How to revise a total preorder

Richard Booth Thomas Meyer
Individual and Collective Reasoning Group Meraka Insitute, CSIR and
University of Luxembourg School of Computer Science
richard.booth@uni.lu University of Kwazulu-Natal
South Africa

tommie.meyer@meraka.org.za

Abstract

Most approaches tiberated belief revisiorare accompanied by some motivation for the use of the pro-
posed revision operator (or family of operators), and tgihycencode enough information in tkepis-
temic stateof an agent for uniquely determining one-step revision. iBuhose approaches describing
a family of operators there is usually little indication of how to peed uniquely after the first revision
step. In this paper we contribute towards addressing tHatieiecy by providing a formal framework
which goes beyond the first revision step in two ways. Firg,ftamework is obtained by enriching the
epistemic state of an agent starting from the followingitivte idea: we associate to each worddwo
abstract objects* andx~, and we assume that, in addition to preferences over thd setrtas, we are
given preferences over this set of objects as well. Therlatte be considered as meta-information en-
coded in the epistemic state which enables us to go beyoriiigheevision step of the revision operator
being applied, and to obtain a unique set of preferencesveedds. We then extend this framework to
consider, not only the revision of preferences over wotbds also the revision of this extended structure
itself. We look at some desirable properties for revisinggtructure and prove the consistency of these
properties by giving a concrete operator satisfying alhefm. Perhaps more importantly, we show that
this framework has strong connections with two other tydeastructions in related areas. Firstly, it
can be seen as a special casereference aggregatiowhich opens up the possibility of extending the
framework presented here into a full-fledged framework faaf@rence aggregation and social choice
theory. Secondly, it is related to existing work on the usantdrval orderingsin a number of different
contexts.

Note: This paper is a combined and extended version of papers \fitsthppeared in the proceedings of
KR 2006, the 10th International Conference on Principlesrdwledge Representation and Reasoning
[8], and ECSQARU 2007, the 9th European Conference on Syimaont Quantitative Approaches to
Reasoning with Uncertainty [10].

1 Introduction

Total preorders (hereaftgpog are used to represent preferences in many contexts. lieyart they are a
common tool inbelief revision[20, 24, 34]. In that setting they are taken to stand for plality orderings
on the set of propositional worlds, which are used to reprtabedispositiongor change, or theonditional
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beliefsof an agent, and are encoded as part ofdpistemic statef the agent. The associatbedlief setis
taken to be the set of those sentences true in all the minirodtdgr When new evidence comes in,

the plausibility ordering is used to calculate the new Wedet, usually by setting it to be the set of those
sentences true in all the minimal modelsaof This ensures a unique new belief set, but does not provide
enough information to obtain a new tpo which may then sentb@garget for theextrevision input. Thus

the question of modelling the dynamics tpbsis of critical importance to the problem @krated belief
revision

The past fifteen years has seen a flurry of activity in this aviégh the work of Darwiche & Pearl
[12], Nayak et al. [30], and Booth & Meyer [7] being represdive examples. Most approaches devote
considerable effort to motivating the use of their proposedsion operator (or family of operators). But in
those approaches describing a family of operators thersuially little (or no) indication of how to choose
among the available operators. In this paper we make a batiom towards overcoming that deficiency by
providing a formal framework which obtains a unigpe following one revision step, thereby going beyond
just the belief set resulting from the revision input. Thiged not allow for choosing a unique operator, but
is a step towards such a choice, since it uniquely identifaek the belief set and the tpo. The framework
is obtained by enriching the epistemic state of the agenbimbya simple tpo, starting from the following
intuitive idea: when we compare two different worldsind y according to preference, often we are able
to imagine different contingencies, according to whetiegaes well inx andy or not. Our idea is to
associate to each worldtwo abstract objects™ andx~, with the intuition thatx™ represents in positive
circumstanceswhile x~ represents in negative circumstanceand we assume tha, addition tothe given
tpo < over the set of worlds, we are given a tgaver this set of objects.

This meta-information allows us to uniquely determine tee/mpo: when new evidence comes in it
casts a more favourable light on those worlds in whicholds. Thus the evidence signals the use of the
positive versions of the worlds satisfying and the use of the negative versions of theworlds. The
revised tpo<, is obtained by setting <;, v iff x¢ < 1°, with €, 6 € {+, —} depending on whethe; y satisfy
a or not.

As we will see, one commonly assumed rule from belief renisidich will not generally hold for our
revision operators is that the inputis necessarily an element of thelief setassociated t&’,. Thus, at the
belief set level, we are in the realm of so-callesh-prioritisedrevision [21, 22].

Although the approach described allows us to determine rtiane just the belief set associated with
an epistemic state, there is a problem with this approachrdaty iterated tpo-revision. While the extra
structure tells us how to determine a new tpo, it tells us ingtlabout how to determine the new extra
structure which is needed to guide the next revision. Cfetlwd problem of iterated belief revision has
simply re-emerged “one level up”. We investigate this peablby considering some desirable properties
for revising the extra structure, and prove the consistefichiese properties by giving a concrete operator
satisfying all of them.

The plan of the paper is as follows. In section 2 we give a bnigbduction to the influential approach
to iterated belief revision proposed by Darwiche and Pd&1.[This is followed, in section 3, by describing
our enriched epistemic state. Then, in section 4, we showtbase this enrichment to define a unique tpo-
revision operator, and we axiomatically characterise dselting family of operators. Initially we describe
the properties of this family on semantidevel, i.e., in terms of how the ordering of individual wasld, y
undergo change. We show that the framework presented hetaecdewed as a special casepoéference
aggregationor social choice theor{3]. This opens up the possibility of extending the framédwaresented
here into a full-fledged framework for preference aggregesind social choice theory. In section 5 we give
an alternative sententialformulation in terms ofconditional beliefs and introduce the notion of what it



means for one sentencedwerruleanother in the context of a tpo-revision operator. In sec@ave study
notions of strict preference which can be extracted frorand show how these are closely related to the
overrules relation. In section 7 we examine two known spe@aes of our family and give an example
which shows how rigid use of either of these can sometimes tie@ounter-intuitive results. In section 8
we describe and axiomatise an interesting subclass of milyfavhich remains general enough to include
the two special cases, while in section 9 we compare our gefaenily with another family of tpo-revision
operators which has recently been proposed, vizintipgovement operatorsf Konieczny et al. [27, 25]. In
section 10 we introduce an alternative way of representieg<torderings which we cabtrict preference
hierarchies(SPHs). We point out the link between this representatiahtha use of interval orderings in
various circumstances [2, 32]. We also show that these arwadgnt to the< orderings. In section 11
we consider a few desirable properties which any good opefat revising SPHs should satisfy, before
proving the consistency of these properties in section ty.fdroviding an example of a concrete operator
which is shown to satisfy them all. We conclude and menti@agdfor further research in section 12.

Preliminaries: We work in a propositional languadegenerated by finitely many propositional variables,
and with T being the canonical representative of a tautology. Weruaed = to denote classical logical
consequence and classical logical equivalence resplgctivle sometimes also usé: to denote the opera-
tion of closure under classical logical consequeritkis the set of propositional worlds. Givene L, we
denote the set of worlds which satisiyby [«]. Given any seb C W of worlds, Th(S) will denote the set
of sentences true in all the worlds $n A tpo is a binary relatior< which is both transitive and connected
(for anyx, y eitherx < y ory < x).

2 Darwiche-Pearl Revision by way of AGM revision

Darwiche and Pearl [12] reformulated the AGM postulatesffit]belief revision to be compatible with
their suggested approach to iterated revision. This niatess a move from belief sets apistemic states
Epistemic states, as envisaged by Darwiche and Pearl, ateetbentities containing all the information
needed for coherent reasoning including, in particular sthategy for belief revision which the agent wishes
to employ at a given time. Thus, an epistemic state will ideldthe belief set of an agent, a plausibility
ordering (formally represented as a tpolof), as well as any additional structure, which could include t
enriched preference information we propose in this papser@he abstract nature of such epistemic states,
it may well be possible to have different syntactic représtms of, what is essentially, the same epistemic
state! In Darwiche and Pearl’s reformulated postulatésa belief change operator on epistemic states, not
belief sets. We denote IB(IE) the belief set extracted from an epistemic siigt&\Ve useB(IE) + a to denote
Cn(B(E) U {a}), i.e., theexpansiorof B(E) by a.

(Ex1) B(E * a) = Cn(B(E * a))

(Ex2) a € B(E * a)

(Ex3) B(E * ) C B(E) +

(Ex4) If ~a ¢ B(E) thenB(E) + a C B(E * v)

(E+5) If E = IF anda = g thenB(E = a) = B(IF % §)

1personal communication with Adnan Darwiche.



(Ex6) L € B(E+a)iff - —a
(Ex7) B(E+(a AB)) CB(E*a)+f
(E+8) If =8 ¢ B(IE * @) thenB(E * &) +  C B(E * (a A B))

Darwiche and Pearl then show, via a representation resuilesito that of Katsuno & Mendelzon [24], that
their version of revision on epistemic states can be reptedan terms of plausibility orderings associated
with epistemic states. More specifically, every epistertatedE has associated with it a tpog on W, with
elements lower down in the ordering deemed more plausibt@ebder, for any two epistemic statEsand

IF which are identical (but may be syntactically differenthas to be the case thag=<g.

The other difference between the original AGM postulatestae Darwiche-Pearl reformulation — first
inspired by a critical observation by Freund & Lehmann [1ceurs in [E+5), which states that revising
by logically equivalent sentences results in epistemitestavith identical associated belief sets. This is a
weakening of the original AGM postulate, phrased in our tioteas follows:

(B+5) If B(E) = B(F) anda = f thenB(E * a) = B(F * §)

(B*5) states that two epistemic states with identical assedttalief setswill, after having been revised by
equivalent inputs, produce two epistemic states with idahtissociated belief sets. This is stronger than
(IE<5) which requires equivalent associated belief sets onheibriginalepistemic statewere identical. As
a consequenceB¢5) doesnot follow from the Darwiche-Pearl postulates.

In addition to these differences we introduce a minor modliftsn of our own to the Darwiche-Pearl
postulates. Letin(a, <) denote the minimal models of under<g. The belief set associated with the
epistemic state is obtained by considering the minimal nsoide<g, i.e., [B([E)] = min(T, <g). Observe
that this means tha(E) has to be consistent. This requirement enables us to obtamigae belief set
from the total preorderg, but it is incompatible with a successful revision by This requires that we
jettison (E+6) and insist on consistent epistemic inputs only. (Thetteftight direction of [E+6) is rendered
superfluous bylg+1) and the assumption that belief sets extracted from afiteqmic states have to be
consistent.) We shall refer to the reformulated AGM posadawith (E+6) removed, as DP-AGM.

DP-AGM guarantees a unique extracted belief set when mevisy a is performed. It set§B(E * a)]
equal tomin(«, <g) and thereby fixes the most plausible worlds<ip.,. However, it places no restriction
on the rest of the ordering. The purpose of the DarwichelPeanework is to constrain this remaining
part of the new ordering. It is done by way of a set of postsldte iterated revision [12]. (We follow the
convention that is left associative.)

(C1) If B+ athenB(E *a * B) = B(E * )
(C2) If B+ —a thenB(E +a + B) = B(E + p)
(C3) If a € B(E = ) thena € B(E * a * 8)
(C4) If ~r ¢ B(E * B) then—a ¢ B(E » a + p)

The postulate (C1) states that when two pieces of informatione more specific than the other—arrive,
the first is made redundant by the second. (C2) says that wieecantradictory epistemic inputs arrive, the
second one prevails; the second evidence alone yieldstie Iselief set. (C3) says that a piece of evidence
a should be retained after accommodating more recent evégietiat entailsy given the current belief set.
(C4) simply says that no epistemic input can act as its owaatef. The following are the corresponding
semantic versions (with, w € W):



(CR1) If v e[a],w € [a] thenv <g wiff v <g.y W
(CR2) If v € [-a],w € [-a] thenv <g w iff v <p., w
(CR3) If v € [a], w € [-a] thenv < w only if v <p., w
(CR4) If v € [a],w € [-a] thenv < wonly if v <p., w

(CR1) states that the relative ordering betweeworlds remain unchanged following anrevision, while
(CR2) requires the same feix-worlds. (CR3) requires that, for anrworld strictly more plausible than a
—a-world, this relationship be retained after anevision, and (CR4) requires the same for weak plausibil-
ity. Darwiche and Pearl showed that, given DP-AGM, a precizeespondence obtains between) (&hd
(CRi) above (=1,2,3,4).

For the rest of the paper we assume a fixed but arbitrary liffitte< over W which we wish to revise.
This tpo plays the role of the plausibility ordering over Vasrintroduced by Darwiche and Pearl into
epistemic states< will denote the strict part ok, and~ the symmetric closure of (i.e. x ~ y iff both
x < yandy < x). We are interested in functiorsvhich, for eachy € L, return a new orderingt,, and we
will refer to any such asa revision operator fok.

3 Enriching the epistemic state

We letW* = {x | x € W ande € {+, —}}. We assume® = y5 only if bothx = y ande = 6. We suppose,
along with<, we are given some relation over W*. The relation< contains the additional information
to be added to an epistemic state (already containing thsipitity ordering<) when performing revision.
We expect some basic conditions grand its interrelations witk::

(1) <isatpooveV*

(22) x"=<ytiffx<y

(23) x =<y iffx<y

(z4) xt<x

(x2) and &3) say that the choice between the positive representdii@gstive representations respectively)

of two worlds should be precisely the same as that dictated lfg4) just says that given the choice between
the positive and negative representations,afie should choose the former of the latter.

Definition 1 Let<C W* x W=, If < satisfies £1)—(x4) we say< is a <-faithful tpo (overiwv*).

From this definition it is easy to see thatalready contains information to determigeuniquely: simply
observe hows behaves when restricted toto" | x € W} or {x~ | x € W}. Strictly speaking, therefore,
we need only include in an epistemic state.

The following result shows that we could equivalently replg<4) in this definition by a seemingly
stronger property:

Proposition 1 Let<C W* x W* be any relation satisfying<(1) and at least one of«2) and 3). Then<
satisfies £4) iff it satisfies the following rule:

<4) x <yimpliesx* <y~
y y



Proof: Let < be as stated. Thak@#') = (<4) is clear. For the converse direction suppasé)(is satisfied
and suppose < y. If < satisfies £2) then this givex™ < y*. We havey™ < y~ by (<4), so putting these
two together using<{1) gives the required™ < y~. If < satisfies £3) rather than£2) thenx < vy yields
x~ < y~. We knowx™ < x~ by (<4) so putting these two together usingl) again gives* < y~. [

How can we picture these ordering® One way was given by Booth et al. [8], using an assignment of
numbers to & X n array, wheren is the number ofanksaccording to the tpo associated 2o In this
paper we would like to use the alternative graphical repitasi@n introduced in [10] which is perhaps more
intuitive, and is easier to work with when trying to constregamples. The idea is, for eache W, to
think of the pair(x*,x~) as representing ambstract intervalassigned toc. We can imagine that to each

x we assign a “stick” whose left and right endpoints ateandx™ respectively. Condition{1) says the
endpoints of all these possible sticks are totally pre@dieBy <2) and &3) these sticks may be visualised
as all having the same length, whick4) demands is non-zero. We may arrange the sticks in an asdbr s
as the one shown in Figure 1, which shows the sticks assddiatthe five worldsy;—xs. The further to

the left an endpoint is, the lower, i.e., more preferreds idécording to<. Thus we see for example that
x; <xj andx; ~ xj.

X1 Oo0——7———=0
X2 Oo——O

X3 oO—O
X4 OoO——O
X5 O————0

Figure 1: Example of abstract interval ordering

Note that, although we said that all sticks have equal lenibih assumption is na@bsolutelynecessary.
For example we could have depicted thén Figure 1 also as

X1 O O

X2 O O

X3 O——-oO0

X4 O O

X5 O——F-—F0

Here, in order for £2) and 3) to be satisfied, it is only necessary that the sticks aswtitox; andx;
are equal. However this assumption helps to simplify thaealisation, and so we will keep to it in the rest
of the paper.

4 Revision operators defined from<

Now given a<-faithful tpo < over W* we want to use the information given kyto define a revision
operator+ = %< for <. The idea is that the evideneecasts a favourable light on those worlds satisfying
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a. In other words, we consider worlds satisfyingo be associated with their positive representations, and
worlds inconsistent with the evidence to be associated tivighr negative representations’. We set, for any

a € Landx e W:
| xt ifxe]a]
T“(x)_{x_ if x € [-a]

The revised tpa, is defined by setting, for eaohy € W,
x <5, yiff ro(x) < ra(y).

Definition 2 For each<-faithful tpo < over W*, we refer to«< as defined above as the revision operator
(for <) generated by.

Example 1 In terms of our picture, each world gets mapped to one of thipa@ints of the stick associated
to it — left if it is an a-world and right if it is a—a-world. From this the new tp&’, may be read off. For
example in Figure 1 suppose we revisedoguch thatxy, x5 € [a] andx, x2, x3 € [~a]. Then<, may be
read off by looking at the black circles in the figure below.

X1 o—0
X2 oO—e

X3 o———o
X4 [ O
X5 o O

Sowe see; ~), x2 ~, X4 <, X3 <, Xs5.

We point out that if we look at thbelief setassociated to the new tpg, in this example then we see
it does not contain the new evidengalue to the presence of ther-worlds x; andx, among the minimal
worlds in<},. Thus we see that, at the level of belief sets, we are in tHenreiso-callednon-prioritised
belief revision [22].

What are the properties e£? Consider the following list:
(*1) <, isatpooveW
(x2) a=yimplies<;=<]
(*3) Ifx,yela]thenx <, yiff x <y

(#4) Ifx,ye[-a]thenx <, yiff x <y

(*5) Ifx €[a], y € [~a] andx < y thenx <}, y

(*6) If x € [a], y € [-a] andy <, x theny < x

(+7) Ifxela], y € [-a] andy < x theny <] x

(*1) just says revising a tpo ové&y should result in another tpo ov&y, while (+2) is a syntax-irrelevance
property. The next three rules are all familiar from theréitare on iterated belief change3) and ¢4) are
respectively identical to (CR1) and (CR2) in section=B) (vas proposed independently by Booth & Meyer
[7] and Jin & Thielscher [23]. It is easily seen to be stronipam the other two rules in the Darwiche-Pearl
list (which can be obtained by replacirgby < (CR3) and<}, by <), (CR4) respectively). It says if an
a-world x was considered at least as preferred asvaworld y beforereceivinga, then after revision it
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should be considerestrictly more preferred. These three rules were considered chastictef a family of
operators calleddmissiblerevision operators [7].

So far each of our rules mention ordyerevision input sentence (modulo logical equivalence). By
analogy with the AGM postulates fdrelief setrevision [1], we might consider them as the setbakic
postulates for tpo-revision. One thing largely missingrirthe literature on iterated belief change is a
serious study ofupplementaryationality properties which bestow a certain amount ofetehce on the
results of revisings by differentsentences. The last couple of properties do this. Firspaaeevidence
is received, and let € [a], y € [-a], but supposey <), x. We propose that if is not more preferred than
y, even aftereceiving evidence which clearly points morexteing the case than it does gothen there
can beno evidence which will lead ta being more preferred tp. This is expressed by§). Similarly ¢7)
says ifx is deemedstrictly less preferred than after receivingy thenx must be strictly less preferred after
receivinganyinput.

It turns out that these properties provide an exact chaisaton of the revision operators we consider.

Theorem 1 Let= be any revision operator fog. Thens is generated from some-faithful tpo < over W*
iff » satisfies {1)—(+7).

Proof: Soundness(x1) holds because of(l). (+2) holds because, as is easily seen= y implies
ra(x) = ry(x) for all x € W. (x3) and ¢4) hold as direct consequences &2f and K3) respectively.
(+5) holds as a consequence e#(). For (6) supposex € [a], y € [-a] andy <, x. From the first two
we knowr,(x) = x* andr,(y) = y~. Using these withy <, x givesy~ < x*. From this and £4) we have
y* <y =x" <x". Thus, we see that fanyy € L, we will haver,(y) < r,(x), i.e.,y <) xas required.
(+7) is proved similarly.

Completeness:
Starting from any revision operaterfor < we can define an ordering. over W* as follows. Lety, y € W
ands, e € {+,—}. If 6 = e then we set® <, 1° iff x < y. If 6 # € we consider two cases: #f= y then we
simply setx™ <, x~. Otherwise we set” <, y~ iff x <} y andx™ <. y* iff x <}, y. Here, when we use a
world x as a subscript ik}, we are using it to denote any sentemacsuch thafa] = {x}. Likewise, in the
proofs which follow, whernx appears within the scope of a propositional connective, e\gy, (note that if
+ satisfies £2) the precise choice of is irrelevant).

We need to show two thing$a) <. is a<-faithful tpo, and therfb) the revision operator generated from
<. is preciselyx.

(a) <. is a<-faithful tpo.
To show this we need to show thatl)—(<4) are satisfied.<2), (<3), and &4) obviously hold by construc-
tion. It remains to provex1), i.e.,<. is a tpo.

<. is connected: We need to show, for any € W ande, o € {+, -}, eitherx® <, y5 or y5 <. x6. If

0 = € this reduces to showing either< y or y < x by construction oK., and this clearly holds since

is itself connected. So suppo&e# €. Now if x = y then the result holds since our construction ensures
that precisely oneof x° < x€ andx¢ < x? holds (the former id = +, the latter ife = +). So suppose also

x # y. Then the construction tells u§ < y° iff x <*, y andy® < x€iff y <', x, whereA = x if ¢ = + while

A =yif 6 = +. Whatever the value oA we know<’, is connected by+(), thus at least one of < ¥ and

¥ < x* must hold as required.



<, is transitive: We need, for any y,z € W andd,e,v € {+, -},
if x° <, y¢ andy® <, z" thenx® <, z".

For this proof let us denote these three AyB, C respectively. Provingd + B = C is a tedious mat-
ter of individually going through all eight combinations dfoices for$, €, v. The easiest cases are when
0=e=v=+40r6=¢€=v=—, forinthese cases showidy+ B = C reduces to showing that< y
andy < z impliesx < z, which clearly holds sincg is itself transitive. Now let’s go through the other six
cases:

o=e=+,v=-—

Firstly if x = y thenB andC reduce to the same thing and so the result holds. Also=fz thenC holds
by construction. So we assume# y andx # z. ThenA becomesc < y. We now split into two subcases
according to whethey = z. If y = z then the target conseque@itoecomes: <} y. But usingx < y with
our assumptionr # y we may apply £5) to deducex <} y. ThusC certainly holds. Now supposg # z.
ThenA + B = C reduces to showing < y +y <y z = x <} z. Suppose for contradiction that+ B
holds butC does not. IfC doesn’t hold therx <} x by (x1) so, smce we assume# x, z <%, x by (+7).
Fromx < y we getx < v y by (+3) and s <}, y. Since we also assume# y we may app[?{?) to this
to obtainz <} y — contradmtmgy <} z. Hence tKe consequent must hold also in this case.

(io=+€e=—v=+.

Now B reduces ta/~ <. z* which means, by the already established), we must havey # z. Meanwhile
C becomes* <, z*,i.e.,x < z. If x = z thenC clearly holds. So we assume alse: z. We now consider
two subcases. Subcase 1xl& y thenB becomes:™ <, z*, i.e.,x <! z (sincex # z). SOB = C by (+5).
Subcase 2: Ik # ythenA isx <} y andB is y <} z, SO we must show <L y+y<iz=x<z Assume
for contradictionA + B holds butC doesn't. From the latter < x, thenz <3, x by (*3) Meanwhile, since
y # z, the assumption <} z givesy <}, , z by (+6). Hencey <%, x using ¢1). Since we assume# y # z
we apply €7) here to deducg <} x, contradictingx <} y. Hence the consequent must hold.

(i) 6=+,e=—v=-

If x =zthenC become5x+ « X, which already holds by<4). Thus we assume# z and soC isx <} z
MeanwhileB reduces ta/ < z. If x = y then this reduces in turn to< z and so in this case we gBt:> C
by (*5). If x # ythenA isx <} y and soA + B = Creduces tox <} y + y < z = x <} z. Assume for
contradictionA andB hold andC does not. Then <} x from notC by (*1) Since we assumg# x # z we
may apply ¢4) to y < z to obtainy <} z. Using this withz <} x and ¢1) yieldsy <} x, contradictingA.
HenceC must follow fromA andB.

(iv)é:—,e_+ V=+.

Here,A is x~ <. y*, which impliesx # y by (<4) and so gives < v MeanwhileB is y* <. z*, which

givesy < z. We first claimA + B impliesx # z. For ifx =z thenB would givey < x. Slncex # y this

then yieldsy <j, x using ¢5), contradicting ther <), y we obtained fromA. Hencex # z as claimed, and
SO givenA + B, C becomes: <7 z. We must now show <} y + y <z = x <] z. Butsincex # y we may

use ¢6) to getx <7, y fromx <* y, whiley <}, zfrom y < z using ¢3). x < VZ y andy <. ztogether

yvz —yvz —yvz
givex < —sz z using §&1). From thIS since # x # z, we may apply {6) to deducec * z as required.
V)o=—€e=+v=—.




As in the previous casei impliesx # y andx <, y, while this timeC reduces tor < z. In the case/ = z
then this in turn becomes < y, which is a consequence mfs; y by (+5). Thus in this casél = C. So
suppose insteagl # z. ThenB reduces to/ <} zand scA + B = Creducestx <, y+y <, z=> x < z.
FromA + B and the transitivity ok} it follows thatx <} z, from which it follows thatx < z using ¢4) with
the assumptions # y # z.

(Vi)o=—e=—v=+.

Now B yieldsy # z (by (=4)) andy < z, while A is equivalent tor < y. If x = z were the case then this
latter would become < y which would implyz <} y by (+5) (sincey # z from B). But this contradicts the
y <; z we obtained fronB and so we must have# z. Hence, givem + B, C reduces tor <} z and so we
must showxr < y +y <} z = x <] z. Butsincex # z # y we may usex < y to deducex < y using ¢4).
From this andy < z we obtainx <} z as required.

(b) the revision operator generated framis preciselyx.

Now let+" be the revision operator generated fram We now need to show is preciselyx, i.e., for any
a€Landx,y e W,x <, yiff x < y. Since this latter is equivalent 1g(x) <. r,(y), this means we need
to show thatr <}, v iff 7,(x) <. r,(y). We split into the three cases<® y, x ~* y andy <% x. (Using the
<“-notation defined in Definition 3.)

Casex <* y

In this caser,(x) = x* andr,(y) = y~. So we must show <, y iff x* <, y~. Sincex <* y we must
havex # y so by construction ok, the right-hand side is equivalent o<} y. We will showx £, y iff

x £y y. By (+1) this is equivalent to showing <}, x iff y <} x. But by (-7) each side of this biconditional
is equivalent to§ <), x for all y]. Hence in this case the result holds.

Casex ~* y

In this case we show that both<’, y andr,(x) <. 7,(y) are equivalent ta < y. Thatx <}, yiff x < y
follows from either ¢3) or (+4) (depending on whether y € [a] or x, y € [-a] respectively). Meanwhile
we haver, (x) <. r,(y) iff x* <. y° (whered = + if x, y € [a] andd = — otherwise). By construction of.
this latter is equivalent te < y as required.

Casey <* x

In this case we show that both<(, y andr,(x) <. r.(y) are equivalent to saying <, y for all . For
x <, y this follows from §6). Meanwhiler,(x) <. r,(y) iff x~ <. y*. Sincey <* x we knowx # y so
by construction oK, this latter is equivalent to <y V- That this is equivalent tor[<), y for all ] follows
once more from«). [

4.1 The link with preference aggregation and social choiceneory

In this subsection we discuss some more properties satisfiedr revision operators. These properties are
recognisable as versions of properties familiar from tlemith of social choice or preference aggregation
[3]. The problem of preference aggregation is the problerfimaing some functiorf which, given any list
of tpos (over some given sét of alternative$ <, ..., <,, with the <;s representing the preferences over
X of theindividualsin a group, will return a new single ordering<s, ..., <) over X which adequately
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represents the preferences of tireup as a whole. Now, we can think of our problem of determinitjg
as a highly specialised case of this problem. To do this wd teeeepackage the new evidenees L into
tpo-form. The simplest way to do this is as follows.

Definition 3 For anya € L, the tpo<® generated by is the tpo oveiV given byx < yiff x € [a] or y €
[—a].

In other words<“ is the tpo overW consisting of (at most) two ranks: the lower one containitighe
a-worlds and the upper one containing all the-worlds. Then we can think of revision gfby a as an ag-
gregation of< with <®. (This manoeuvre is also carried out by Glaister [19] andakd@1]. An alternative
way of generating tpos from sentences, based on the Hamrisitagnde between two propositional worlds,
is mentioned by Benferhat et al. [4].)

Many properties of preference aggregation operators haga proposed. One well-known property,
known as theéParetocondition, is that, given two alternativesandy, if every individual prefersc at least
as much agy, and if at least one individuatrictly prefersx over y, then the group shoulstrictly preferx
overy. In our case, this condition translates into the followimggerty:

(Pareto) Ifx <y andx <% y, and at least one of these two inequalities is strict, thet} y

The case of the above rule whexé is strict is nothing other thar§), while the case where ~* y and
x < y is easily seen to follow mainly from38) and ¢4). Thus we have:

Proposition 2 Every revision operatof generated by soms-faithful tpo < over W* satisfies (Pareto).

Another well-known property from preference aggregatlargwn as théndependence of Irrelevant Alter-
natives states that for any two alternativesandy, the group preference betweerandy should depend
only on how each individual ranksandy. More precisely, if we were to replace individu& tpo <; by
any other tpa<? which ranksx andy in exactly the same way as thenx andy would be ranked in exactly
the same way irf(<y,...,</,... <) asinf(<y,..., <i ... <p). It turns out that our family of operators
satisfy a restricted version of this rule, which we dalilependence of Irrelevant Alternatives in the Input
We will make use of the following terminology:

Definition 4 Givena,y € L, andx,y € W, we saya andy agree onx andy iff either bothx <* y and
x <V y, or bothx ~* y andx ~” y, or bothy <* x andy < x.

In other wordsy andy agree ornx andy if they both “say the same thing” regarding the relative pihility
of x andy.

(IA-Input)  If a andy agree onc andy thenx <;, yiff x <}, y

That this is a property of our family of tpo-revision opergtoan be straightforwardly shown by considering
an arbitrary<-faithful tpo < over W*. But in fact we can show the following:

Proposition 3 Let* be any revision operator fox which satisfies{l) and &3)—(+5). Then+ satisfies (I1A-
Input) iff » satisfies both6) and &7).

Proof: Letx satisfy ¢1) and ¢3)—(5).

(HA-Input) = (*6) + (7).
First we show the following property, which will be useful:

If x <%y, y <, x and y anda do not agree onx andy, theny <), x
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To see this, first note it <* y andy <, x then we must havg < x by (+5). Also note ify anda do not
agree orx, y then, sincex <* y, we must have either ~”" i or y <” x. In the first case we know <}, y iff
x <yandy <, xiff y <x by (+3) and ¢4). Using these with the already established x givesy <, x as
required. In the casg <” x we can use the fagt < x to concludey <) x by (+5).

Now to show ¢6) supposer <* y andy <;, x. If y anda do not agree ow, y theny <), x by the above
property, soy <, x as required. Ify agrees withy onx, y then we can concludg < x from y <, x using
(HA-Input).

(+7) is proved similarly: Suppose <* y andy <}, x. If y does not agree withr on x, y then, since
obviouslyy <}, x impliesy <}, x we may apply the above proved property to conclude the reqyik;, X.
If y agrees withx onx, y then from (IlA-Input) we haver < v iff x <{, y andy <), x iff y <, x. Hence we
can concludey <}, x fromy <, x.

(+6) + (+7) = (lIA-Input).

Supposer andy agree orx, y. To show (IIA-Input) it suffices by symmetry to show<}, y impliesx <y
First supposer <* y, x <" y andx <j, y. If it were not the case that <}, y then we would havey <J, x by
(*1). Using this withx <7 y and ¢7) would then givey <J, x, contradictingx <, y. Hence we must have
x <, y as required. Now look at the case in which beth® y andx ~” y. In this case using these with
(#3) or (+4) we getx <}, y iff x < yiff x <) y. Hencex <, y impliesx <5y (and conversely) as required.
Finally we consider the case in which bath® x andy <” x. This time we get <, y impliesx <J, y (and
conversely) using=g). [

Thus, given the basic propertied |—(5) for tpo-revision, requiring to satisfy the two supplementary prop-
erties ¢6) and ¢7) amounts to enforcing (IIA-Input). Note this equivalerdimes not require the presence
of the syntax-irrelevance property2). In fact, since sentences which are logically equivadaree orall
worldsx andy, we see that) actually follows from (lIA-Input). Consequently, we heestablished that
in the list ¢1)—(-7), property £2) is redundant.

For more discussion on social choice-like conditions aradr trelevance to tpo-revision we refer the
reader to the work of Glaister [19].

5 On the sentential level

So far all our properties of tpo-revision operators havenb@egressed on the semantic level, directly in
terms of worlds. But there is also a sentential level on whiehcan recast our properties. For any tgo
over W and anyg € L we letmin(g, <’) denote the set of£’-minimal elements ofg], i.e., min(B, <) =

{x € []| Ay € [B] s.t.y <’ x}. Then we define:

<’ of = Th(min(B, <)).

<’ off represents what is believed #i on thesuppositionthat $ is the case. Ifl € <’ of then we might
also sayp » A is aconditional beliefin <’. Note that we do not necessarily assume this is the same
thing as sayingl would be believed after receiving explicitly as evidence This is because we want to
support non-prioritised revision, so in particufaitself might not necessarily be believed after receiving
it as evidence (it might be simply too far-fetched). Nevel#iss, new evidence will have some impact on
the set of conditional beliefs. Note that this notation éeslois to denote the belief set associated’tby

<’ oT.
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We can give all the properties)—(x7) an equivalent formulation in terms of thus giving a set of
sound and complete properties for our family of revisionrafmrs which has a different flavour:

(c2) If a =y then<, of =<}, o
(03) Ifprathen<) of =<of

(04) If pF -athen< of =< off
(05) If - ¢ < of thena € <}, o
(c6) Ifa ¢ < ofthena ¢ s; o

(07) If ma €<, ofthen—a e<] of

(o2) just says revising by logically equivalent sentence&dgithe same set of conditional beliefe3] and

(o4) are essentially the postulates (C1) and (C2) in sectiovhRe (o5) corresponds to rule (P) of Booth &
Meyer [7], also referred to dadependencéy Jin & Thielscher [23]. The correspondences between these
last three rules and their counterparts in the previousoeuatere proved in those papers. (Although these
papers all assume the prioritised setting for belief revish which revision inputs are always believed after
revision.) The last two rules are neatly explained with talplof the following terminology:

Definition 5 Given any revision operatorfor < and giverw, § € L, we shall say8 overrulesx (relative to
+) iff either § is inconsistent ot ¢ <}, off. We shall say strictly overrulesx (relative tox) iff ~a €<}, of.

The inclusion of the clauses‘is inconsistent” in the definition of “overrules” allows farsmoother exposi-
tion. This way we get the intuitively expected chain of insplions:  —« implies thatg strictly overrules
a, which implies thaf overrulesa. If + satisfies ¢5) then this in turn impliessa €< of. Now suppose
that evidence is received and we then make a further supposifio6) says that iff overrulesy andg is
consistent thew will not be believed, while{7) says that if strictly overrulese thena will be rejected

Proposition 4 Let+ be a revision operator fox which satisfies«l). Then for each = 2,...,7, = satisfies
(+) iff » satisfies ¢1).

Proof: Suppose satisfies 1), i.e.,<}, is a tpo given anyr. Note that foranytpo <’ (in particular<},) and
x,y € W, we have
x <" yiff x e min(x v y, <) (1)

where, recall, in the expressianv y, x andy stand for any sentences whose only mode, isespectively
y,and sdx V y] = {x, y}.

(*2) © (02)

The left-to-right direction is obvious. For the converseedtion supposer = y. Then using (1) we
know, given anyx, y, x <j, y iff x € min(x v y, <) andx <), y iff x € min(x v y,<]). But by (2)
min(x V y, <) = min(x V y, <). Hencex <j, y iff x <), yfor all x, y, i.e., <,=<], as required.

(*3) © (03) and ¢4) & (o4)

Proofs given by Darwiche & Pearl [12] (Theorem 13).

(+5) & (ob5)
Proof given by Booth & Meyer [7] (Proposition 2) and Jin & Thieher [23] (Theorem 5).
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(x6) & (06)
For the left-to-right direction, supposeGQ holds and suppose ¢<;, oB. Then there existy € [-a] N
min(p, <;,). Assume for contradictionr €<}, of. Theny ¢ min(g, <}) so there exists € min(g, <J) such
thatx <) V- Since we assume e<), o we must haver € [a]. Hence we may apply a contrap03|t|ve
version of ¢6) to obtain (with a little help from«(1)) x <}, y. But this contradicts/ € min(3, <},). Hence it
must be the case that¢<), of as required.

For the converse direction, supposé) holds and lek € [a], y € [-a] be such thaly <!, x. Then from
equation (1) on page 13,€ min(x V y, <},). Hence, sincey € [-a], a ¢ <), o(x V v). Usmg ©6) we infer
a ¢<) o o(x V y). Since necessanh;mn(x Vy, < ) C {x, y}, the only way we can have ¢<], o(x Vy)isif
yE rmn(x Vy, <)), e,y < <) xas required to show@).

(:7) & (o7)
For the left-to-right direction, suppose7] holds and supposea €<, of. Suppose for contradiction
—a ¢<), of. Then there exists € [a] N min(, <)). Since—a €<;, off we knowx ¢ min(B, <;,) so there
eX|stSy € min(p, <},) such thaty <}, x. We knowy € [-a] since-a €<, of, hence we may apply7) to
deducey <j, x — contradictingx € min(ﬁ, <}). Hence-a €<, off as required.

For the converse direction, suppos€/) holds and letr € [a],y € [-a] such thaty <, x. Then
min(xVy, <) = {y} and so, sincg € [~a], ~a €<, o(xV y). Applying (o7) to this yields-«a €<} o(xVy)
and so, since € [a], x ¢ min(x V y, < ) ie.,y <) xas required to showT7). [

Corollary 1 Let= be a revision operator fog. Thenx is generated from some-faithful tpo < over W+ iff
+ satisfies {1) and ©2)—(c7).

This sentential reformulation is useful since there areesorteresting properties which can be formulated
in sentential terms, but for which obvious semantic coynates do not exist. For example:

(DISJ:I‘) (<* Oﬁ m (<* Oﬁ) C —a\/)/ Oﬁ)

(DISJZ) (Sa\/y Oﬁ) g (Sa O:B U (Sy Oﬁ)

These two properties were essentially first proposed byeShtd et al. [35], and seem to be natural prop-
erties to have. The first one says if a conditional belief igl tth after receiving evidence and after
receiving evidence, then it is also held after receiving their disjunction aglemce. The second one says

a conditional belief is not held after receiving a disjuantias evidencayithoutbeing held after receiving
just one of the disjuncts in isolation.

Proposition 5 Every revision operator generated from somg-faithful tpo < over W* satisfies (Disjl)
and (Disj2).

We prove this result by considering an arbitragyfaithful tpo <, rather than trying to derive these rules
syntactically from {1) and ¢2)—(c7). A key property used in the proof is that, for amyy € L andx € W,

7’aVy(x) = min{r,(x), ry(x)}-

Proof: Let < be a given<-faithful tpo overiw=.

(Disj1): It suffices to shownin(g, < V ) € min(f, <) Umin(B, <}). So letx € min(f, < V ) and suppose
for con contradlctlon bothy ¢ min(B, <},) andx ¢ mm(ﬁ <)) From these latter two we know there exist
1 € min(B, <j,) andy, € min( _),) such thaty; <}, x and Y2 < x Equivalentlyr,(y1) < r,(x) and
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y(y2) < 1,(x). But sincex € min(g, _av),) we knowx s;v/ yi, equivalentlyrayy (x) < ravy(yi), fori =
1,2. Sinceravy (vi) = min{r,(y;), r,(y;)} this means we have bothy, (x) < 7a(y1) @andrayy (x) < 7 (12).
But sincer,yy (x) = min{r,(x), r,(x)} we knowr,y,(x) is equal to either,(x) or r,,(x). In the first case we
getr,(x) < ra(y1), contradictingr, (1) < ro(x). In the second case we obtair(x) < r,(y2), contradicting

r,(y1) < ry(x). Thus in either case we arrive at the required contradiction

(Disj2): We first claim the following: Given any pair of world§1,y2 such thaty; € min(, <) and

y2 € min(B, <}), at least one of these worlds must benifin(g, < _av), For suppose neither is an element
of this set. Then there must existe min(g, <;V ) such thatz <avy i, equivalentlyray,(z) < ravy(yi),
fori =1,2. Sinceryv,(yi) = min{r,(y;), 7, (y;)} we obtain from this both,.,(z) < r.(y1) andray,(z) <
ry(y2). Then sincer,y,(z) = min{r,(z),r,(z)} we get from these eithet,(z) < r,(y1) Or r,.(2) < 1,,(y2).
But in the former case we have<}, y;, contradictingy; € min(8, <},), while similarly in the latter case
z <}, y2, which contradictsy, € min(g, <}). Hence no such can exist and so the claim must be true.
This then allows us to show (Disj2), for suppose batg<;, of and A ¢<, op. Then there must exist
Y1 € min(p, <a ) andy, € min(p, 7/) such thaty; € [-A4] forz =12 From the above cIa|m we Know
yi € min(f, < _avy ) for eitheri = 1 ori = 2. Either way we end up with somg e min(f, < V ) such that

y € [=A], whichis enough to prové ¢<,,, op. u

The next result shows that, of falls neatly into one of three categories. Note that we doegd ¢6) and
(o7), nor do we needo@) for this.

Proposition 6 Let = be any revision operator fog satisfying ¢1) and ©3)—(c5), and let the overrules
relations be given relative ta Then for alla, f € L,

< o(a APp) if 5 doesn't overrulex
<L oB =1 (So(aAp))N(Lop) if Boverrulesa, but not strictly
<oB if 6 strictly overrulesa

Proof: We make use of the following standard properties, which Hofdany tpo <’ over W (note the
assumption«(1) is satisfied permits us to apply these properties’fp

(i). If @ €<’ o then<’ off =<’ o(a A B) (Cumulativity).

(ii). If ma ¢<’ ofthen<’ off C<’ o(a A B) (Rational Monotony).

(ii). (< oP1) N (<’ oP2) S (<" o(B1 V 2)) (O).

Suppose does not overruler. We must shows?, of =< o(a A ). But if § does not overruler then
a €<}, of3 s0, using propertyi) above,<;, of =<, o(a A ). Using (3) we conclude<, o =< o(a A p)
as required.

Now supposg strictly overrulesy. We must show in this casg, of =< of. Firstly, if § is inconsistent
then both these sets are equal to the entire set of sentearesso the result clearly holds. So we assigme
is consistent. We will in fact show boty, o and< of are equal ta< o(—~a A ). For the former, if§ strictly
overrulesa then—a €<}, of so, again usingi) above,<}, o =<, o(—a A ). Using (4) we then obtain
<, of =< o(—a A B) as required. Meanwhile froma €<}, of and the assumptiofiis consistent we can
infer a ¢<, of. From this and¢5) we get-a €< off and so, fron(i) once more, als& off =< o(—a A f)
as required.

Finally we check the intermediate case whemerrulesy, but not strictly, which means, —a ¢<J, of.
We must shovs?, off = (< o(a A B)) N (<L of). Looking back at the last sentence of the previous paragraph
we see we showed there thatif¢<}, of then< of =< o(-a A f). Hence we may equivalently formulate
our target identity as<;, of = (< o(a A B)) N (< o(=a A B)). Applying (c3) and ¢4), this in turn is the
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same as requiringt;, o = (<, o(a A B)) N (<, o(—a A B)). We can prove the right-to-left inclusion here
by noting by propertyiii) above tha(<}, o(a A )) N (<, o(—a A B)) €< o((a AB) V (ma A B)) =<, of.
For the converse direction note that from prop€iiywe havex ¢<, of implies<}, of €<, o(—~a A ) and
—a ¢<, ofp implies <, o €<, o(a A ). Thus the result holds. ]

Thus if B doesn't overrulex then making the suppositiof after receivinga as evidence is the same as
supposingy andp togetherin the initial tpo<. If g strictly overrulesxy then evidencer is just ignored when
making the further suppositigh In the intermediate case wheg@verrulesa, but not strictly, supposing
following evidencex results in a mixture of these two.

In particular note what happens whgn= T. We see thak], oT equals eithe(i) < oa, or (ii)
(€ o) N (< oT), or (iii) < oT. Thus either the evidence is fully incorporated into thedfedet using the
AGM revision operator corresponding £0[24] (case(i)), or the belief set remains unchanged (c@sg),
or there is an intermediate possibilitgiiY), which amounts to removinga from the initial belief set using
the AGM contraction operator correspondingtoThat is, we don’t commit to believing the evidence, but
we leave open the possibility that it might hold. We will hawere to say on these notions of overruling in
the next section.

6 Notions of strict preference
In this section we shall assume a fixgefaithful tpo < over W*. From a single< we can extracthree
different notions oftrict preferenceover W. First we have the simple one given by
x <yiff x* < y*

(equivalentlyx < y iff x~ < y7), i.e., < is just the strict part of the tpo ové¥ associated te. In terms of
our graphical representation< y iff the stick corresponding te lies to the left of that associated #o but
possibly with some overlag-or example in Figure 2 we hawe < x3.

n o———0

X O0—O0

X3 o——O
X4 ) ————————O
X5 O—- O

Figure 2: Example of abstract interval ordering

A second, stronger notion of strict preference can be egpteby:
x < yiff x7 <yt

In other wordsy <« v iff x, even when represented negativesypreferred toy or, in terms of the picture, iff
the stick associated tolies completely to the leftf that associated tp, and furthermore there is “daylight”
between them. E.g., in Figure 2 we see< xs.

Finally a third case, intermediate between and<, can be expressed hy:

x < yiff x~ <yt
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In other wordsy < y iff x being represented negativelyasleast agreferred toy. This third case captures
a “hesitation” [32] between strong strict prefererge and mere ordinary strict preferenge We will have
x < y andx #< y precisely when the right endpoint of thex-stick and the left endpoint™ of the y-stick
are vertically aligned with each other. E.g., in Figure 2 \sedx; < x4 butx; < x4. The next proposition
collects some properties of these orderings.

Proposition 7

(i) <kC<C< (where recallk is the strict part of the initial tpa<).

(i) << and< are both strict partial orders (i.e., irreflexive and tratise).

(i) < and < both satisfy thefiltered condition [16], i.e., for allx,y € Wandp € L, if x, y €
[5] \ min(B, <’) then there exists € [B] such thatz <’ x andz <’ y.

(Recall for a strict partial ordet’, min(B,<’) = {x € [B] | Ay € [B] s.t.y <’ x}.)
Proof: (i). The inclusion<C« is immediate. The inclusiorcC< follows from (<4').

(i). The irreflexivity of < follows directly from the inclusion ir(i). Since<kC< this meanss< must
be irreflexive as well. To show transitivity of the two retats, we actually show something stronger holds,
namely

If x < yandy < zthenx <« z. (2)

This is true since ifr < y andy < zthenx™ < y* andy~ < z*. Sincey* < y~ by (<4) we obtain
x~ 2yt <y =<z¥ thusx™ < z* i.e.,x <« z as claimed. (2) yields the transitivity of botkk and <
using the fackkC <.

(iif). To show<« satisfies the filtered condition let vy € [B] \ min(f, <«). Sincex, y are not minimal
there existz;, z; € [f] such that; < x andz; <« y, i.e.,z] < x* andz; < y*. Sincex is connected
(since it is a tpo by £1)) we know either] < z; orz; < z;. Inthe first case we obtairi < y* from
z, < y* and so there exists somes [] (namelyz;) such that botlr << x andz < y as required. In the
second case we obtaij < x* from z; < x* and so again we find a(this timez = z,) with the required
properties. Hencex satisfies the filtered condition. The case $oris analogous. [

By (i) we see<, <« and< form progressively more stringent notions of strict prefere. If we let = =<
then we seer < y impliesr,(x) < r,(y) for all y € L, and sox <), y for anyy. Thus< can also be
viewed as a set ofore, or protectedstrict preferences irc which are always preserved in any revision.
Meanwhile we haver < y impliesx <), y for anyy. Thus< may be viewed as a set afeakly protected
strict preferences, in the sense that i y then no evidence will ever cause this preference to be regers

It turns out that these relations: and <« are closely related to the notions of overruling and strict
overruling from Definition 5.

Proposition 8 Let the overrules relations be given relativesta Then(i) g overrulese iff min(B, <) C
[—a]. (ii) B strictly overrulesa iff min(f, <«) C [—a].

Proof: (i). We must show thathin(8, <) C [-«] iff either § is inconsistent o ¢<7, of.

=: Supposemin(f, <) C [-a]. If § is inconsistent we are done, so assyfne consistent. We must show
a ¢<;, of, i.e.min(B, <;,) N [-a] # 0. Supposemin(B, <) = {y1,..., yx}. Sincemin(B, <) C [-a] we
knowy; € [-a] foralli =1, ..., k. We will show that at least one of these elementsafi(5, <) must also
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be an element ahin(g, <},), which will suffice. Suppose for contradictian ¢ min(s, <},) for all i. Then
(since<, is a tpo) there must be at least one elemeat[] such that <, y;, equivalentlyr,(z) < r,(v:),
for all i. Sincer,(y;) = y; for all ;, this givesr,(z) < y; for all i. Clearly it cannot be the case that y;
for somej (since then we would havg(y;) < r,(y;), which is impossible), hence¢ min(B, <). Hence it
must be the casg; < z, i.e.,y]T < z* for somej. But this impliesy]f < r4(z), contradictingr,(z) < ra(vi),
for all i. Hence there must exist someuch thaty; € min(g, <) as required.

«: If g is inconsistent themin(p, <) = 0 and so the required conclusianin(s, <) € [-a] holds true.
So supposé is consistent and ¢<, of. Then there exists some € min(, <},) N [-a]. Suppose for
contradictionmin(B, <) € [—a], so there exists € min(B, <) N [a]. Using the minimality ofy we get
y < x,i.e.,ry(y) < r4(x). Sincey € [-a] andx € [a] this translates intg~ < x*, i.e.,y < x. But this
contradictsy € min(f, <). Hencemin(f, <) C [-a] as required.

(if). We must showmin(f, <) C [-a] iff —a €<}, of.
=: As mentioned above, just after the proof of Proposition 7hage<<C<},. This impliesmin(, <},) C
min(p, <<). Hence ifmin(B, <) € [-a] then alsamin(, <},) € [-a], i.e.,—a €<}, of as required.

& Suppose~a €<, of, i.e., min(f, <) € [-a], and suppose for contradictianin(f, <<) € [—a].
Then there exists € min(B, <) N [a]. Sincex € [a] andmin(B, <) € [—a] this implies thatx ¢
min(B, <,), so there existy € min(B, <},) such thaty <}, x, i.e.,r,(y) < r,(x). Sincey € min(B, <},) and
min(B, <},) € [~a] we knowy € [-a] and sor,(y) = y~. Meanwhile sincer € [a] we knowr,(x) = x*.
Hencer,(y) < r,(x) translates intay~ < x*, i.e., y << x, which contradictsx € min(f, ). Hence
min(p, <) C [-a] as required. [

For each of the two overrules relations we may consider andefinablénferencerelation. We define:
B = «aiff poverrules—a

B = «aiff g strictly overrules-a.

Using fundamental results by Freund [16] and Kraus et a], [28ssifying various families of nonmonotonic
inference relations, Proposition 8 together with the prispe of < and <« now allows us to deduce many
properties of= and=>, and thereby of the overrules relations:

Corollary 2 The binary relations= and= are both (consistency-preservingjeferentialinference rela-
tions, in the sense of Kraus et al. [28]. Furthermore theyhietisfy the rule oDisjunctive Rationalityi.e.,
if VvV y = atheneithes = aory = a.

The first part is a consequence of the fact tkadind<« are strict partial orders [28]. In particular it implies
that= and= both satisfy the following rules (among others):

p=a aty

=S (Right Weakening)
=a, p=
ﬁﬁ:# (And)
ﬁ = q, ﬁ =% .
NISEYS (Cautious Monotony)
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Switching things around in terms of the corresponding ales relations, Right Weakening impliesff
(strictly) overrulesy thenp (strictly) overrules every sentence logicadffrongerthana. The And-rule tells
us that ifg (strictly) overrules bothy andy separately, then it (strictly) overrules thelisjunction While
Cautious Monotony translates into the rule that {strictly) overrulesy, then so doeg A =y, providedp
(strictly) overrulesy.

The second part of Corollary 2 follows from results by Fre(ibg] and Proposition (fii) . It implies
a disjunctiong v y cannot (strictly) overrulex without at least one of its disjuncts doing so. However
it's possible for neithek» nor = to satisfy the well-known rule Rational Monotony [28] (arftu$ also
Monotony). l.e., iff = a andp = -y thenp Ay = a. This is because it can be shown that the relations
< and<k are not in generaiodular, i.e., they do not verify the property <’ v implies eitherx <’ z or
z <" y. In fact the following condition, which is easily seen to beaker than the both the modularity f
and of<, fails to hold in general:

If x << ythen eithewr < zorz < y.

For the counterexample, consider the following picture:

X Oo0——0
y O—O
O— 0

Then clearly we have < y, but neitherr < z norz < v.

7 Limiting cases

In this section we investigate some special limiting casesipfamily of revision operators. Firstly, suppose
we insist on the following strengthening of properi4):

(=L) x*<y.

In other words, given a choice between a positive repreentaf any worlds and a negative representation
of any world, we choose the world with a positive represémtaevery time. This is equivalent to the
limiting case wherex = 0 (thus also<k = (). Hence this condition can be thought of as expressing
minimal confidence behind the initial tpa Note that adding this rule t&@) and &3) is enough to specify

a unique tpo oveW=*, thus causing<£1) to become redundant. Indeed we are left with the tpo defoyed
for all x, y € W andd, e € {+, -}, x° < € iff either (6 = + ande = —) or (6 = € andx < y). In terms of the
graphical representation &f this corresponds to the case where every right-point dtl appears strictly

to the right of the left end-points @verystick.

X1 O O

X2 O O

X3 O O

X4 O O

X5 O O
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The revision operatos;, defined by this< then reduces to:
x <, y iff eitherx <® y or (x ~* yandx < y)

This is the well-knowrlexicographicrevision operator studied and axiomatised in the contextechted
belief revision [19, 30, 36]. It amounts & being refined by<. We can characterisg within our family
in the following way:

Proposition 9 If « is generated from some-faithful tpo overiWW* satisfying L) then= satisfies:
(xL) If x € [a] andy € [-a] thenx <, y.

Furthermore if+ is anyrevision operator for< which satisfies4) then the<-faithful tpo <. defined in the
completeness proof of Theorem 1 satisfils) (

Proof: Supposex satisfies £L) and let+ = +-. Letx € [a] andy € [-a]. Thenr,(x) = x* andr,(y) = y~.
By (2L) ra(x) < 14(y), i.e.,x <}, y as required to showi().

Conversely supposeis a revision operator fog satisfying ¢L) and let<, be as defined in the com-
pleteness proof of Theorem 1. We must show<, y~ for all x,y. If x = y thenx™ <, x~ directly by
construction. So suppose# y. We need to show™ <, y~ andy~ £. x*. By construction these are
equivalent tar <}, y andy £ x respectively, i.e.x <} y. But by (L) x <} z for all z # x. Hencex <} vy as
required. [

From this result we see that is axiomatically characterised byl()—(7) plus &L). However it is easy to
see that{L) implies +5)—(7). (+1) also becomes redundant, sine8)( (+4) and ¢L) are enough to force
the unique tpa<},, and we already established after Proposition 3 #2tdan be removed. Hence3), (+4)
and &L) form a sound and complete axiomatisation fgr The sentential counterpart odL{ is the rule
Recalcitranceof Nayak et al. [30], i.e.,

(oL) If B ¥ —athena €<, of.

Note also that new evidence is always believed after lexaggjc revision. A characterisation gfin terms
of social choice-like conditions was given by Glaister [18ho referred to it ag-revision
At the other extreme, suppose instead we insist on

(=P) x <yimpliesx™ < y*.

This rule is equivalent to sayingg = <. (Thus alsox = <.) This property expresses maximal confidence
behind the initial tpa<, or skepticism towards new evidence. Adding this rulet®)(<4) is again enough
to specify< completely. It is not difficult to show this time we are leftttvir® < ¢ iff either x < y or [x ~
yand(0 =+ore =-)]:

X1 O O

X2 O O

X3 O O

Xy O O

X5 O O

The associated revision operatgris then given by

x <}, y iff either x < y or (x ~ y andx <% v).
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This is a so-called reverse lexicographic method, studigtlé context of iterated belief revision [33]. This
time it corresponds t& being refined by<“. In this case new evidence is not always believed.

Proposition 10 If = is generated from some-faithful tpo overiWW* satisfying &P) then+ satisfies
(*P) Ifx € [-a], y € [a] andx < y thenx <}, .

Furthermore if+ is anyrevision operator for< which satisfies#) then the<-faithful tpo <. defined in the
completeness proof of Theorem 1 satisfieB)(

Proof: Suppose = +< for somex satisfying &P). To show satisfies {P) suppose € [-a], y € [a] and
x < y. Thenr,(x) = x~ andr,(y) = y*. Sincex < y we may apply £P) to deduce,(x) < r,(y), i.e.,
x <, y as required.

For the second part letbe a revision operator which satisfie®) and suppose < y. We want to show
x~ <. y*, ie., bothx™ <, y* andy* £, x~. If x < y then clearlyx # y, hence by construction this is
equivalent to showing <j y andy £; x, i.e.,x <j y. But from (P) we knowz <j y for all z # y such
thatz < y. Hencex <} y as required. |

This result implies thatp may be characterised axiomatically by Y-(7) plus éP). However we may
significantly simplify this list by observing the following

Proposition 11 Let= be any revision operator for satisfying ¢3), (*+4) and &5). Then together satisfies
(+6), +7) and &P) iff » satisfies:

(*p) <C<g.

Proof: (+6), (+7), +P)= (+p)

In fact we show that, in the presence of the other ruld®) {s enough to prove:§) on its own. Suppose
x < y. To show ¢p) we must show <}, y. We look at each of the casgs<® x, x <* y andx ~* y. If
y <% x then the required conclusion follows immediately frorR). If x <* y then the conclusion follows
from (+5). Finally if x ~* y then the conclusion follows from3g) or (:4).

(+p) = (+6), (7), (P)
(*p) = (»P) isimmediate. To show) implies the other two rules we show in fagb) implies the following
property, which is easily seen to be stronger than ba&hdnd ¢7):

If x <® yandy <}, x theny <}, x.

This property holds since ¥ <* y andy <}, x theny < x by (+5). Hencey <}, x follows by p). |

Again (+1) becomes redundant, and so we arrive at the following clexiaation ofp.
Proposition 12 «+p is the unique revision operator fat which satisfies+@)—x5) plus &p).
It is easy to see that the sentential counterpartfi6 the following rule:

(op) <of C<; 0.

(op) states thaall conditional beliefs in< are preserved after revision.

As the following example shows (partly based on one by Dawi& Pearl [12], rigid use of either of
these limiting casesg and=p can lead to counter-intuitive results.
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Example 2 Suppose we have a murder trial with two main suspects, JahMany. Letp represent “John
is the murderer” and represent “Mary is the murderer”. Furthermoredeepresent “The victim is an alien

from outer-space”.

Initially we believe the murder was committed by one persither John or Mary. However weouldn't
be surprisedo discover that either both or neither were involved in thime. Whatwouldbe surprising —
indeed highly shocking — would be if we found out the victimsvea alien. However we are still capable of
imagining a hypothetical situation in which this turns oute the case, and we think this would not alter
our belief that either John or Mary acted alone. If we weresforeésent all this using a tpg, it seems the
following is the best candidate:

100 @)

010 O

110 @)

000 O

101

011

111 O
001 @)

Now during the trial we receive testimony that John is thedater, leading us to revise by p. Supposing
we then receive testimony that Mary is the murderer, the mamtonable conclusion would be that both

John and Mary were involved in the murder. But using the dpera gives
<y oq =Cn(-p AgA-r)

We are forced to drop our belief that John is the murderer.

Now consider the situation where we receive testimony thlhJs the murderer, followed by the sup-
position that if John is the murderer, then the victim is aeralin this case it seems the reasonable thing to
do is drop the acquired belief that John is the murderer. Meweasing the operatef, gives

<y o(p = 1) =Cn(p A-~q A7)

That is, we end up believing John murdered an alien!
The move to our more general family of tpo-revision opesatrables a correct treatment of both these

scenarios simultaneously. Consider ghéaithful tpo < represented by:

In the first case where we receive evidence pointing towaste’d guilt followed by the supposition Mary
did it, we have

<, 00=Cn(pAqA-r)
which is the intuitive result. In the case where we receividanwce for John being the murderer, followed
by supposing that if John is the murderer then the victim ialeam, we have

<, olp = 1) =Cn(=p Ag A=)

which is what we would expect.
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100 O————0
010 o————o0

110 o—0

000 o— 0

101 o— 0

011 o5

111 o———0
001 o——— 0

Figure 3: Example of abstract interval ordering

8 Another subclass

Close inspection reveals that both the limiting cases raeatl above share something in common — in both
cases we have«=<. Writing out this condition in full, the unique& defined in each case satisfies:

(5) x <y*iff x~ <y*.
This condition states that no” appears in the same-rank as ay*. In this section we take a look at the
subclass of our family of revision operators defined by egifigy this condition.

One thing to notice is that k=<« then the distinction between the overrules relation andthietly

overrules relation relative te: disappears — they collapse into the same binary relatioriorfemn axiomatic
characterisation of this subfamily, the next result pothesway:

Proposition 13 If « is generated from some-faithful tpo overi* satisfying &5) then= satisfies

(+*8) Forx € [a] andy € [-a], eitherx <}, y or y <}, x.
Furthermore if+ is anyrevision operator for< which satisfies+g) then the<-faithful tpo <. defined in the
completeness proof of Theorem 1 satisfi€s)(

Proof: For the first part let = +< for some<-faithful tpo satisfying £5). Letx € [a] andy € [-a]. Then
to show the consequent o) we need to show that eithet < y~ ory~ < x*. By (<5) we can replace the
second disjunct here by < x*. But since< is a tpo (by £1)) we always have either” < y~ ory~ < x™*.
Hence the consequent e8] holds.

For the second part letbe a revision operator satisfyingg). We want to show™ <, y* iff x~ <, y*.
If x = y we knowx™ <. x~ so neither of these conditions can hold, making the bicantit true in this
case. So suppose# y. In this case the first condition is equivalemxt&*y y while the second is equivalent
tox <, Y- But from (:8) (smcex # y) we know eitherx <j y ory <j x, i.e.,x »} y. This means <j y
can hold iffx <j, y, as required. |

Condition ¢8) means that after revising lay there is a separation betweesworlds and-a-worlds, in the
sense that eack’,-rank containseitheronly a-worlds or only—a-worlds. This property is called (UR) by
Booth & Meyer [7], where it is shown that its sentential carpart is:

(08) If ma ¢ <, of thena €<}, ofs.
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Postulate ¢8) says that after receivingas evidence and then making the suppositianshould be believed
as long as it is consistent to do so.

(+8), alias 68), is quite a strong rule, and adding it to the list)~(7) causes some redundancies.
Since ¢8) implies the equivalence aof <}, y with x <}, y for x »* y, we see £{6) now follows from ¢7).
Meanwhile ¢5) becomes equivalent to “if <* y andx < y thenx <, y” (i.e., (CR4) proposed by Darwiche
& Pearl [12]. But using the fact that=<Z- (which follows from ¢3)), this is seen as just the instance-af)(
in whichy = T. Hence £5) also disappears. Thus the class of tpo-revision opergtemerated by those
<-faithful tpos overW* satisfying &5) may be characterised as follows:

Theorem 2 Let = be a revision operator foK. Then= is generated from soms-faithful tpo overWw=
satisfying &5) iff = satisfies {1), (+3), (+4), (+7) and ¢8).

Of course we can if we wish replace the last four rules abotle tlieir sentential equivalents.

9 Improvement operators

The problem of defining tpo-revision operators has also Iségtfied recently by Konieczny et al. [27, 25].
Their purpose is to studigerable tpo-revision operators in which repeated revisiombgventually leads to
acceptance af into the tpo’s associated belief set. This “weak succesgpenty rules out, for example,
just blindly using+p to always revise the current tpo at every turn. (We remarktthia property is fully
formalised by Konieczny et al. We just provide an intuitivesdription here.)

Konieczny et al. study and axiomatise a series of classeaabf gperators. The general classirof
provement operatorsatisfies, in addition to the above weak success requirertentules {£1)-(*5). Next
comes the class sbft improvemerperators, which is obtained by adding the following pagei(referred
to as (S4) in [25]):

(xsoft) Ifx € [a] andy € [-a] andy < x theny <}, x
This rule limits the mobility ofx-worlds when revising bw. It says are-world is not allowed tevertake
a —a-world which was initially considered strictly more prefed. This obviously excludeg.. However,

the following result shows that soft improvement operatiwsatisfy another of our postulates. (Recall that
(Pareto) is a consequence ef)-(x5) - see the discussion just before Proposition 2.)

Proposition 14 Let= be any tpo-revision operator satisfying (Pareto) arsbft). Then: satisfies {6).

Proof: Letx € [a], y € [-a], i.e.,x <* y, and supposg <}, x. We must showy < x for anyy. From
x <"y, y <, xand (Pareto) we know < x. If y <7 x theny <J, x from (Pareto) again and so we obtain
the conclusion. Ifc <" i then we obtain the requiregl<}, x by (+soft). [

We will see below that soft improvement operatorsndbgenerally satisfy«7).

Konieczny et al. go on to describe three distinguished mesnbethe family of soft improvement
operators, which we describe informally below (we referrdeder to [27, 25] for the formal details). In the
following we usex < y to denote the fact that < y and there is na € W such that < z < y:

One-improvementThe one-improvement operator, which we denote hesg btisfies the following prop-
erty (called (S5) in [27]):

(*0) Ifx e[a]andy € [-a] andy < x thenx <}, v
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X1 o X1 o X1 o X1 o

X2 5] X2 o X2 6} X2 5]

X3 o} X3 @) X3 @) X3 o}

X4 (6} X4 () X4 () X4 6}
< <pe <p <p

Figure 4: An initial tpo< and the result of revising by a using=,, *, and=, resp., wherg¢a] = {xp, x4}.

Combined with {soft), this means that if <* x andy < x, but y andx were neighbours ir, then, after
revision bya, x ‘moves in’ with y, in the sense that they now share the same rask info illustrate, look
at the example in Figure 4. The leftmost box depicts an Iniia < over W = {x1, xp, x3,x4}. The box
to the right shows the result of using to revise< by some sentence whose models arer;, x4}. After
revision,x, joins the rank of the the immediatety-preceding-a-world x1, andx, joins the rank of the the
immediately<-preceding-a-world x3.

Half-improvement The half-improvement operatey, is just like one-improvement, except thatmoves
in” with y only if there were no-a-worlds sharing the same rank a# the initial tpo<. Thus, in Figure
4 (third box from the left) we see that increases its plausibility with respectze (in keeping with ¢5)),
but remains strictly less preferred than due to the presence of thex-world x5 in its <-rank. Forx,
however, since there is nax-world in the same<-rank, x; moves into the same rank ag, as in the case
of one-improvement.

Best-improvement The best-improvement operatey behaves as half-improvement, except that now
moves in withy only if there are no rankat all in < which contain both am-world and a-a-world.
In such a case is said to beseparatedn <. Effectively best-improvement behaves likg unlessa is
separated i, in which case it behaves like one-improvement. For exaniplEigure 4« is not separated
in < (sincex; andx; share the same rank), leading to the result of revision shiowire last box.

Of the three specific soft improvement operators mentiomede, only one-improvement falls within
the general family of tpo-revision which we described inphevious sections:

Proposition 15 =, satisfies £7), but=, and=, generally do not.

Proof: To show=, satisfies £7) we will show how ¢7) may be derived from={)-(x5), (+soft) and ¢o).
Supposer <* y andy <, x. We must showy <}, x. Firstly, fromx <* y andy <;, x we knowy < x from
(Pareto). If it were the case that<” x then we would get the desired conclusion from (Pareto), ppase
x <’ y. Now, if it were the case that < x then we would obtainx <}, y from this andx <* y using o),
thus yielding a contradiction. Hence we have shown thatx, but that it isnotthe case thay < x, and so
there is some such thaty < z < x. We split into two cases, according to whethet [y] or not. Ifz € [y]
theny <z by (+soft) andz <) x by (+3), giving the required; <) x by (+1). If z € [—y] theny <)z by
(*4) andz < x by (+soft), again giving the requireg <5 x by (+1).

To see thaky, and %, fail to satisfy &7) in general, consider again the example of Figure 4. We have
x1 € [-a], x2 € [a] and bothy; < x, andx; <° x,. If #, and#, satisfied £7) then we would also expect
x1 <" xp andx; <P xp, where[y] = {xz,x3,x4}. However boths, andx, yield the following tpo when

Y 7
revising byy.
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X1 O
X2 @
X3 @
Xy @
So bothx; <3 x2 andx; <) x2, contradicting 7). ]

Since one-improvement satisfied)-(x7) we know it may be generated from somdaithful tpo over
W=. Infact it is generated by the unique tgcsatisfying £1)-(<4) together with the property

(20) x<yimpliesx™ ~ y*

In other words, ifx < y andx, y are in adjacent ranks ig, thenx™ andy* are in the same rank ix:

X1 O O

X2 O O

X3 O O

X4 O O

X5 O O

10 Strict Preference Hierarchies (or Interval Orderings)

In this section we introduce a way of re-packaging a givereong < over W* satisfying &1)—(<4). We
show that this alternative representation is equivalentsing the class of orderings. This representation
in terms ofstrict preference hierarchiewill be used in section 11 to describe desirable properteshe
revision of, not just tpos, buhe strict preference hierarchies themselv&hkis is equivalent to the revision
of the class of orderings, and therefore goes beyond the revision of just tpos, toigeathe first steps in
the description of an approach for revising epistemic statataining the enriched structure to be found in
the class of orderings.

As observed in section 6, from a singtewe can extracthreedifferent notions oftrict preferenceover
W.

1L x<yiff x* <y*

2. x<yiff x <yt

3 xxyiff x~ <yt

We are now in a position to define our alternative represiemtatf <.

Definition 6 The triple$ = (<, <, <) of binary relations ovelV is astrict preference hierarchy (ovéy)
(SPH for short) iff there is some relatianover W* satisfying £1)—(<4) such thaiw, < and< can all be
defined fronx as above. We shall sometimes say thatrelative to<.
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Such “interval orderings” like the above have already beedied in the context of temporal reasoning [2],
as well as in preference modelling [32]. Indeed, concertiiegformer case, the relatiors<, <, < could
all be defined in terms of the relatiohefore meetsand overlapsbetween temporal intervals studied by
Allen [2].

What are the properties of the three relati¢rs, <, <)? A couple were already mentioned in Section
6. For example we already know from there tkatand < are strict partial orders (i.e., irreflexive and tran-
sitive). But what else do they satisfy? In particular how keytinterrelate with each other? Furthermore,
given anyarbitrary triple § = (<, <, <) of binary relations oveW, under what conditions o can we be
sure that forms an SPH, i.e., under what conditions can we be sure themme< satisfying €1)—(<4)
such that5 can be derived fronx in the above manner. These questions are answered by tbevifadl
representation result for SPHs. We point out that fiaytof the “only if” part (but not the “if” part) was
essentially already proved, in the temporal reasoningesonby Allen [2].

Theorem 3 Let <k, < and < be three binary relations ovalV. ThenS = (<, <, <) is an SPH iff the
following conditions hold (where < v iff y £ x):

(). <is atotal preorder.

(i) . «<xCxC<.

(iii) . The following are satisfied, for all, y,z € W:

(SPH1) z<xandx < yimpliesz <y
(SPH2) x < yandy <zimpliesx < z
(SPH3) z <xandx < yimpliesz <y
(SPH4) x < yandy <zimpliesx < z
(SPH5) z <xandx < yimpliesz <<y
(SPH6) x < yandy <zimpliesx <« z

Proof: The “only if” direction is straightforward, and in fact easy visualise given our new graphical
representation ok. For the “if” direction suppos® = (<, <, <) satisfies(i)—(iii). We must find some

relation<g over W* such thafa) <s satisfies £1)—(<4), and(b) the relations«, < and< may be defined

from <5 as above. We defings as follows. For eaclr,y € W ande, 6 € {+,—} we must specify the

conditions under which¢ < y° or not. First, in the case = 6 we define

X <Zg yiff x<y.
This clearly ensuresg satisfies conditions<(2) and 3). If € # 6 butx = y then we declare
xt <g x”.
This ensures<£4) is satisfied. Finally it # 6 andx # y then we set
ey iff ykkx x gytiff x<y.

We still need to showkg satisfies £1), i.e.,<g is connected and transitive.

Connectednes$Ve need to show for any, iy € W ande, 6 € {+, -} eitherx® <g y° or y° <g x. If € = 6
then, by construction ofg, this reduces to showing that eithex y or y < x, which obviously holds since
< is connected. So suppose# 6. In this case if furthermore = y then we know by construction that
preciselyoneof x¢ <g x® andx® <g x¢ holds, namelyt <5 x~. So suppose boih# 6 andx # y. Assume
€ = + andd = — (the reverse case is symmetrical). Then by constructioneed o show eithey #« x or

y < x. But this follows since<C< as required.

27



Transitivity. We need to show, for any, y,z € W ande, 6, v € {+, -},
X <¢ 1° andy® <g z" impliesx® <g z".

If v = 0 = e then this follows from the transitivity ok. Now we consider the other possible combinations
of €,6 andv.

€E=0#V.

In this case, since® <g y5 reduces tor < y, we must show

x < yandy® <g z" impliesx® <g z".

So suppose the antecedent holds. Suppose + andv = —. If z = x then the consequent holds by

construction of<g so suppose # x. Then the consequent reducestg« x. If y = z then fromx < y

we getx < z and so, sincekC<, we obtain the required consequent. So supposeiaisa. Then from

y? <5 z" we obtainz 4« y. Then this together with < y gives us the required 4« x using (SPH2).
Suppose insteadl = — andv = +. Theny # z (since otherwise/® <s z" becomes/~ <g y*, contrary

to the construction ofs) soy° <s z" becomes/ < z. If it were the case = x then this would givey < x

and so, sincexC<, y < x — contradiction. Hence # x which means to show the consequent holds we

needr < z. But this follows fromy < z andx < y using (SPH3) as required.

v=€#0.

In this case the consequent reduces 0z, and so we must show

X <g y° andy® <g z" impliesx < z.

Suppose the antecedent holds. First suppose+ and6 = —. Then we knowz # y (since otherwise
y? < z would bez~ =g z* which is not possible), hence frog? <g z we knowy < z. If y = x then
the consequent becomgs< z, which then follows fromy < z using the fact that&cC<. So supposeg # x.
Thenx” <s 1° becomes #< x, and this together witly < z gives the required < z using (SPH6).

Suppose instead = — andd = +. Then we knowy # x (otherwisex” <s y° would lead toy~ <g y*)
sox” <g y° reduces tor < y. If z = y then this in turn gives < z which implies the required < z using
the fact thakcC<. So suppose # y. Then fromy® <g z¥ we getz #< y which, together with: < y gives
the requiredr < z using (SPH5).
v=0+#E€.
In this case we must show

x¢ <5 y° andy < z impliesx® <g 2°.

First suppos® = + ande = —. Thenx # y since otherwise® <g y° would becomex™ <g x* which is
impossible. Henca® <5 y° becomest < y. From this we knowx # z since otherwise < y, which
contradictsy < z (since<C<). Hence the consequentis< z. But this follows fromz <« y andy < z
using (SPH4).

Now supposed = — ande = +. If x = z then the consequent becomes <g x~, which holds
automatically by construction afs. So assume # z, which means the consequent is equivalent #& x.
Now if x = y then this would be just #< y, which then follows fromy < z using the factsC<. So
assume als@ # y. Thenx® <g 1° becomesy #« x. But this together withy < z still implies the desired
consequent £« x using (SPH1).

Thus we have proved thats satisfies all three rulex)—(<4). It remains to showx, < and< may
all be recaptured fromgs. For << we need to show for any, y € W, x << y iff x~ <g y*, in other words
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x < yiff both x~ <g y* andy* £g x~. If x = y then the left-hand-side will be false (sine« is clearly
irreflexive) so in this case we must shaw #£¢ x*, i.e.,x* <g x~. But this holds by construction &fs.
If x # y the construction tells us we must shaws y iff both x << y andx < y. But this holds since
<C<. Hence< may indeed be defined froas. For < we need to show < vy iff x~ <g y*. The case
x = y holds as in the case above fex, while the case: # y follows immediately by construction. Finally
for < we needr < yiff x* <g y*. Again this is immediate from the construction. |

The rules (SPH1)—(SPH6) each represent some sort of fx@tgsibndition across the relations of the SPH.
Note it follows easily from these conditions that and < are strict partial orders.

Two special limiting cases of SPHs were already mentionegkiction 7: Given any tpa over W with
strict part<, the triples(d, 0, <) and(<, <, <) eachalwaysforms an SPH, as can easily be seen by checking
conditions(i)—iii) of the theorem. In fact these are the SPH forms of the wellskntexicographic tpo-
revision operator [30] and Papini’s [33] “reverse” lexicaghic tpo-revision operator respectively.

SPHs seem quite closely related to the notion of “PQI infeovder” studied byOztiirk et al. [32].
Indeed several representation results in the same spifih@srem 3 can be found in their work. The main
difference with ours is that PQI interval orders make userpé&xgplicit numerical scale, so the endpoints
of the intervals are ordinary real numbers, whereas ounval® are “abstract”, having endpoints only in
some totally preordered set (but see Section 11.1 of thisrpaplso, with PQI interval orders, different
possibilities (i.e., possible worlds for us) may be assignéervals of different length. Itis even possible for
the interval assigned to one possibility to be completiglosedn the interval assigned to another. This
is something we do not allow. We are currently in the procésxamining in more detail the relationship
between SPHs and PQI interval orders.

To summarise the findings of this section, we now see we hawdlifferent, but equivalent ways of
describing the structure required to revise aipo

1. As a<-faithful tpo < over W* satisfying €1)—(<4).

2. As atriple(<, <, <) of binary relations ovelV satisfying conditiongi)—(iii) from Theorem 3 (with
< being the strict part of).

Recall that the revision operatefor < derived from a<-faithful tpo < overW+ is defined by setting <}, v
iff 7,(x) < ro(y). The next result shows how we can descrilpirely in terms of the SPH corresponding to
<.

Proposition 16 Let< be a tpo oveiV and let< be a given<-faithful tpo overiW*. Let$ = (<, <, <) be
the SPH corresponding t8 and let+ be the revision operator fog derived from<. Then, for allx, y € W,

x~*yandx <y
x < yiff § or x<®yandy &< x
or y<*xandx <y.

Proof: Givenx,y € W, we can clearly split into three mutually exhaustive anduesizce casex ~“ v,

x <* yandy <* x. In the first case we know already<’, vy iff x < y by (+3) and ¢4). This takes care of
the first clause in the above identity faf,. If x <* y thenr,(x) = x™ andr,(y) = y~ so by definition of
<!, we havex <}, yiff x* < y~. This is equivalent ta/~ £« x*, i.e.,y #< x. This takes care of the middle
clause in the above identity. Finallyif <* x thenr,(x) = x~ andr,(y) = y*, so nowx <, yiff x~ < y™,
i.e.,x < y as required to show the last clause in the above identity. [
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Since the class of orderings and the class of SPHs are equivalent, any way of revising dtieese
two types of structure will automatically give us a way ofisig the other. We are free to use whichever
one seems more appropriate at the time. For the purpose fsskpgdesirable propertiesf revising<, it
is easier to express such properties in terms of SPHsthan

11 Properties of SPH Revision

Given an SPH and a sentence, we want to determine the new SBHp a which is the result of revising
the entire SPH by a. Assumeb = (<, <, <) and let's denot& @ « by («’, <’, <’). Firstly, we have the
following three fundamental properties:

(®1) S®aisanSPH

(®2) <'=<

(®3) lfa=ythenS®@a=5®y

In (®2), <, is the strict version of the tpg, determined using, < and<« as in Proposition 16. In other
words,S ®@ a should be an SPH relative td,. (®3) is a syntax-irrelevance property.

With <’ settled, it remains to specifg’ and<’. An initial suggestion for the new strong strict pref-
erencesz«’ might be to keep it unchanged. That is, to gef equal to<k. This can be seen as a pure
application of minimal change tex. In addition, it is easy to see thak C <’ and so such a choice is not
at odds with par{ii) of Theorem 3. However, the following example shows this tha’done in general.
For$ ® a to be an SPH it is necessary to satisfy

SPH1) z < xandx <’ yimpliesz <«’
a y y

But if we set<k=<«’ this might not hold in general. For suppose we are given aguodf the < corre-
sponding tdb as follows:

Sox <« y andz # y. Now suppose we revise by a sentencguch that: € [a] andx, y € [-a].

X o9
y oO——0
®e— O

Thenz <}, x, thus giving the required counterexample. Note, incidgnthat it is still a counterexample
if we assumey € [a]. Thus there are times when the set of strong strict prefesanastchange. In the
above counterexample, when we move fregato <<’ we musteitherlosex <« y, or gainz < y. How
do we decide which? A useful approach is to distinguish betwthe case/ € [-«a], as indicated in the
counterexample above, and the cgse [a]. In the former case intuition dictates thatk y ought to be
retained sincer does not discriminate betweenandy: they are both if-a]. Moreover, it is justifiable
to gainz < y since we have a positive representatiorz ¢t € [a]) and a negative representation ipf
(y € [-a]). On the other hand, in the case where [a] it can be argued that the strong preferemce y
can be lost since we don’'t have such a strong case to prefeer y anymore whemn € [-~a] andy € [a].
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Also, note that in this case it seems reasonable to requteftd relative ordering of andy with respect to
<, < and<« ought to remain unchanged sineeloes not distinguish betweerandy: they are both ifa].
This brings us, in fact, to what can be regarded as the bastalptes for SPH revision, once{)-(®3) are
included as well:

(®4a) Ifx~*ythenx < yiff x <"y

(®4b) Ifx ~* ytheny < yiff x <" y

(®5a) Ifx <® ythenx < yimpliesx <" y

(®5b) Ifx <* ythenx < y impliesx <’ y

Definition 7 The SPH-revision operata® is admissibldff it satisfies ®1)-(®3), (®4a), (®4b), (®5a) and
(®5b).

We refer to this as admissible SPH revision since it cornedpalosely to admissible revision as defined
by [7]. (®4a) and ©4b) are versions of Darwiche and Pearl’s (CR1) and (CR2), [d2{ules ¢3) and ¢4)
defined earlier. They require that the ordering of two eleserand y be unchanged, wrt t& and <,
provided that the circumstances foland y are the same (i.e. either both are[ir] or both are in[—a]).
This can be seen as an application of minimal change:tand <«. The postulatesg5a) and @5b) are
versions of rule«5) defined earlier. In fact, in the presence of the fundanhenkas ®1) and ®2), (®5a)
is astrengtheningf (+5). They ensure that a “widening of the gap” betwaeandy occurs when we have
a positive representation ofand a negative representationyofThis can be viewed as making sure that the
evidencen is taken seriously. A world in [a] will be more preferred with respect to a wordin [—-«a],
provided thaty was not preferred t® to start with. So, informally, admissible SPH revision eftea “slide
to the right” of those worlds if—a] in a manner similar to that described by Booth & Meyer. [7].eTh
difference here is that, with the aid & and<«, we can specify more precisely how such a slide is allowed
to take place.

We now turn to some additional properties which, on the fdci, seem to be desirable, and then
investigate how they square up against admissible SPHaoavighe first one we consider is
(®6) S®T=5
which states that everything remains unchanged if we rdwsa tautology. And indeed&®6) follows
immediately from &2), (®4a) and &4b).

Next we consider the pair of properties
(®7a) Ifx < yandx «’ ytheny <* x
(®7b) Ifx << yandx #’ ytheny <* x
which state that losing &-preference or a-preference ofr over y must be the result of being rep-
resented positivelyy( € [a]) andx being represented negatively € [-a]). It's easy to verify that@®7a)
follows from (®4a) and &5a), while ®7b) follows from @®4b) and @®5b).

Next is the pair of properties
(®8a) Ifx « yandx <’ ythenx <* y
(®8b) Ifx 4 y andx <<’ ythenx <* y

which state thagaining a <-preference or ar-preference ofx over y must be the result af being
represented positivelyr(€ [a]) and y being represented negatively € [-a]). It turns out that @8a)
follows from (®1), (®2) and ®4a), while @®8b) follows from ®1), (®2) and (®4b).

Next we mention a propertyot compatible with admissible SPH revision:

®9) If(x,<xn<, <))isanSPHthed ® a = (, <N <, <)

a’r S

31



Property ®9) is an attempt to enforce the principle of minimal changthwispect to both« and <.

To see that it is incompatible with admissible revision, mge$ is of the form(0, 0, <), i.e., «<«=<= 0.
Assume furthermore that < y and suppose we then revise duch thatc <* y. Then(<k, < N <, <)

= (0,0, <) is an SPH and sa¥9) dictates thab®a = (0, 0, <},). But observe that admissible SPH revision,
and more specificallyg5b), requires that <<’ y, which contradicts«’= 0.

The difference between the approach advocated®$) @énd admissible SPH revision is thaq) re-
quires all three orderings to change as little as possibddewith (®5a) and &5b) we are advocating that
the new evidence overrides the principle of minimal change.

Finally we mention a couple of plausible properties whichbggondthose of admissible revision, in
that they relate the results of revising @hjferentsentences. Recall (Definition 4) that we sagindy agree
onx, y iff they both “say the same thing” regarding the relativeusiaility of x, y. The next 2 rules express
that whether or nat <’ y andx <’ y should depend only o and on what the input sentence says about
the relative plausibility between y. They express a principle of “Independence of Irrelevanerkiatives

in the Input”. Here we are writin§ ® a = (<<, <, <p) and$ ® y = (K, <, <)).

(®10a) Ifa andy agree orx, y thenx <, y iff x <,y
(®10b) If v andy agree onx, y thenx <<, y iff x <<, y

We omit the case fox;, <}, since these were already proved in Proposition 3 to follamf(1)—(:7). It is
thus already handled bwg). It can be shown that adding these two rules to those foissilole revision
leads to the redundancy ab8) and allows ¢@4a) and ©4b) to be replaced by the simple ruleq).

11.1 A Concrete Revision Operator

In the previous section we proposed that any reasonabler®®sion operator should at the very least be
admissible according to Definition 7. In this section we destmte that such operators exist by defining
a concrete operator for SPH revision which is admissiblas dperator employs yet more structure which
goes beyond SPHs and their corresponding ordesnmger W+, and which takes us a step closer to the PQI
interval orders ofzturk et al. [32] and also to semi-quantitative represstms of epistemic states such as
that of Spohn [36]. But we expect there will be other, inténgs admissible revision operators which can
still be defined in a purely qualitative fashion. This is aitdjor further research.

To decribe our operator it will be useful to switch back to #eepresentation of our tpo-revising struc-
ture rather than work directly with SPHs. The basic idea isrtach the<-representation with numerical
information. More precisely, to each elemefitt W* we assign a real numbg¢x) such that for alk € W,

p(x7)—p(xT)=a>0,

wherea is some given fixed real number. The idea is that the smakentimbep(x€), the more preferred
x° is. To each such assignmgnve may associate an orderiag over W* given by

x€ =y iff p(x®) < p(y°).

Essentially we replace our abstract intervats, x~) with the real intervalgp(x*), p(x7)), all of lengtha. It
is obvious thak, satisfies £1)—(<4). (Again, we point out it is naabsolutelynecessary for all the intervals
to be of thesamelengtha in order for<, to satisfy £2) and &3).)

To revise a given SPH by sentencer we will use the following procedure:

1. Converts to its corresponding tpg over W=
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2. Choose somg such thats=x,
3. Revisep to get a new assignmept:
4. TakeS ® a to be the SPH corresponding £9.,

Clearly the crucial step here is step 3. How should we detemi a? We propose a very simple method
here. We defing » a by setting, for each® € W+,

. o | p(x€) if x € [a]
(pxa)x’) = { p(x€) +a if x € [-a]
In other words, the intervap(x*), p(x~)) associated ta remains unchanged if satisfiesy, but is “moved
back” by amount: to (p(x™), p(x™) + a) if x satisfies-a. Essentially this boils down to nothing more than
an operation familiar from the context of Spohn-type ragkiknown ad.-conditionalisation[18].

The following result reveals wh&® « will look like.

Proposition 17 Assumé = (<, <, <) and letS® a = («’, <’, <’) be as defined in the above procedure,
for suitablep in step 2. Then, for any,y € W,
(i) <’=<},, wherex is the revision operator corresponding $cas in Prop. 16.
(ii)
x~*yandx <y
x <" yiff § or x<*yandx<y
or y<*xandp(x")+a<p(y").

(iii)
x~*yandx <<y
x < yiff § or x<*yandx<y
or y<*xandp(x”)+a<p(y*).

Proof: We assume is the tpo oveiV* corresponding t6 and that is chosen such that=x<,,.
(i) We need to show <’ yiff x <}, y. By construction of<’, the left hand side here is equivalent to
X" <pa Yyt e,

(pra)(x") < (p*a)(y").

Meanwhile, using the identity in Prop. 16 we may reformulieright hand side, as follows:

x~*yandx <y
x <, yiff { or y<®xandx <y
or x<*yandy < x.

We now check for identity in each of the cases” y, y <® x andx <% y.

First supposer ~* y. Then we must showp * a)(x*) < (p * a)(y*) iff x < y. Butif x ~* y then
either both worlds satisfig or both do not. In the former cage * a)(x*) = p(x™) and(p = a)(y*) = p(y*).
while in the latter casé * a)(x™) = p(x*) +a and(p * @)(y*) = p(y*) + a. In both cases we are left with
(pra)x*) < (pra)y™)iff p(x*) < p(y*). But this is the same as” < y*, i.e.,x < y as required.

If y <* x then we must showp * a)(x™) < (p = a)(y*) iff x << y. Butin this case we gép * a)(x*) =
p(x) +a =p@)and(p = a)(y™) = p(y™), so(p* a)(x") < (p*a)(y") iff p(x~) < p(y"). Butthis is the
same ag~ < y*,i.e.,x < y as required.
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Finally if x <* y then we must shofp=a)(x™) < (p*a)(y™) iff y < x. Butinthis casép+a)(x*) = p(x™)
and(p+a)(y™) = p(y™") +a =p(y~), so(p*a)x™) < (p+a)(y™) iff p(x™) < p(y™) iff p(y~) < p(x¥). But
this is the same ag~ < x*, i.e.,y < x as required.

(i) We havex <" yiff x~ <o y* iff (p* a)(x7) < (p*a)(y™). Again we check for identity in each
of the casex ~* y, x <* yandy <* x. Firstif x ~* y then we need to shofp * a)(x™) < (p * a)(y") iff
x < y. But as in par(i) above we havép + a)(x™) < (p = a)(y") iff p(x7) < p(y*) iff x~ <y*, e, x <y
as required.

If x <* y then we needp * a)(x™) < (p * a)(y*) iff x < y. Butin this casdp * a)(x”) = p(x~) and
(p*a)y™) =py")+a=py"), so(p+a)x”) < (p*a)(y") becomeyp(x™) < p(y”), i.e.,x” <y, which
is the same as < y as required.

If y <* x then we needp +a)(x™) < (p*a)(y™) iff p(x~) +a < p(y*). But this holds sincéy *a)(x™) =
p(x") +aand(p = a)(y*) = p(y™) directly by definition ofp * a.

(i) Proved along exactly similar lines (i), but with strict inequalities< replacing the weak ones. m

From this result we can see thatsatisfies ©2), (®4a), @®4b), (®5a) and &5b). We can also see from
this that the result of revision depends]as rather thany, thus ®3) is also satisfied. Meanwhile rule{)
obviously holds. Thus:

Corollary 3 The SPH-revision operata@ defined via the above procedure from a given assignmesit
admissible. Furthermore®{10a) and ¢10b) also hold.

12 Conclusion

We have introduced a new family of operators for revisingstpp sentences based on the simple intuitive
idea that when we compare possibilities, we are often ablenémine these possibilities with regard to
best case and worst case scenarios. We then extended thafoak to revise not only tpos, but also the
structurerequired to guide the revision of the tpo. We showed thatdtniscture may be described in terms
of strict preference hierarchies (SPHs), and proved thé/algmce of this representation with the class of
orderings<. We provided some properties which any reasonable SPHioevbperator ought to satisfy, and
proved their consistency by giving a concrete example offiH-Bavision operator which satisfy them. We
placed our work firmly in the context of the problem of itechteelief revision, and showed that our results
significantly extend current work on this topic.

In this paper we have proposed a type of structure which capiadmed on top of the usual tpo repre-
sentation< of an agent’s epistemic state and whose role is in fact tautske the agent’s new tpo in its
revised epistemic state. This structure takes a specific flotthe guise of &-faithful tpo over the seWv*
or, equivalently, a SPH relative to. The question naturally arises as to whether any other lkahducture
are conceivable which equally go beyond the basic tpo reptason and which can be deployed to obtain
a new tpo following receipt of new propositional informatioln fact several different representations can
be found in the literature. Bochman [5] represents an apiststate as an ordered set of states, each state
being labelled with a logically closed set of sentences.nhain [29] uses a sequence of sentences repre-
senting the revision history of the agent (see also [26])révigenerally one can use a sequencsat§of
sentences [13]. Revision is enacted by placing the newsente an appropriate position in the sequence
(e.g., at the right-most end), though the precise positiag be determined by extra means which may de-
pend on the context of the revision episode. Another enréiirwas considered by Booth et al. in [9], with
the tpo< over W being augmented by a second ordering, also @emHowever, there the extra structure
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was deployed to calculate the result adingle-step belief contractiorather than iterateckvision Finally
there are the more quantitative (or at least semi-quarédaccounts of epistemic states, particularly Spohn
rankings [36] and possibility functions [14]. Deeper coctitns between these representations and the one
of the present paper remain to be worked out, as well as th&tiqneof which representation can be said
to be thebestway to represent an agent’s epistemic state. However suahvestigation would probably
require a paper of its own.

On the level of belief sets, our operators for revising t@disfithin the realm of non-prioritised revision,
in that revision inputs are not necessarily elements of tlietset associated to the epistemic state. This
is in contrast to most work on iterated belief change, whiehusually given in the prioritised setting (with
the works of Booth [6] and Konieczny et al. [27, 25] being eptaens). We envisage prioritised revision by
a as a two-stage process, with the first stage being carriebyonte of the operators in this paper, and then
the second stage consisting of an application of Boutilieatural revision[11] of the resulting tpo by,

i.e., the most preferred-worlds are simply brought if necessary to the front of the tygo. For the special
case of the operatep, this was already done by Booth & Meyer [7] (section 5), legdio therestrained
revisionoperator. For future work we plan to apply this to the moreagahfamily.

Another direction for future research is the investigatidtarger families of revision operators, such as
those obtained by weakening one, or both, €2 and &3). Observe that this is equivalent to weakening
(*3) and ¢4), or (03) and @4). The weakening ofd4) will be of particular interest, since it is essentially
equivalent to the much-criticised postulate (C2) proposgdarwiche & Pearl [12] and reproduced in
section 2.

Conversely, it would be interesting to consider speciatkgses of our general family. We considered
some in sections 7 and 8. Another example could be the farbiired by takingk or <« to be modular
orderings. Finally note that our operators do not conforitinéoprinciple ofcategorical matching- from an
initial tpo < together with a<-faithful tpo < over W* they return a new tpg:’,, but give no help on defining
a new< -faithful tpo overWW* which can then be used to further revise One way of rectifying this might
be to preserve as much ek and< as possible.

For future work on SPH-revision we plan to investigate masiicble properties, and to examine useful
equivalent ways to reformulate the ones we already havenhidmptaper all our properties are formulated as
rules for single-step revision of SPHs. But since an SPH @@sdhe structure required to revise its asso-
ciated tpo, these properties correspond to propertieddoble-stepevision of tpos. To give an example,
property @®5a) corresponds to the following rule governing revisioraapo < by « followed by 8, which
we denote for now b)g;ﬁ:

If x <* y andx < y thenx S;ﬁ y.

As mentioned above we intend to come up with other concreté-®Rision operators, which perhaps
can be described in purely qualitative terms rather thanineg extra numerical information like the oper-
ator described in this paper.

On a more fundamental level, as noted previously, the fraoniewresented here can be viewed as a
special case opreference aggregationr social choice theory3]. We intend to pursue this link by an
investigation into extending the positive and negativeesentations of worlds to a finer-grained version
in which representations of worlds cover a larger spectr@momparison of such an extended framework
with existing work in preference aggregation and sociaiahtheory may well prove to be illuminating for
both disciplines.

In a similar vein, there seems to be a close connection bata@eework and the work on preference
modelling using interval orderings yztiirk et al. [32]. The possible relationships betweerattsl belief
revision and works such as these have, as far as we are awabean previously explored. We plan to look
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more closely at this. More generally, the question of howweairk fits into the more general use of interval
orderings [15] is also well worth exploring.

Finally, it is worth noting that our work can be seen as refytihe conjecture by Spohn [36] that an
adequate treatment of prioritised iterated revision hasetquantitative in nature. The conjecture is based
on the assumption that the only reasonable candidates #itajive iterated revision are Boultilier's natural
revision [11] and Nayak’s lexicographic revision [31], bbat both are flawed. The conjecture formed
part of his motivation for developing a theory ofdinal conditional functions While we agree with the
claim that both natural and lexicographic revision can hebjfamatic, we have shown in this paper that a
gualitative setting leaves room for much more than justahle® iterated revision operators.
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