical axis, over which a target can be detected.
Similarly, the target roll, pitch and yaw range refers to the allowable target
orientations over which the object recognition system succeeds. These limits
were measured independently, so the actual detectable range of any particular
rotation may vary somewhat, given the remaining possible rotations. Note
that the object recognition system is capable of achieving significantly greater



CHAPTER 4. SIMULATED AND EXPERIMENTAL RESULTS 76

roll ranges (360° coverage), but this is constrained as a consistency check, since
human targets are not expected to undergo roll motions greater than 90°.

Table 4.1: Qualitative list of object recognition system limitations.

’ Property \ Value
Optical axis range 0.5m to 4m
Target roll range —90° to 90°
Target pitch range —20° to 20°
Target yaw range —60° to 60°
Processing frame rate | 11.58 fps
Field of view +45°

It is important to note that these parameters, measured experimentally,
are dependent on the camera and lens used and vary depending on the experi-
mental setup. The processing frame rate was measured by taking the system’s
average image processing frame rate on a 2.66 GHz dual core notebook with
4 GB RAM. The field of view is a parameter of the camera lens, but impor-
tant to note as it introduces a constraint on the maximum speed of targets,
measured perpendicularly to the camera’s optical axis,

v = (2ztan45°) (11.58) = 23.16z m/s. (4.1.1)

Here, z is the target distance from the camera, along the optical axis. This
corresponds to a theoretical worst case limit of 11.58 m /s on the target motion,
assuming a horizontally travelling target 0.5m away from the camera. While
this is significantly faster than the average human’s walking speed, it should
be noted that the processing frame rate is not constant, and varies depending
on the amount of clutter and number of keypoints detected in a scene. In
addition, motion blur dramatically reduces the allowable target speed. More
detail on the maximum target speed that can be followed is provided in Section
4.6.

4.2 Pose Estimation Simulations

Due to the difficulty in accurately controlling the attitude of a target, the
performance of the pose estimation module is analysed through simulations
incorporating most of the limitations and potential problems resulting from the
object recognition module. The inclusion of the object recognition limitations
allows for simulations closely matching reality, because the pose estimation
process is not subject to external noise sources.

The simulations conducted consisted of 10000 trials, with each trial fol-
lowing the process described here. Initially, N uniformly distributed points
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on the plane Z = 1m in 3D space are selected, with the X and Y positions
constrained to between —0.5m and 0.5m. This ensures that points remain
within 22.5° of the camera’s 45° field of view.

Uniformly distributed roll, pitch and yaw angles are generated, with roll
and pitch angles limited to between —20° and 20°. This corresponds to small
rotations typically introduced by uneven terrain or unexpected target motions.
Larger yaw angles, however, are expected and thus constrained to between
—60° and 60°, corresponding to the object recognition system’s detection limits
for yaw motions (see Figure 3.19).

Similarly, uniformly distributed random translations are generated. Trans-
lation along the optical axis, t,, is constrained to within —0.5m and 3 m, which
ensures that the target remains within the detection limits of the object recog-
nition system, a range of 0.5m to 4m. Horizontal and vertical translations,
t, and t,, are constrained to within —¢, — 0.5m and ¢, 4 0.5m, which ensures
that targets remain within the camera field of view when shifted, given the
allowable positions of the 3D points generated earlier.

Thus far, no mention on the selection process for N, the number of 3D
points generated, has been made. N typically equals about 400 when the
target is in a fronto-parallel position at a scale of 100%, but decreases with yaw
rotations and scale changes (see Figures 3.19 and 3.20). For the purposes of
the pose estimation simulations, this is modelled naively, under the assumption
that the decrease in features due to scale changes and rotations is independent.
Under this assumption, and approximating the distributions of Figures 3.19
and 3.20 with zero mean Gaussians, using standard deviations 15° and 1m
respectively, the number of features is given by

t5)2
N = 4006_<%>67(é(1;2), (4.2.1)

where « is the randomly generated yaw angle and ¢, the translation along the
optical axis.

Figure 4.1 shows the resultant distribution used to select the number of
features. Note that the choice of 15° standard deviation causes the yaw-based
Gaussian to cut off at about 60°, the limit imposed by the object recognition
system. Similarly, the 1m standard deviation results in a cut off of 3m for the
scale Gaussian, corresponding to the range limitation of the object recognition
system. The Gaussians ensure that the number of features generated and used
for pose estimation at a specific target attitude is very close to that seen in
practice, allowing for a realistic simulation.

Once the N 3D points have been generated, they are projected onto a
hypothetical image, using an intrinsic camera calibration matrix of

1800 0 512
K=| 0 1800 384/, (4.2.2)
0o 0 1
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Figure 4.1: The distribution from which the number of features used in the pose
estimation calculations is drawn. The number of features selected is dependent on
the target attitude.

corresponding to an image of resolution 1024 x 768 pixels, and the camera lens
focal length of approximately 1800 pixels. This produces the set of template
features.

The input image features are generated by transforming the N 3D points,
using the aforementioned rotations and translations, and projecting the re-
sult onto the image plane, again using the intrinsic camera matrix K. Zero
mean Gaussian noise with variance 3 pixels is added to the x and y image
plane coordinates of these features. This corresponds to a maximum error
of approximately 10 pixels, the largest encountered by the object recognition
system.

After generating the template and input image features, the RANSAC-
based homography estimation of Section 3.4 is performed. The homography
is then decomposed, using the process outlined in Section 3.3. The errors in
roll, pitch and yaw angles are stored, together with those in the translations
tz, ty, and ..

In addition, both the number of features used in the pose estimation and the
certainty measure introduced in Section 3.5 are saved. The certainty measure
is the ratio of inliers used for the homography computation to the total number
of features that could possibly be detected in ideal circumstances (400).

Table 4.2 shows the mean and standard deviation of the errors in roll, pitch
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and yaw rotations. The mean error remains below 2° for all rotations and the
standard deviation is not much greater than that of the noise introduced in
simulation. As expected, this shows that the angular estimates will typically
be as accurate as the object recognition data it receives.

Table 4.2: Mean and standard deviation of rotation angle errors in simulated pose
estimation.

| Angle | Mean (°) | Std (°) |
Roll | 0.5902 1.7605
Pitch | 1.2998 3.4906
Yaw 1.3584 3.5440

Table 4.3 shows the mean and standard deviation of the errors in the trans-
lations ¢,, t, and t,. As this data is simulated, with known 3D locations of
feature points, the typically unknown scale in translation can be found and
the actual and estimated translations can be compared directly. The mean
error remains below 30 mm for all translations with a standard deviation of
less than 65 mm. This is low enough to allow for acceptable human following.

Table 4.3: Mean and standard deviation of tramslation errors in simulated pose
estimation.

| Translation | Mean (m) [ Std (m) |

t, 0.0166 | 0.0441
t, 0.0251 0.0648
t, 0.0195 | 0.0575

Figure 4.2 shows the distributions of the roll, pitch and yaw errors against
the number of features used in the pose computation and the certainty measure
of Section 3.5. Logically, the number of features represents a good measure of
potential error, as more features should increase the chance of an accurate pose
measurement. As expected, the figures show a negative correlation between the
errors and these measures. The figure also shows that while the measures show
similar correlations, the certainty measure of Section 3.5 is less susceptible to
outliers than the number of features. This is to be expected, as the certainty
measure introduced in this work does not take outliers into account.

It is important to note that these figures are error distribution plots, which
show that the certainty measure is a quality indicator, but that good matches
can occur with a low certainty measure. This makes sense, as a high variance
in data does not necessarily imply an incorrect measurement. However, the
shape of the distribution does provide an idea of worst case behaviour, and
shows that the certainty measure can be of use in filtering.
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Ideally, the relationship between errors and the certainty measure should
be linear, for the purposes of Kalman filter tracking, but the defined certainty
measure is still useful as it provides an indication of when a position estimate
can be trusted. This is confirmed by the Pearson product-moment correlation
coefficients! between the rotation angles and certainty measures, shown in
Table 4.4. p,n denotes the correlation coefficient between the angle errors and
the number of features used for the pose calculation, while p,c represents the
correlation coefficient between the angle errors and the certainty measure.
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Figure 4.2: The relationships between roll, pitch and yaw rotation angles and both
the number of detected features and the certainty measure defined in Section 3.5.

!The Pearson product-moment correlation coefficient, p, is a measure of the linear depen-
dence between two random variables, X and Y. p = W, with u representing
the mean and o the standard deviation. E denotes the mean or expected value of the

bracket’s contents.
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Table 4.4: Correlation coefficients showing the correlation between the errors in rota-
tion angles and both the number of features used in the pose estimation calculation
and the certainty measure defined in Section 3.5.

’ Angle ‘ PaN \ PaC ‘
Roll —0.2281 | —0.2261
Pitch | —0.2530 | —0.2527
Yaw —0.2627 | —0.2613

Figure 4.3 shows distributions of the translation errors against the number
of features used in the pose computation and the certainty measure of Section
3.5. As expected, the figures show a similar negative correlation between the
errors and these measures to that of Figure 4.2. Once more, the certainty mea-
sure of Section 3.5 is less susceptible to outliers than the number of features.
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Figure 4.3: The relationships between z,y and z translations and both the number
of detected features and certainty measure defined in Section 3.5.

As expected, the Pearson product-moment correlation coefficients between
the translation errors and certainty measures, shown in Table 4.5, are similar
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to those between the rotation errors and these measures and hence suitable
for providing an idea of the accuracy in any given pose measurement.

Table 4.5: Correlation coeflicients showing the correlation between the errors in
translation and both the number of features used in the pose estimation calculation
and the certainty measure defined in Section 3.5.

’ Translation \ PN \ pro ‘
e —0.2539 | —0.2518
ty —0.2652 | —0.2642
t, —0.2474 | —0.2431

pinv denotes the correlation coefficient between the translation errors and
the number of features used for the pose calculation, while p;- represents the
correlation coefficient between the translation errors and the certainty measure.

The results presented here have shown that the homography-based pose es-
timation process does not introduce additional errors, but typically performs as
well as the input data supplied. More importantly, this section has shown that
the certainty measure is a reliable indicator of the quality of a pose estimate.

4.3 Human Pose Measurement Results

The following section aims to show that the homography-based pose estimate
provides translations and a measure of orientation that is useful for the pur-
poses of wheeled robot control. While we are unable to provide any insight
into the accuracy of the measurement, as no ground truth is available, we aim
to show that the homography-based plane fit provides a believable estimate of
a human torso’s facing direction.

Figure 4.4 confirms that the pose estimate is conceptually correct, through
examples of planes fit through a human torso using the homography pose es-
timate. These examples show that a plane fit to the torso appears to capture
a torso’s facing direction. The reference image of the shirt worn during exper-
iments is shown in Figure 4.4(a). All pose estimates obtained are measured
relative to this view and the goal of a human-following task (using direction-
based control) is to generate platform control signals that recreate this view.

The superimposed green quadrilateral in each example shows the estimated
planar approximation to the back of the torso. As the figure shows, the sys-
tem is robust when subjected to some extreme human motions and deforming
clothing. Valid pose measurements are also obtained when the torso undergoes
partial occlusions and over large scale changes. The images obtained outdoors
are of poor quality and affected by glare, but illustrate that the system still
functions effectively in challenging environmental conditions.
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These images show that the pose estimate contains information regarding
a person’s position and orientation, but do not provide any information as
to the accuracy of an estimate. As discussed in Section 3.3, only three pose
parameters are of interest for the motion control of a wheeled platform: target
yaw, the shift of the horizontal camera frame axis, ¢, and the optical axis
shift, t,. The results of experiments conducted to test the reliability of these
measurements are now presented.

(g) backward tilt (h) roll, partial oc-
clusion

(i) near, partial oc-  (j) distant, blurred (k) outdoors (near) (1) outdoors (far)
clusion

Figure 4.4: Results of the single-view homography-based pose measurement system
on a range of test cases. The template image is shown in (a). The superimposed
green quadrilaterals in (b)—(1) show the estimated planar approximations from which
position and orientation, relative to the template, are extracted.

Figure 4.5 shows the relationship between actual variations of horizontal
target motions and those obtained by the homography-based pose estimate.
Image sequences of a stationary human target in a fronto-parallel configuration
were captured at three positions approximately 2m from a camera. Measured
values are linearly scaled and shifted so that there is a zero-mean, unity gain
relationship between input and output, in order to facilitate comparisons.

Note that the homography-based pose estimate does not continually pro-
vide the same estimate when viewing a target in a static scene, as noise in
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images causes changes in the features used for pose estimation. This variation
in measurement is quantified by the standard deviation error bars displayed in
the figure, with a line fit through the mean of estimates. The average certainty
measures for each position are also noted in the figure.
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Figure 4.5: Mean (squares) and standard deviation (bars) of the measured horizontal
translations given horizontal translation variations. Average certainty measures are
also shown (the annotations alongside the error bars).

Figure 4.6 shows the relationship between actual variations of target mo-
tions along the camera optical axis and those obtained by the homography-
based pose estimate. As before, image sequences of a stationary human target
in a fronto-parallel configuration were captured at incrementing 0.5m inter-
vals. The variation in measurement, quantified by the standard deviation error
bars displayed in the figure, shows that the estimate becomes less reliable as
the target moves away from the camera. The average certainty measures for
each position confirm this. Once more, measurements were shifted and scaled
to facilitate comparison.

Practical experimentation shows that the certainty measure rarely exceeds
0.6, with a measure greater than 0.1 corresponding to a reliable parameter
estimate. Note that while the estimated translations are close to the actual
translations used for test purposes, they are not exactly equivalent. This is
unimportant for the purposes of controlling a platform using these parameters,
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where suitable platform control can be obtained as long as the estimate is
monotonic. This is clearly the case for the given translations, indicating that
the estimates can be used for the purposes of control.
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Figure 4.6: Mean and standard deviation, and average certainties, of measured
optical axis translations against ground truth.

Figure 4.7 shows the relationship between actual variations of target yaw
and those obtained by the homography-based pose estimate. These estimates
were obtained by performing pose estimation on image sequences of a human
target with varied orientation. Orientation was controlled by marking 20°
intervals directly in front of a camera, and capturing image sequences of a
human target facing in each of these directions. Once more measurements
are shifted and scaled in order to ensure a unity gain, zero-mean relationship
between measurement and input. The variation in measurement, quantified
by the standard deviation error bars displayed in the figure, shows that the
estimate becomes less reliable as the target rotates away from the camera. At
+60°, near the measured limits of the feature-based recognition, the estimate
becomes untrustworthy. The average certainty measures confirm this.

The yaw measurements appear to be biased, detecting features at positive
angles more accurately then those at negative angles. This is due to the
distribution of features on the target, with more features detected on one side
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of the target. A more symmetrical plot would be observed if the features were
distributed uniformly across the target.
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Figure 4.7: Mean and standard deviation, and average certainties, of measured
target yaw against ground truth.

Once more, it is important to note that while the yaw estimates are not
exactly that of the input system, this is unimportant for the purposes of con-
trol. As long as the measurements are monotonic, a suitable controller will
still result in corrective motions that cause the magnitude of target yaw to
decrease. This means that control should be successful as long as the relative
target orientation falls between approximately —50° and 60°. In this region,
corrective controller actions should result in target pose estimates that are
more trustworthy, as indicated by the certainty measures in Figure 4.7, which
would in turn allow for more accurate orientation control.
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Figures 4.8 and 4.9 show the variation in target yaw, given pure transla-
tions. Ideally, the estimate should be independent, but in practice this is not
achieved. Fortunately, this variation is not significant and does not affect the
estimate’s use in a control system.
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Figure 4.8: Effect of actual horizontal target translations on target yaw estimates.
Average certainty measures are also shown.

60
40
20
o 0.620 0.470 0.316 0.257
N B i ettt - s
>
!
=
z -20F
<
[
=
-40
-60 |-
_80 1 1 1 1 1 1 1 1
1.4 1.6 1.8 2 2.2 24 2.6 2.8

Actual ¢, (m)

Figure 4.9: Effect of actual optical axis target translations on target yaw estimates.
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Recall that the use of this estimate of human pose is still based on the
assumption that a human’s upper body represents a good measure of their
travelling direction. The work of Anderson and Pandy (2001) reiterates this,
with the finding that a human torso deviates within approximately 10° during
a walking task. This finding implies that the non-ideal variation of target
orientation given translations typically falls within the estimate noise floor,
and is thus not overly significant.

4.4 Controller and Tracking Results

4.4.1 Controller Simulations

The intended behaviour of the three controllers discussed in this work is ex-
plained here, with the aid of simulated controller responses. As previously
mentioned, the point-to-point controller causes the platform to move directly
towards a target, with no control of the relative orientation between the plat-
form and target. The direction-based controller causes the platform to move
in such a way as to approach the target with the same orientation. In contrast,
the hybrid controller attempts to combine benefits of both these controllers, by
phasing between the two, depending on the relative target orientation angle.

4.4.1.1 Controller Responses

Figure 4.10 shows the responses of the platform to a straight line trajectory,
when each of these controllers are used. The target trajectory is offset from
the platform starting position in both position and orientation.

The point-to-point controller does not converge to the path as quickly as
the other controllers, since it only responds to the error in distance between the
set-point trajectory and the platform. The direction-based controller, on the
other hand, moves towards the straight line trajectory in an attempt to cancel
out both relative orientation and positional errors. While this ensures that
the direction-based controller takes target orientation into account, it results
in a significantly longer distance travelled, and hence requires greater control
action than the point-to-point controller.

The hybrid, gain-scheduling controller behaves as expected, producing a
trajectory between the point-to-point and direction-based responses. This en-
sures that orientation errors are still reduced, but a shorter distance is trav-
elled. Of course, this shorter distance comes at the expense of a slower reduc-
tion in relative orientation errors.

Figure 4.11 shows the response of the controllers to an offset circular tra-
jectory. The response of the hybrid controller is not shown here, as its response
is more-or-less identical to the direction-based controller in this case, since the
relative orientation of a target following the circular trajectory is large enough
to enforce a favouring of the direction-based controller in the hybrid scheme.
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Figure 4.10: The simulated responses of the direction-based, point-to-point and
hybrid controllers to an offset straight line trajectory.

The shorter distance travelled by the platform using the point-to-point
controller is clearly visible here, along with the longer distance required by
the direction-based controller. The direction-based controller essentially tries
to control towards a tangent to the target trajectory, which thus results in a
trajectory outside of the targets. This requires that the platform using the
direction-based controller travel faster than the target, which in turn travels
faster than the platform using the point-to-point controller.

The simulations provide valuable information regarding the expected lim-
itations of each controller. The point-to-point controller, while traversing a
shorter distance to the target, is vulnerable to losing sight of a sharply turn-
ing target. This could occur if orientation is not corrected and the relative
target orientation moves beyond the orientation limit of the object recognition
system.

While the direction-based controller corrects orientation errors and is not
as susceptible to this problem, it does so by traversing a non-ideal path. This
trajectory is longer, and requires greater actuation than that of the point-
to-point controller. This potentially increases the chances of losing a fast
moving target, which may leave the object recognition system’s recognition
range while the platform is attempting to correct orientation and positional
errors simultaneously.
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Figure 4.11: The simulated responses of both the direction-based and point-to-point
controllers to an offset circular trajectory. The hybrid control response is not shown
as it is almost exactly the same as the direction-based controller for this particular
path. Note that the circular path was traversed more than once, causing the blue
dotted and green dash-dot lines to appear continuous at later stages in the trajectory.

The hybrid controller, which combines aspects of the direction-based and
point-to-point controllers, attempts to alleviate these potential problems, by
producing trajectories that reduce orientation errors to some degree, but do
not navigate along such non-ideal paths. Of course, in the attempt to combine
the benefits of both controllers, a slight loss of performance may be experienced
in the areas in which each controller performs strongly.
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4.4.1.2 Monte Carlo Analysis

The stability of the control systems described here is difficult to analyse, as no
closed-form model of the vision components is available. As a result, Monte
Carlo analysis is used in an attempt to show the expected system bounds.

As our human-following system is already constrained by its allowable mo-
tion, we only consider forward and rotational velocities less than or equal to
the maximum platform velocities. It is clear that any target motions exceeding
these velocities cannot be followed.

Moreover, our analysis is only concerned with the platform velocities that
can be followed, and assumes the platform starts in the desired position relative
to the target, with no offset in position or orientation.

The simulations consisted of 1000 runs, each conducted as follows. Initially,
uniformly distributed random forward and rotational velocities were generated.
These velocities are used as controls for the target and remain constant for each
iteration of a simulation run. The paths traversed by a platform when following
a human target are not important here, but rather whether the platform is
able to maintain sight of the target over each simulation. If this occurs, the
following task is considered successful.

Initially, the target position and orientation is adjusted using the unicycle
motion model in (2.5.1). The relative yaw, translations and pan angles used in
the controllers presented earlier are then calculated. These parameters form
inputs to the model developed in Section 4.2 and given by (4.2.1). This model
approximates the number of features detected, given relative target position
and orientation and is based on practical system measurements. A slight
change is made to the pixel noise added in the simulations, which is increased
from a standard deviation of 3 pixels to 10 pixels, in order to account for worst
case noise introduced by potentially deforming clothing.

Recall that a certain number of features is required if the object is to
be recognised successfully, so the number of features generated provides a
termination criterion to the simulation. If sufficient features are generated,
the relative target position and orientation are generated following the same
approach as Section 4.2.

These parameters are then used as inputs to the relevant control system,
which generates platform velocities. The platform velocities are used to update
the platform motion, using the unicycle motion model in (2.5.1). A delay
corresponding to the average image processing rate is also incorporated here.

This process continues until a target is lost or a specified distance has been
travelled. If the specified distance is travelled and the target was not lost, the
following task is assumed to be successful.

Figure 4.12 shows results of the simulations for each of the three controllers
proposed here. The figure confirms that while the point-to-point controller is
able to follow rapidly moving targets, it is unable to follow sharply turning
objects with little forward velocity. The direction-based controller is less sus-
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ceptible to losing targets that are sharply turning, but experiences difficulties
when following rapid targets. The hybrid controller dramatically improves
the following performance of both controllers, only experiencing difficulties in
following sharply turning targets. This indicates that the hybrid controller
should be better equipped to deal with human motion.

It is important to note that the stability of the controller has not been
confirmed here and that the simulations have only covered constant velocity
motion within the bounds of the allowable platform velocities. Other motions
could still cause the platform to lose sight of a target. In addition, the simula-
tion is model based and only an approximation of the physical human-following
task.

However, the simulation does provide good evidence as to the operation of
the three controllers, and confirms our proposition that the hybrid controller
offers better performance than its components.
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Figure 4.12: Results of the Monte Carlo target-following analysis are shown here.

A successful target-following task is denoted by a 1 on the result axis, while a failure
is denoted by a 0.
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4.4.2 Actual Controller Results

Actual results of the controller responses to target trajectories are now pre-
sented. Unfortunately, it is difficult to obtain ground truth when following a
human target, so the responses presented here were generated by following a
second robotic platform with a salient planar target attached. While the pose
measured using a planar target is not as noisy as that obtained from a human
torso measurement, it still represents a good approximation and allows for the
actual behaviour of controllers to be examined.

The responses presented here were measured using odometry obtained from
the platforms. While this odometry is subject to drift, it is reliable over short
distances and hence a sufficiently accurate measure of position for our purposes.
Note that while platforms are equipped with odometry, the system does not
make use of this information and is purely vision based.

Figure 4.13 shows the step response of the three controllers to a target
offset in both position and orientation.
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Figure 4.13: The responses of the three controllers to a stationary target object
offset in both position and orientation.

The figure shows that the controller behaviour is close to that exhibited
in simulation. The direction-based controller corrects relative orientation er-
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rors, with an end relative orientation error of 5°. The point-to-point controller
ignores orientation errors, which results in an end orientation error of ap-
proximately 30°. The hybrid controller corrects errors to an extent, but not
completely, ending with an orientation error of approximately 20°.

While this difference in behaviour does not seem significant, it is important,
as a pose estimate obtained in the 20° range has much greater certainty than
one obtained at 30°.

Responses of the controllers to circular trajectories are shown in Figure
4.14. The responses are as expected and confirm the controller behaviour
exhibited in simulation.
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Figure 4.14: The responses of the three controllers to a target object following a
circular path.
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4.5 Human-following Results

In this experiment a human walked along a predetermined path with the robot
following from a preset starting position. Internal robot odometry measure-
ments were logged and are displayed for comparison with the predetermined
path in Figure 4.15. Although odometry is subject to drift, and the starting
point and orientation of the platform could not be accurately controlled, a
good idea of the various controller behaviours to the same following task is
obtained. Ground truth was obtained by manually marking out a path to be
followed by a person and navigating the mobile platform along this path by
hand, while logging odometry information.
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Figure 4.15: Position responses of the three controllers to a human target following
a predetermined path. Both the point-to-point and direction-based controllers failed,
the latter fatally so, while the hybrid scheme managed to follow without failure.
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As indicated in the figure, both sub-controllers failed during the experi-
ment. However, the failure of the point-to-point controller was not fatal, as
(by sheer luck) the marked trajectory brought the target back into view and
the platform was able to continue. As expected, the hybrid controller was
successful, suitably overcoming the conditions that caused the sub-controllers
to fail.

Figure 4.16 offers a better indication of the behaviour of the hybrid con-
troller, as it shows ground truth target positions of both human and robot
captured simultaneously. This information was obtained by capturing a fol-
lowing task using a stationary, forward facing laser scanner and using a laser-
based target tracker (Burke (2010)). The tracking system allows for accurate
trajectories of targets to be captured by separating returns of a forward facing
laser scan into those of individual targets, and modelling the motion of these
objects. The laser-based target tracker uses a four bin descriptor consisting of
principal components and target position for matching, together with Kalman
filtering to track targets in a scan.
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Figure 4.16: The paths followed by a human leader and following robot when using
the hybrid controller. The path followed by the robot is marked in blue, while that
of the human is in red. The end positions of the platform and human are marked
as coloured circles. Portions of the human trajectory are missing in areas where the
robot occluded the human in the laser scan.
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The figure shows that the hybrid controller causes the robot to choose
trajectories that aid in reducing orientation errors, while still following the
human successfully. This is especially clear at the end of the path displayed,
where the platform is delaying a turn in order to reduce relative orientation
errors.

Note that only a brief, continuous section of the path followed is shown here
for the purposes of clarity, but the system is able to follow a target walking
naturally at slow to medium speeds for extended distances and time periods.

4.6 Motion Blur Limitations

The simulated results presented thus far have indicated that the gain-scheduling
controller is able to follow targets at speeds of up to 2m/s. Unfortunately, in
practice, the allowable target speed is significantly lower, due to the effects of
motion blur.

Practical experimentation, using the aforementioned laser tracker to de-
termine human walking speeds, shows that the system is capable of following
a target at approximately 0.7m/s. This is equivalent to a slow to medium
walking speed.

The simulated results indicate a much greater target speed, as they do
not consider the effects of motion blur. As discussed in Section 2.2.1, features
selected by feature-based matching schemes are usually corners, edges or salient
points that differ from their neighbours. Motion blur introduces significant
smoothing or removal of such information. As a result, insufficient features
are extracted in the presence of motion blur.

This causes feature-based recognition and pose estimation strategies to
fail. While predictive tracking such as the Kalman filter approach described
in Section 3.5 does assist in countering motion blur, it is only able to do so for
a brief period of time, after which a following task will fail in the presence of
continued motion blur.

Figure 4.17 shows a sequence of images captured during a following task
with challenging target motions. The sequence shows how measurements fail in
the presence of motion blur. Figure 4.18 shows the system measurements and
controls over this image sequence. The figures confirm that the Kalman filter
tracking is effective at compensating for brief target losses due to motion blur,
but that losses for an extended time period cause problems. This behaviour is
exhibited most clearly by the velocity controls of Figure 4.18.

The system ramps down all velocities to zero when a target is lost. The
momentary dip in the velocity controls of Figure 4.18 is due to this behaviour.
While the platform is able to recover from this motion in some cases, it can
potentially destabilise the system.
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(u) Image 21 (v) Image 22 (w) Image 23 (x) Image 24

Figure 4.17: An image sequence of a target, captured during a human-following
task. The target is lost in the presence of motion blur.
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Figure 4.18: The system measurements and controls, captured alongside the image
sequence of Figure 4.17. The dip in platform velocities at image 21 is due to the
sustained loss of a target resulting from motion blur.

In the human-following system presented here, the primary causes of mo-
tion blur are sharp movements of the pan-tilt unit and abrupt platform accel-
erations. These movements form part of the controller response to a rapidly
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moving target, so the need to minimise these motions by ramping up speeds
results in a decrease in the allowable speeds which can be tracked.

Technically, the limitations of motion blur are on platform accelerations,
and the speed should only be limited to the platform maximum, provided the
time taken to reach this speed is long enough, but in practice this translates
to a speed limitation. This is especially true in the case of walking humans,
where accelerations are not easily controlled.

Despite limiting the system’s speed of operation, the effects of motion blur
do not affect the conclusions made in this work. Analysis of Figure 4.12 in Sec-
tion 4.4.1.2 shows that the hybrid gain-scheduling controller still offers better
performance than both the direction-based controller and point-to-point con-
troller in the practical system’s range of operation.



Chapter 5

Conclusions and
Recommendations

5.1 Conclusions

This thesis has presented the design of the control and vision components
for use in a monocular vision-based human-following robot. Traditional ap-
proaches to human-following typically involve a controller that causes plat-
forms to navigate directly towards targets, but this work has argued that
better following performance can be obtained through the use of a controller
that incorporates target orientation information. This work has answered the
following research questions.

e [s there any benefit in direction-based control over point-to-point control
for a generic target follower?

o If the benefits are negligible, is it possible to use orientation information
in such a way as to enhance them?

e If so, is there a measure of human pose or orientation that makes it
possible to incorporate these benefits into a human-following system?

The investigations conducted here have shown that both point-to-point and
direction-based controllers have benefits that are exhibited in complementary
regions of operation. Although a purely direction-based controller suffers from
various limitations, this thesis has shown that a hybrid gain-scheduling com-
bination of two traditional controllers, incorporating target orientation infor-
mation, offers better target-following performance than its components.

In the case of human following the inclusion of target orientation infor-
mation requires that a definition and means of estimating a human’s orienta-
tion be available. This work has presented a human orientation measure that
has been shown to be suitable for the purposes of wheeled platform control.
Experimental results have been provided to show that the hybrid controller
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incorporating this measure of operation provides better performance than the
individual point-to-point and direction-based controllers it is comprised of.

5.1.1 Visual Servo Control Strategy

Investigations into the various forms of vision-based control showed that two
types of visual servo controllers are typically used: position-based visual servo
(PBVS) and image-based visual servo techniques (IBVS). IBVS methods per-
form control in the image plane, using calculations based entirely on pixel
coordinates, while PBVS techniques separate the control into a pose estima-
tion and control phase. Simulations were presented to determine the suitability
of IBVS approaches to a target-following application, given the known benefits
of PBVS methods. The simulations showed that IBVS methods can result in
undesirable camera motions, as control is only performed in the image plane.
For this reason, a PBVS technique was selected for use in this work.

5.1.2 Visual Target Detection

Before control strategies could be implemented, however, a suitable means
of performing target recognition was required. Various approaches to target
recognition were identified and examined, with the decision made to use a
feature-based recognition strategy. Although feature-based recognition sys-
tems require relatively salient targets, these techniques are effective at recog-
nising objects in cluttered environments. The greatest benefit to feature-based
approaches, however, is that the feature position outputs of these techniques
are suitable for use in pose estimation algorithms.

Three feature-based recognition techniques were selected from the literature
as potential approaches for this system, the SURF feature matching scheme,
a Ferns-based classifier and the Kanade Lucas tracker. These approaches were
selected as candidates for use in the system, given their reported speed. The
processing rate of the object recognition system is extremely important in this
context, as it involves real-time control.

Implementations of these algorithms were used to detect targets in a dataset
containing images of targets captured under conditions likely to occur in an
actual target-following task. The algorithms were compared using five criteria:
speed, recognition rate, match accuracy, the range of detectable yaw motions
and the range of detectable scales. Though slower than the other two algo-
rithms, the SURF matching scheme was selected for use in this system due to
its ability to detect targets accurately over a wider range of viewpoints and
scales.

Improvements in the speed of the SURF algorithm were obtained by im-
plementing a windowing process, where only a region of interest in an image
is searched for targets. The region of interest is predicted based on prior
detections. In addition, resolution adjustments were used, where the image
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resolution used to detect targets was scaled up and down, depending on the
size of targets in an image. An efficient implementation of the SURF match-
ing scheme, operating at approximately 12 fps, was obtained by applying these
improvements.

5.1.3 Human Pose Estimation using Monocular Vision

This thesis proposed that the pose of a walking person’s upper torso typically
indicates their travelling direction, and that a simple planar fit to the back of
the torso contains sufficient information to infer travelling direction. Fitting a
plane through detected feature points on a target is trivial if the 3D locations
of the features are known, but only 2D image coordinates are available in this
system, since only a single camera is used.

This work showed that by estimating the homography between two views
of a human torso in a robust manner, the rotation and translation between two
planar approximations of the torso could be obtained. This RANSAC-based
robust estimation provided a valuable means of estimating the uncertainty in a
decomposition, a weighting based on the ratio of inliers used in the estimate to
the total number of detectable features. Experimental results using a model of
the SURF feature-based target detector showed that this measure was closely
correlated to the error in an estimate.

The homography can be decomposed into rotation and translation param-
eters through the use of singular value decomposition. This process is some-
what lengthy, and this work showed that it could be simplified dramatically
by intelligently selecting a training or template image in a fronto-parallel con-
figuration.

Experimental results also showed the efficacy of the human pose estimate,
with practical measurements proving that the estimate was conceptually cor-
rect. Although the accuracy of the pose estimate could not be proven, the
thesis showed that the accuracy is of little consequence for the purposes of
control, as the measure of all parameters of interest is monotonic within the
region of operation.

5.1.4 Tracking to Improve Estimates

As the pose estimate obtained is noisy, filtering action is required before the
measure can be used by a suitable control system. Exponentially weighted
filtering action was desired, but a means of including the certainty in a mea-
surement in the filter was required. A Kalman filter was used to accomplish
this. The thesis showed that the Kalman filter performed as desired, and
was particularly effective at predicting target motion when momentary target
losses occurred due to motion blur.
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5.1.5 Controller Selection

Initially, this work identified two controllers of interest for use in the human-
following system. The first, most commonly used in human-following systems,
was a point-to-point controller that navigates directly to a target, without con-
sidering relative target orientation. While the point-to-point controller is able
to follow rapidly moving targets, it is unable to follow sharply turning objects
with little forward velocity. An alternative to this controller is a direction-
based controller that follows targets by minimising both relative orientation
and position errors. This controller is less susceptible to losing targets that
are sharply turning, but experiences difficulties when following rapid targets.

In an attempt to combine the benefits of each of these controllers, a hybrid
gain-scheduling controller was developed. This controller phases between the
point-to-point and direction-based controller, depending on the magnitude of
the target orientation. Monte Carlo simulations using a model of the feature-
based target detection system showed that the hybrid controller dramatically
improves the following performance of both controllers, only experiencing dif-
ficulties in following sharply turning targets at low forward velocities. This
indicates that the hybrid controller should be better equipped to deal with
human motion.

This was confirmed by an actual human-following trial, which showed that
the hybrid gain-scheduling controller outperformed its components. In all ex-
periments, our performance measure was the ability to follow a target without
losing sight of it.

5.1.6 Implementation

A commercially available Pioneer P3-AT mobile platform was used as a base
for the integration of the software components presented here and is controlled
via serially transmitted actuation commands. Software was designed in C++
using the Open Computer Vision software libraries and an open source robotic
architecture (Candy et al. (2010)) developed by the Council for Scientific and
Industrial Research’s Mobile Intelligent Autonomous Systems Group. The
software architecture allows for easier message passing and modular node-based
design using a publish/subscribe framework. Experiments were conducted on
a Dell Latitude 6400 dual-core notebook with 2 GB RAM. A Prosilica GigE
Ethernet camera was mounted on a commercially available pan-tilt unit, that
accepts pan and tilt commands through serial communications.

This thesis discussed the theoretical limitations of a human-following sys-
tem, which are primarily based on the camera and lens used, together with
constraints on the allowable platform motion. Experimentation showed that
the practical limitations were lower than that theoretically achievable, due to
motion blur introduced in the system by rapidly moving targets. Motion blur
can be countered through better control of lighting conditions, by purchasing
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better cameras, or through various software algorithms. This is beyond the
scope of this work however, and the system limitations introduced by motion
blur do not affect the conclusions of this work.

5.2 Recommendations

The work has presented a position-based visual servo approach to human fol-
lowing. A definition and means of measuring human pose has been provided
and shown to be suitable for the purposes of controlling a mobile platform.
A hybrid gain-scheduling controller utilising this pose estimate was developed
and shown to perform better than two standard controllers, traditionally used
for wheeled platform navigation.

Note that this work was control oriented, and as a result did not involve the
use of more intelligent navigation schemes that may include collision avoidance.
The conclusions of this work are still of use for planning-based navigation
schemes however, as navigation schemes taking the constraints of the vision
system modelled here into account could be used to provide improved human-
following trajectories.

This work showed that motion blur greatly affected the feature-based tar-
get detection algorithm. A second detection scheme, using techniques less
susceptible to motion blur, such as region-based tracking, could be combined
with the feature-based approach presented here. While the region-based ap-
proach does not allow for pose estimation algorithms, it can be fused with a
feature-based technique to allow for greater redundancy in target detection.

The computational load of vision-based algorithms is extremely large, and
could be alleviated through the addition of a second laser-based tracking sys-
tem. Laser-based tracking systems are extremely fast, and capable of providing
accurate position measurements. These systems experience difficulties in dis-
criminating between targets, so are suited to operating in conjunction with
visual target recognition approaches.

The combination of recognition strategies will eliminate the detection in-
duced problems of human-following to a large extent, but their fusion would
require a better model of human motion. A model of human motion would
benefit greatly from the human pose estimate presented in this work, which
has been shown to contain suitable information for use in a human-following
robot. Incorporating a suitable model of human motion into a human-following
system would allow for improved object tracking and, together with the added
redundancy of multiple target recognition strategies, allow for a robust and
efficient human-following system.
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Appendix A

Computer Vision Fundamentals

An introduction to perspective camera geometry and camera calibration is pro-
vided here. Initially, the pinhole camera model is introduced, along with ho-
mogeneous coordinates and required notation. Thereafter, camera calibration
is discussed, with reference to finding both pinhole camera model parameters
and lens distortion information.

A.1 Pinhole Camera Approximation

Figure A.1 shows how an image is formed in an ideal pinhole camera, with
point m = [z,y]" the projection of 3D world coordinate M = [X,Y, Z]"
on the image plane. The image plane is centred on the principal or optical
axis of the camera, a distance f from the optical or camera centre. Using
similar triangles, it can be shown that the image plane coordinates [z, y]T are
equivalent to the coordinates [fX/Z, fY/Z]".

A homogeneous representation of points is more convenient for pose estima-
tion calculations, given the perspective nature of the cameras considered here.
A point with image coordinates x and y, can be thought of as a point on a
perspective line denoted by a family of homogeneous vectors [kx, ky, k] . The
projection of these points on the image plane has homogeneous coordinates
[z, y, I]T. When the world and image points are represented by homogeneous
vectors, the camera projection can be expressed as a linear mapping using
matrix multiplication:

(A.11)

Frequently, cameras have unequal pixel sizes, and the focal length differs in
the vertical and horizontal directions. In addition, the image plane is typically
offset from the principal axis. The camera projective matrix, denoted by P, is
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adjusted as follows:

fx 0 Zo 0
0 0 1 0

In general, xg and y, are the coordinates of the image centre.

< m

Image plane

Camera centre

(0,0,0)

Figure A.1: The pinhole camera approximation. Point m = [z, y]T is the projection

of 3D world coordinate M = [X, Y, Z]T onto the image plane.

The preceding definition of the pinhole camera model has been expressed
in the camera coordinate frame. Frequently, however, points are expressed in
some other coordinate frame and it is more convenient to express the camera
projection matrix more generally as

P = K[RJt]. (A.1.3)

Here, t represents a 3 x 1 translation vector that shifts the world coordinate
axes onto the camera coordinate axes, and R is a 3 X 3 rotation matrix that
rotates the world coordinate axes into alignment with the camera coordinate
axes. These matrices are collectively termed the extrinsic camera effects. The
matrix K, calculated as

f:v 0 Zo
K=10 f, wl|, (A.1.4)
0 0 1

is referred to as the camera calibration or intrinsic camera matrix and encom-
passes the internal effects of the camera.
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The camera calibration matrix is required by most pose estimation algo-
rithms and can be obtained through the process of camera calibration described
in Section A.2. It is important to note that the pinhole camera approximation
does not consider camera lens distortion and requires that images be de-warped
before it can be used. Image de-warping is generally a bi-product of camera
calibration and is also discussed in Section A.2.

A.2 Camera Calibration

The objective of camera calibration is to find the intrinsic camera matrix, K,
through the analysis of multiple views of a calibration object. The Open Com-
puter Vision C++ library (OpenCV) provides built-in routines to accomplish
this, so only a short description of their approach is provided here.

More information regarding OpenCV and the fundamental computer vision
algorithms it makes use of can be found in the OpenCV inspired textbook by
Bradski and Kaehler (2008).

The OpenCV calibration routines require multiple images of a planar checker-
board (Figure A.2), with blocks of known dimensions to solve for the intrinsic
camera properties.

Figure A.2: Multiple images of a planar checkerboard are used to determine the
intrinsic camera parameters in the pinhole camera model.

Initially, the corners of the checkerboard are accurately located using sub-
pixel refinement. The 3D locations of these corners, [ XY, Z]T, are mapped to
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the image plane coordinates, [z, y]T, by the relationship

=K [R]t] = AK|[ry ry r3 t] (A.2.1)

—_e R

X X
Y Y
A A
1 1

Here, K is the desired camera calibration matrix, A a scale factor, t a trans-
lation and R a rotation with column vectors ry, ro and rz. The object plane
can be redefined such that Z = 0, without loss of generality. Then,

X
T v X
y| = AK|ry ra r3 t] ol = MK (rprat] |V . (A.2.2)
1 1

1

A.2.1 Calibration

The 3 x 3 matrix mapping 3D coordinates on the object plane to the image
plane is termed a homography, which maps all coplanar features to the image
plane. This homography,

A

H-= [hl h2 hg] =K [I‘l Iro t] s (A23)

can be calculated using the direct linear transform (Appendix C.1), given
a set of corresponding source and image points. From these column vector
equations, we obtain

1 1 1
ry = XKilhl, o = XKilhz, t= XKﬁth- (A24)

Since R is a rotation, with scale extracted, its column vectors are orthonormal
and
r;'ry = 0. (A.2.5)

After substitution, this constraint becomes
h "K" 'K 'hy = 0. (A.2.6)

The norms of the rotation matrix column vectors are equal, which implies
that
I'lTl'l = I'2TI'2. (AQ?)

This gives us a second constraint,

h TK"K'hy = hy"K""K 'hs,. (A.2.8)
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Setting B = K~-TK™!, we find that

1

1 9 _ 20
H f2
1 i
B=|0 72 . . (A.2.9)
_my _w %@
7R BtRTl

Given the constraints of Equations A.2.6 and A.2.8, and at least two planar
homographies, we can solve for B. It is then a simple matter to extract the
intrinsic camera parameters from B. Although this process finds a calibration
matrix, the effects of camera lens distortions are not yet compensated for.

A.2.2 Distortion Modelling

In practice, the pinhole camera model of Section A.1 is invalid and needs
to be amended to consider lens distortion. Two primary forms of distortion
are considered, radial and tangential distortion. Modelling of these distortion
types follows the work of Brown (1971).

Radial distortion causes a bulging of pixels near the edge of an image,
but is generally small near an image centre. As a result radial distortion can
be approximated by the first few terms of a Taylor series expansion around
r = 0, where r is the radial distance between a pixel and the (calibrated)
image centre. This approximation is combined with a tangential distortion
model characterised by two distortion parameters, p; and p, to give

Lcorrected — T (1 + kl'r2 + k27’4 + k'3r6)

+ 2pizy + po (1 + 22%) (A.2.10)
Ycorrected = Y (]- + 1{51712 + k?g?“4 + k3r6)
+ 2ppxy +p1 (17 +2y°) (A.2.11)

Here,  and y are the original distorted pixel locations, with Zcoprected and
Yeorrected the corrected locations. ky, ke and k3 are the radial distortion co-
efficients. The five distortion coefficients are combined into a single ordered
distortion vector, [ky, ks, p1, p2, krg]T

The distortion coefficients are solved for during the calibration process by
projecting the 3D calibration object points onto the image plane, using the
estimated intrinsic and extrinsic calibration matrices. These points represent
perfect or corrected pinhole camera image plane coordinates. Substitution of
these projected points, and the original points detected, into Equations A.2.10
and A.2.11 allows for the distortion coefficients to be estimated.

Correction of the position of image pixels through de-warping, using these
distortion coefficients, is crucial to the operation of the pose estimation algo-
rithms.
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A.3 Pyramidal Scale Space

The concept of scale in an image is easily understood. As objects in an image
are viewed from further away, the level of visible detail is reduced. This re-
duction in detail can be imitated by a scale-space representation of an image,
described in detail by Lindeberg (1994), which is obtained by convolving the
image with a set of Gaussian kernels. The scale-space representation of an
image is defined as

L(z,y;0) = (9(,50)*I(,.)(x,y) (A.3.1)

where I denotes the image, x and y image coordinates, and o the scale of the
image. The symbol * denotes the convolution operation. The Gaussian kernel
is given by
1 (=)

g(z,y;0) = 5—e" (A.3.2)
In the limit, for ¢ = 0, the Gaussian kernel becomes an impulse function,
and the convolution result is the original image. Figure A.3 shows the detail
reduction in a scale operation. Feature detectors are easily extended to provide
scale invariance, by operating on multiple images in scale-space. This does
occur at the expense of computational time, though, so in practice a limited
number of discrete scale levels are used.

Scaled Image (o = 16)

Original Image (o = 0)

Figure A.3: Scaling an image removes detail and simulates the appearance of the
areas around features at distance.

Since detail is removed in the smoothing or scaling step, less resolution
is needed to store the relevant information. Additional computational sav-
ings are made if the scaled image is also sub-sampled. A discrete scale-space
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representation of images that are sub-sampled is referred to as a pyramidal
representation.

Figure A.4 shows a sample discrete scale space representation of an image
of a mobile robot. The size of the image decreases with each scale value,
incorporating the redundancy in resolution resulting from a reduction of image
detail.

Figure A.4: An example of a scale-space pyramid created by consecutive smoothing
and down-sampling of an image.
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3D Pose Estimation

B.1 Procrustes Orthogonal Analysis

Consider a set of n column vector pairs, (x1,y1); (X2,¥2); -..; (Xn,¥Yn), With
each column containing the coordinates of an individual feature. Schonemann
(1966) showed that the corresponding feature coordinates in a pair can be
related by a scale A, rotation R and translation t such that

x; =ARy; +t foralli=1,2,...,n, (B.1.1)

and provided a means of calculating these matrices, which maintain Euclidean
distance constraints between feature coordinates. Initially, features are grouped
into point clouds, shifted by their centroids and normalised. Let

X = [x1—-Xx%x2—X,...,X, — X| (B.1.2)
Y = [yl_y7y2_?7"‘7yn_y]a
with X =237  x;and ¥y =1 3" | y;. Then
X Y
Xn = N : (B.1.4)
1 X || 1Y e
with || . ||r the Frobenius norm.

Thereafter, Singular Value Decomposition (SVD) of the matrix A = Y, X"
is completed:

A=LDM". (B.1.5)
Using this result, the rotation and scale parameters can be calculated:
R = MLT, (B.1.6)
X
A = trace (D) H (B.1.7)
The translation matrix is then easily obtained by
t =X — \RYy. (B.1.8)
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Homographies

C.1 Direct Linear Transform

The normalised direct linear transform (DLT) is an algorithm, presented by
Hartley and Zisserman (2004), which is used to compute the 2D homography
between coplanar point correspondences in two image scenes:

The homography is obtained using a set of point correspondences. Initially,
each point set is normalised by computing a transformation T that shifts the
centroid to point (0,0) and scales point coordinates such that their average
distance from the centroid is v/2. This normalisation ensures that the equa-
tions used later are well conditioned. For a single normalised correspondence
pair, x; and X,

B X hir  hia h13 T
Xo=H=X; = |ya| = |har hoa hos Yi| - (C.1.2)
Z hsi hsa  hs3 <1

NN N

In inhomogeneous coordinates, or the actual image plane positions Z, = 2—;

and g, = £, we find

hiizy + higyr + hisz R hoiz1 + haoy1 + hosz

Ty = , Yo = . C.1.3
? hg1x1 + haayr + hasz ? hg11 4 haayi + haszy ( )

z1 is unknown and cannot be determined using a single camera, which
results in the loss of absolute scale. Rearranging, with z; = 1, gives

Ty (hg11 + haoyr + hg3) = huxy + higys + has (C.1.4)
U2 (ha121 + haotn + hss) = horxy + haoyr + hos. (C.1.5)
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These equations can be rearranged into a linear least squares form Ah = 0,
where

h = [h117h127h137h217h227h237h317h327h33]T (Cl6)

-r1 —y1 —1 0 0 0 Zowy Zotn 2o
A = . . A I (O
0 0 0 —x1 —y1 —1 91 Yon yQ] ( )
The homography is then easily obtained by stacking four or more non-co-linear
point correspondences in this form. Finally, the de-normalised homography is
obtained by removing the normalisation transformation as follows:

H=T,"'HT,. (C.1.8)

C.2 Homography Decomposition

Once the homography has been determined, the various pose parameters map-
ping the current camera coordinate system to the desired (template) camera
coordinate system can be retrieved from the decomposition of Faugeras and
Lustman (1988):

H=KR+tn") K" (C.2.1)

Here, K is the intrinsic camera calibration matrix, R a rotation matrix, t the
translation of the camera and n a vector normal to the planar target. There
are eight degrees of freedom: three in the rotation and five in the surface
normal and camera translation (which is extractable up to scale).

The algorithm development in the work by Faugeras and Lustman (1988)
is closely followed here. Initially, camera effects are removed from H and the
singular value decomposition (SVD) of the result is obtained as

H=K'HK=UxV’ (C.2.2)

The diagonal matrix 3, containing singular values of ﬁ, can be decomposed
into the various pose parameters, such that

S =dR+tn’. (C.2.3)

Here, d is a scalar, R is a 3 x 3 rotation matrix, t is a 3 x 1 translation vector
and n is a 3 x 1 normal vector.
The final decomposition elements of H are then calculated according to

R = sURV? (C.2.4)
t = Ut (C.2.5)
n = Vn (C.2.6)
d = sd (C.2.7)
s = detU detV. (C.2.8)
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Representing vectors in a canonical basis (e, e, e3), with n = x,€; + x9ey +
xses, leads to three vector equations:

Y.e; = dRe; + tz; fori=1,23. (C.2.9)

Here, basis e; effectively extracts the ith column vector from each matrix.
Removing t results in three more vector equations:

CZR (ﬁjei — xiej) = Ei:pjei — ijiej for 7 7& ] (0210)

At this point, we should note that n has a unit norm, since V is orthogonal
and preserves the vector norm of n. R is a rotation and by definition has
orthogonal column vectors with unit norms. Squaring both sides of this equa-
tion, and summing the rows of each vector equation thus removes the rotation

parameters, resulting in a linear system with unknowns z?, z3 and z2:

<d2 —Jg) ri+ (JQ —0%) r3 =0

<c52 - a§) 22+ (eP - a§> 22 =0 (C.2.11)

(CP - af) 22+ (CP - ag) 22 = 0.

01, 0o and o3 are the singular values of H or the diagonal elements of 3, with
o1 > 09 > 03. We require a non-zero solution, so the determinant of this

system must be zero:
<d2 ) (d2 - 02) <d2 - 03) ~0. (C.2.12)

Faugeras and Lustman (1988) proceed to show that the only solution to this
determinant equation is d = =0, as solutions d =40, and d = +o3 fail to
preserve the vector norm n. Solving equation C.2.11, including the unity norm
constraint x? + x3 + 22 = 1, leads to a solution for n

2 2
01 — 05

r1 = :l: 2 5
01 — 03

zo = 0 (C.2.13)
2 2
o5 — 0O
2 3

T3 = + 2 o
01 — 03

The solution development now needs to be separated into two cases, d > 0 and
d < 0. We start with the case d > 0.

Given that z2 = 0, analysis of equation C.2.10 when i = 2 shows that
Reg = e,. This means that R is a rotation about axis e, and hence can be
computed as

cosf 0 —siné
R=|0 1 0 |. (C.2.14)
sind 0 cosf
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Using equations C.2.10 and C.2.14, we find

X1T3

(C.2.15)

sinf = (01— 03)
)

2 2
013 + 03T
cos) = —2 1

(C.2.16)

02
Substitution into equation C.2.9 provides a solution for the translation,

T
E = (0'1 — 0'3) 0 . (C217)

If the singular values, o;, are equal, these equations are undefined and the
motion is a pure rotation with no translation and an undefined normal.

Development of solutions for the case d < 0 follows much the same process
as that just followed. Analysis of equation C.2.10 when ¢ = 2 now shows that
Reg = —ey and the rotation becomes

_ cosgp 0 sin ¢
R=| 0 -1 0 ) (C.2.18)
sing 0 —coso

Using equations C.2.10 and C.2.14, we find

sing = (01+03)% (C.2.19)
2

O'3I% - 0'11‘%

cosp = (C.2.20)

02
Substitution into equation C.2.9 provides a slightly different solution for the
translation,
I
t=(o1+o03) |0]. (C.2.21)
T3

Once more, if the singular values are equal, these equations no longer hold as
the homography represents pure rotation.

We can see that the algorithm provides eight different solutions but, fortu-
nately, not all are physically possible. The solution set is immediately reduced
to four by including the constraint that both image frames must be located on
the same side of the target object or, in other words, that the object viewed
cannot be transparent. A second constraint, enforcing that visible points must
be in front of both cameras, reduces the set to two solutions. Finally a single
solution is obtained by incorporating assumed knowledge of the surface nor-
mal in the desired view. In cases where no knowledge of the surface normal is
available, more than one image from a moving camera can be used to select
the most suitable solution.



Appendix D

Tracking Filters

D.1 Extended Kalman Filter

The extended Kalman filter (EKF), McGee and Schmidt (1985), is a nonlinear
extension to the Kalman filter, which allows for state estimation by linearising
models about the current estimate. The extended Kalman filter operates under
the assumption that measurement and prediction noise is Gaussian.

The EKF consists of two stages: prediction and update. In this context,
a prediction of the future pose is made based on a motion model, f, and
then updated using information obtained from the pose measurement system.
Given a measurement z;, the predicted state Xj,—; and predicted covariance
P are

Kpjk—1 = F(Xp—1jp—1, up) (D.1.1)
Prj—1 = FPr_1p1FL + Qi (D.1.2)

with Fy a first-order linearisation of the system update equations f, and Q.
the process noise covariance matrix. A subscript k£ indicates the k-th sam-
ple, while a subscript k|k — 1 indicates a quantity associated with sample k,
but estimated using information from sample & — 1. The measurement and
covariance residuals are:

Vi = 2z, — h(Xpp-1) (D.1.3)

with Hj, a first-order linearisation of the measurement model h and R, the
measurement noise covariance matrix. Then, the updated state and covariance
estimates are given by:

Kk = Kije—1 + K (D.1.5)
P = (I — KiHg)Prjr— (D.1.6)

Here, Ky, = Pk|k_1H£S,;1 is the optimal Kalman gain for a linear system.
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Using these equations, the operation of the EKF is easily understood.
First, a prediction of the system state is made (Equation D.1.1), assuming
that zero-mean process noise is present. An estimate of the uncertainty in this
prediction is made by combining previous uncertainty with that introduced
through control action, making allowances for disturbances (Equation D.1.2).
A measurement is made and the uncertainty in prediction combined with the
uncertainty in measurement (Equation D.1.4). Finally, a revised state esti-
mate is obtained by an uncertainty weighted combination of prediction and
measurement (Equation D.1.5).



Appendix E

3D Camera Positioning

E.1 Strapdown Inertial Navigation

The image-based visual servo control simulator of Section 3.1.1 requires that
the 3D position of a 6 DOF camera be maintained, given a set of translational
and rotational camera velocity inputs. This requires the application of various
strapdown inertial navigation techniques, as the velocities are expressed in the
camera body frame which moves with the control inputs.

Only the mathematics required to calculate camera position is presented
here, with readers referred to the technical report of Woodman (2007) for
further detail on inertial navigation systems.

We start by describing the attitude or orientation of the camera body frame
relative to the global frame using a direction cosine matrix C. Each column
of this rotation matrix represents a unit vector along the body axes in terms
of the global axes.

A translational velocity vector v¢ in the camera body frame is equivalent
to the vector

ve = C v (E.1.1)

in the global frame. Our goal is to track the position and attitude of the camera
over time. Figure E.1 illustrates the attitude tracking problem. The figure
shows an angle axis representation of the camera velocities. w is the angular
rotation about a velocity vector v.. The angle axis velocity representation can
be decomposed into rotational and translational velocities about each of the
body frame axes, a screw denoted by [t,, ty, t., We, Wy, wz}T.

Using a small angle approximation, the assumption that there is very small

change in attitude between time steps, the attitude update is given as

CcC=CQ, (E.1.2)
where
0 —w, wy
Q=|w, 0 —wl. (E.1.3)
—Wy Wy 0
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Figure E.1: The camera body frame undergoes translational and rotational veloci-
ties concurrently. In order to track the overall position and attitude of the camera,
motion in the camera body frame needs to be shifted into a global reference frame.

The attitude of the camera is obtained by integrating this matrix over time.
Unfortunately, the small angle approximation to attitude causes the rotation
matrix to dilate over time. This is remedied to some extent by re-normalising
the columns of the attitude matrix after each update. Camera position, X =
X, Y, Z]T is obtained by projecting each translational velocity component
into the global reference frame,

vg = Cv,
X = vy,

and integrating over time.

The cumulative effect of small angle approximation errors leads to drift in
position and attitude measurement. Fortunately, the drift does not affect the
IBVS simulation results drastically, as only short distances are covered.
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