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Abstract

Most approaches toiterated belief revisionare accompanied by some motivation for the use of the pro-
posed revision operator (or family of operators), and typically encode enough information in theepis-
temic stateof an agent for uniquely determining one-step revision. Butin those approaches describing
a family of operators there is usually little indication of how to proceed uniquely after the first revision
step. In this paper we contribute towards addressing that deficiency by providing a formal framework
which goes beyond the first revision step in two ways. First, the framework is obtained by enriching the
epistemic state of an agent starting from the following intuitive idea: we associate to each worldx two
abstract objectsx+ andx−, and we assume that, in addition to preferences over the set of worlds, we are
given preferences over this set of objects as well. The latter can be considered as meta-information en-
coded in the epistemic state which enables us to go beyond thefirst revision step of the revision operator
being applied, and to obtain a unique set of preferences overworlds. We then extend this framework to
consider, not only the revision of preferences over worlds,but also the revision of this extended structure
itself. We look at some desirable properties for revising the structure and prove the consistency of these
properties by giving a concrete operator satisfying all of them. Perhaps more importantly, we show that
this framework has strong connections with two other types of constructions in related areas. Firstly, it
can be seen as a special case ofpreference aggregationwhich opens up the possibility of extending the
framework presented here into a full-fledged framework for preference aggregation and social choice
theory. Secondly, it is related to existing work on the use ofinterval orderingsin a number of different
contexts.

Note: This paper is a combined and extended version of papers whichfirst appeared in the proceedings of
KR 2006, the 10th International Conference on Principles ofKnowledge Representation and Reasoning
[8], and ECSQARU 2007, the 9th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty [10].

1 Introduction

Total preorders (hereaftertpos) are used to represent preferences in many contexts. In particular, they are a
common tool inbelief revision[20, 24, 34]. In that setting they are taken to stand for plausibility orderings
on the set of propositional worlds, which are used to represent thedispositionsfor change, or theconditional
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beliefsof an agent, and are encoded as part of theepistemic stateof the agent. The associatedbelief setis
taken to be the set of those sentences true in all the minimal worlds. When new evidenceα comes in,
the plausibility ordering is used to calculate the new belief set, usually by setting it to be the set of those
sentences true in all the minimal models ofα. This ensures a unique new belief set, but does not provide
enough information to obtain a new tpo which may then serve asthe target for thenextrevision input. Thus
the question of modelling the dynamics oftpos is of critical importance to the problem ofiterated belief
revision.

The past fifteen years has seen a flurry of activity in this areawith the work of Darwiche & Pearl
[12], Nayak et al. [30], and Booth & Meyer [7] being representative examples. Most approaches devote
considerable effort to motivating the use of their proposedrevision operator (or family of operators). But in
those approaches describing a family of operators there is usually little (or no) indication of how to choose
among the available operators. In this paper we make a contribution towards overcoming that deficiency by
providing a formal framework which obtains a uniquetpo following one revision step, thereby going beyond
just the belief set resulting from the revision input. This does not allow for choosing a unique operator, but
is a step towards such a choice, since it uniquely identifies both the belief set and the tpo. The framework
is obtained by enriching the epistemic state of the agent beyond a simple tpo, starting from the following
intuitive idea: when we compare two different worldsx and y according to preference, often we are able
to imagine different contingencies, according to whether all goes well inx and y or not. Our idea is to
associate to each worldx two abstract objectsx+ andx−, with the intuition thatx+ representsx in positive
circumstances, while x− representsx in negative circumstances, and we assume that,in addition tothe given
tpo≤ over the set of worlds, we are given a tpo� over this set of objects.

This meta-information allows us to uniquely determine the new tpo: when new evidenceα comes in it
casts a more favourable light on those worlds in whichα holds. Thus the evidence signals the use of the
positive versions of the worlds satisfyingα, and the use of the negative versions of the¬α-worlds. The
revised tpo≤∗α is obtained by settingx ≤∗α y iff xǫ � yδ, with ǫ, δ ∈ {+,−} depending on whetherx, y satisfy
α or not.

As we will see, one commonly assumed rule from belief revision which will not generally hold for our
revision operators is that the inputα is necessarily an element of thebelief setassociated to≤∗α. Thus, at the
belief set level, we are in the realm of so-callednon-prioritisedrevision [21, 22].

Although the approach described allows us to determine morethan just the belief set associated with
an epistemic state, there is a problem with this approach regarding iterated tpo-revision. While the extra
structure tells us how to determine a new tpo, it tells us nothing about how to determine the new extra
structure which is needed to guide the next revision. Clearly the problem of iterated belief revision has
simply re-emerged “one level up”. We investigate this problem by considering some desirable properties
for revising the extra structure, and prove the consistencyof these properties by giving a concrete operator
satisfying all of them.

The plan of the paper is as follows. In section 2 we give a briefintroduction to the influential approach
to iterated belief revision proposed by Darwiche and Pearl [12]. This is followed, in section 3, by describing
our enriched epistemic state. Then, in section 4, we show howto use this enrichment to define a unique tpo-
revision operator, and we axiomatically characterise the resulting family of operators. Initially we describe
the properties of this family on asemanticlevel, i.e., in terms of how the ordering of individual worlds x, y
undergo change. We show that the framework presented here can be viewed as a special case ofpreference
aggregationor social choice theory[3]. This opens up the possibility of extending the framework presented
here into a full-fledged framework for preference aggregation and social choice theory. In section 5 we give
an alternative,sententialformulation in terms ofconditional beliefs, and introduce the notion of what it

2



means for one sentence tooverruleanother in the context of a tpo-revision operator. In section 6 we study
notions of strict preference which can be extracted from� and show how these are closely related to the
overrules relation. In section 7 we examine two known special cases of our family and give an example
which shows how rigid use of either of these can sometimes lead to counter-intuitive results. In section 8
we describe and axiomatise an interesting subclass of our family which remains general enough to include
the two special cases, while in section 9 we compare our general family with another family of tpo-revision
operators which has recently been proposed, viz. theimprovement operatorsof Konieczny et al. [27, 25]. In
section 10 we introduce an alternative way of representing the� orderings which we callstrict preference
hierarchies(SPHs). We point out the link between this representation and the use of interval orderings in
various circumstances [2, 32]. We also show that these are equivalent to the� orderings. In section 11
we consider a few desirable properties which any good operator for revising SPHs should satisfy, before
proving the consistency of these properties in section 11.1by providing an example of a concrete operator
which is shown to satisfy them all. We conclude and mention ideas for further research in section 12.

Preliminaries: We work in a propositional languageL generated by finitely many propositional variables,
and with⊤ being the canonical representative of a tautology. We use⊢ and≡ to denote classical logical
consequence and classical logical equivalence respectively. We sometimes also useCn to denote the opera-
tion of closure under classical logical consequence.W is the set of propositional worlds. Givenα ∈ L, we
denote the set of worlds which satisfyα by [α]. Given any setS ⊆ W of worlds,Th(S) will denote the set
of sentences true in all the worlds inS. A tpo is a binary relation≤ which is both transitive and connected
(for anyx, y eitherx ≤ y or y ≤ x).

2 Darwiche-Pearl Revision by way of AGM revision

Darwiche and Pearl [12] reformulated the AGM postulates [1]for belief revision to be compatible with
their suggested approach to iterated revision. This necessitated a move from belief sets toepistemic states.
Epistemic states, as envisaged by Darwiche and Pearl, are abstract entities containing all the information
needed for coherent reasoning including, in particular, the strategy for belief revision which the agent wishes
to employ at a given time. Thus, an epistemic state will include the belief set of an agent, a plausibility
ordering (formally represented as a tpo onW), as well as any additional structure, which could include the
enriched preference information we propose in this paper. Given the abstract nature of such epistemic states,
it may well be possible to have different syntactic representations of, what is essentially, the same epistemic
state.1 In Darwiche and Pearl’s reformulated postulates∗ is a belief change operator on epistemic states, not
belief sets. We denote byB(E) the belief set extracted from an epistemic stateE. We useB(E)+α to denote
Cn(B(E) ∪ {α}), i.e., theexpansionof B(E) by α.

(E∗1) B(E ∗ α) = Cn(B(E ∗ α))

(E∗2) α ∈ B(E ∗ α)

(E∗3) B(E ∗ α) ⊆ B(E) + α

(E∗4) If ¬α < B(E) thenB(E) + α ⊆ B(E ∗ α)

(E∗5) If E = F andα ≡ β thenB(E ∗ α) = B(F ∗ β)

1Personal communication with Adnan Darwiche.
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(E∗6) ⊥ ∈ B(E ∗ α) iff ⊢ ¬α

(E∗7) B(E ∗ (α ∧ β)) ⊆ B(E ∗ α) + β

(E∗8) If ¬β < B(E ∗ α) thenB(E ∗ α) + β ⊆ B(E ∗ (α ∧ β))

Darwiche and Pearl then show, via a representation result similar to that of Katsuno & Mendelzon [24], that
their version of revision on epistemic states can be represented in terms of plausibility orderings associated
with epistemic states. More specifically, every epistemic stateE has associated with it a tpo�E on W, with
elements lower down in the ordering deemed more plausible. Moreover, for any two epistemic statesE and
F which are identical (but may be syntactically different), it has to be the case that�E=�F.

The other difference between the original AGM postulates and the Darwiche-Pearl reformulation – first
inspired by a critical observation by Freund & Lehmann [17] –occurs in (E∗5), which states that revising
by logically equivalent sentences results in epistemic states with identical associated belief sets. This is a
weakening of the original AGM postulate, phrased in our notation as follows:

(B∗5) If B(E) = B(F) andα ≡ β thenB(E ∗ α) = B(F ∗ β)

(B∗5) states that two epistemic states with identical associatedbelief setswill, after having been revised by
equivalent inputs, produce two epistemic states with identical associated belief sets. This is stronger than
(E∗5) which requires equivalent associated belief sets only ifthe originalepistemic stateswere identical. As
a consequence, (B∗5) doesnot follow from the Darwiche-Pearl postulates.

In addition to these differences we introduce a minor modification of our own to the Darwiche-Pearl
postulates. Letmin(α,�E) denote the minimal models ofα under�E. The belief set associated with the
epistemic state is obtained by considering the minimal models in �E i.e., [B(E)] = min(⊤,�E). Observe
that this means thatB(E) has to be consistent. This requirement enables us to obtain aunique belief set
from the total preorder�E, but it is incompatible with a successful revision by⊥. This requires that we
jettison (E∗6) and insist on consistent epistemic inputs only. (The left-to-right direction of (E∗6) is rendered
superfluous by (E∗1) and the assumption that belief sets extracted from all epistemic states have to be
consistent.) We shall refer to the reformulated AGM postulates, with (E∗6) removed, as DP-AGM.

DP-AGM guarantees a unique extracted belief set when revision byα is performed. It sets[B(E ∗ α)]

equal tomin(α,�E) and thereby fixes the most plausible worlds in�E∗α. However, it places no restriction
on the rest of the ordering. The purpose of the Darwiche-Pearl framework is to constrain this remaining
part of the new ordering. It is done by way of a set of postulates for iterated revision [12]. (We follow the
convention that∗ is left associative.)

(C1) If β ⊢ α thenB(E ∗ α ∗ β) = B(E ∗ β)

(C2) If β ⊢ ¬α thenB(E ∗ α ∗ β) = B(E ∗ β)

(C3) If α ∈ B(E ∗ β) thenα ∈ B(E ∗ α ∗ β)

(C4) If ¬α < B(E ∗ β) then¬α < B(E ∗ α ∗ β)

The postulate (C1) states that when two pieces of information—one more specific than the other—arrive,
the first is made redundant by the second. (C2) says that when two contradictory epistemic inputs arrive, the
second one prevails; the second evidence alone yields the same belief set. (C3) says that a piece of evidence
α should be retained after accommodating more recent evidence β that entailsα given the current belief set.
(C4) simply says that no epistemic input can act as its own defeater. The following are the corresponding
semantic versions (withv,w ∈W):
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(CR1) If v ∈ [α],w ∈ [α] thenv �E w iff v �E∗α w

(CR2) If v ∈ [¬α],w ∈ [¬α] thenv �E w iff v �E∗α w

(CR3) If v ∈ [α],w ∈ [¬α] thenv ≺E w only if v ≺E∗α w

(CR4) If v ∈ [α],w ∈ [¬α] thenv �E w only if v �E∗α w

(CR1) states that the relative ordering betweenα-worlds remain unchanged following anα-revision, while
(CR2) requires the same for¬α-worlds. (CR3) requires that, for anα-world strictly more plausible than a
¬α-world, this relationship be retained after anα-revision, and (CR4) requires the same for weak plausibil-
ity. Darwiche and Pearl showed that, given DP-AGM, a precisecorrespondence obtains between (Ci) and
(CRi) above (i = 1, 2, 3, 4).

For the rest of the paper we assume a fixed but arbitrary initial tpo ≤ overW which we wish to revise.
This tpo plays the role of the plausibility ordering over worlds introduced by Darwiche and Pearl into
epistemic states.< will denote the strict part of≤, and∼ the symmetric closure of≤ (i.e. x ∼ y iff both
x ≤ y andy ≤ x). We are interested in functions∗ which, for eachα ∈ L, return a new ordering≤∗α, and we
will refer to any such∗ asa revision operator for≤.

3 Enriching the epistemic state

We letW±
= {xǫ | x ∈ W andǫ ∈ {+,−}}. We assumexǫ = yδ only if both x = y andǫ = δ. We suppose,

along with≤, we are given some relation� over W±. The relation� contains the additional information
to be added to an epistemic state (already containing the plausibility ordering≤) when performing revision.
We expect some basic conditions on� and its interrelations with≤:

(�1) � is a tpo overW±

(�2) x+ � y+ iff x ≤ y

(�3) x− � y− iff x ≤ y

(�4) x+ ≺ x−

(�2) and (�3) say that the choice between the positive representations(negative representations respectively)
of two worlds should be precisely the same as that dictated by≤. (�4) just says that given the choice between
the positive and negative representations ofx, we should choose the former of the latter.

Definition 1 Let�⊆W± ×W±. If � satisfies (�1)–(�4) we say� is a≤-faithful tpo (overW±).

From this definition it is easy to see that� already contains information to determine≤ uniquely: simply
observe how� behaves when restricted to to{x+ | x ∈ W} or {x− | x ∈ W}. Strictly speaking, therefore,
we need only include� in an epistemic state.

The following result shows that we could equivalently replace (�4) in this definition by a seemingly
stronger property:

Proposition 1 Let�⊆W± ×W± be any relation satisfying (�1) and at least one of (�2) and (�3). Then�
satisfies (�4) iff it satisfies the following rule:

(�4′) x ≤ y impliesx+ ≺ y−
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Proof: Let � be as stated. That (�4′)⇒ (�4) is clear. For the converse direction suppose (�4) is satisfied
and supposex ≤ y. If � satisfies (�2) then this givesx+ � y+. We havey+ ≺ y− by (�4), so putting these
two together using (�1) gives the requiredx+ ≺ y−. If � satisfies (�3) rather than (�2) thenx ≤ y yields
x− � y−. We knowx+ ≺ x− by (�4) so putting these two together using (�1) again givesx+ ≺ y−.

How can we picture these orderings�? One way was given by Booth et al. [8], using an assignment of
numbers to a2 × n array, wheren is the number ofranksaccording to the tpo associated to�. In this
paper we would like to use the alternative graphical representation introduced in [10] which is perhaps more
intuitive, and is easier to work with when trying to construct examples. The idea is, for eachx ∈ W, to
think of the pair(x+, x−) as representing anabstract intervalassigned tox. We can imagine that to each
x we assign a “stick” whose left and right endpoints arex+ andx− respectively. Condition (�1) says the
endpoints of all these possible sticks are totally preordered. By (�2) and (�3) these sticks may be visualised
as all having the same length, which (�4) demands is non-zero. We may arrange the sticks in an order such
as the one shown in Figure 1, which shows the sticks associated to the five worldsx1–x5. The further to
the left an endpoint is, the lower, i.e., more preferred, it is according to�. Thus we see for example that
x+

1
≺ x+

3
andx−

2
∼ x+

4
.

x1

x2

x3

x4

x5

Figure 1: Example of abstract interval ordering

Note that, although we said that all sticks have equal length, this assumption is notabsolutelynecessary.
For example we could have depicted the� in Figure 1 also as

x1

x2

x3

x4

x5

Here, in order for (�2) and (�3) to be satisfied, it is only necessary that the sticks associated tox1 andx2

are equal. However this assumption helps to simplify the visualisation, and so we will keep to it in the rest
of the paper.

4 Revision operators defined from�

Now given a≤-faithful tpo � over W± we want to use the information given by� to define a revision
operator∗ = ∗� for ≤. The idea is that the evidenceα casts a favourable light on those worlds satisfying
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α. In other words, we consider worlds satisfyingα to be associated with their positive representations, and
worlds inconsistent with the evidence to be associated withtheir negative representations’. We set, for any
α ∈ L andx ∈W:

rα(x) =

{

x+ if x ∈ [α]

x− if x ∈ [¬α]

The revised tpo≤∗α is defined by setting, for eachx, y ∈W,

x ≤∗α y iff rα(x) � rα(y).

Definition 2 For each≤-faithful tpo� over W±, we refer to∗� as defined above as the revision operator
(for ≤) generated by�.

Example 1 In terms of our picture, each world gets mapped to one of the endpoints of the stick associated
to it – left if it is anα-world and right if it is a¬α-world. From this the new tpo≤∗α may be read off. For
example in Figure 1 suppose we revise byα such thatx4, x5 ∈ [α] andx1, x2, x3 ∈ [¬α]. Then≤∗α may be
read off by looking at the black circles in the figure below.

x1

x2

x3

x4

x5

So we seex1 ∼
∗
α x2 ∼

∗
α x4 <

∗
α x3 <

∗
α x5.

We point out that if we look at thebelief setassociated to the new tpo≤∗α in this example then we see
it does not contain the new evidenceα due to the presence of the¬α-worldsx1 andx2 among the minimal
worlds in≤∗α. Thus we see that, at the level of belief sets, we are in the realm of so-callednon-prioritised
belief revision [22].

What are the properties of∗�? Consider the following list:

(∗1) ≤∗α is a tpo overW

(∗2) α ≡ γ implies≤∗α=≤
∗
γ

(∗3) If x, y ∈ [α] thenx ≤∗α y iff x ≤ y

(∗4) If x, y ∈ [¬α] thenx ≤∗α y iff x ≤ y

(∗5) If x ∈ [α], y ∈ [¬α] andx ≤ y thenx <∗α y

(∗6) If x ∈ [α], y ∈ [¬α] andy ≤∗α x theny ≤∗γ x

(∗7) If x ∈ [α], y ∈ [¬α] andy <∗α x theny <∗γ x

(∗1) just says revising a tpo overW should result in another tpo overW, while (∗2) is a syntax-irrelevance
property. The next three rules are all familiar from the literature on iterated belief change. (∗3) and (∗4) are
respectively identical to (CR1) and (CR2) in section 2. (∗5) was proposed independently by Booth & Meyer
[7] and Jin & Thielscher [23]. It is easily seen to be strongerthan the other two rules in the Darwiche-Pearl
list (which can be obtained by replacing≤ by < (CR3) and<∗α by ≤∗α (CR4) respectively). It says if an
α-world x was considered at least as preferred as a¬α-world y beforereceivingα, then after revision it
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should be consideredstrictly more preferred. These three rules were considered characteristic of a family of
operators calledadmissiblerevision operators [7].

So far each of our rules mention onlyonerevision input sentenceα (modulo logical equivalence). By
analogy with the AGM postulates forbelief setrevision [1], we might consider them as the set ofbasic
postulates for tpo-revision. One thing largely missing from the literature on iterated belief change is a
serious study ofsupplementaryrationality properties which bestow a certain amount of coherence on the
results of revising≤ by differentsentences. The last couple of properties do this. First, suppose evidenceα
is received, and letx ∈ [α], y ∈ [¬α], but supposey ≤∗α x. We propose that ifx is not more preferred than
y, even afterreceiving evidence which clearly points more tox being the case than it does toy, then there
can beno evidence which will lead tox being more preferred toy. This is expressed by (∗6). Similarly (∗7)
says ifx is deemedstrictly less preferred thany after receivingα thenx must be strictly less preferred after
receivingany input.

It turns out that these properties provide an exact characterisation of the revision operators we consider.

Theorem 1 Let ∗ be any revision operator for≤. Then∗ is generated from some≤-faithful tpo� overW±

iff ∗ satisfies (∗1)–(∗7).

Proof: Soundness:(∗1) holds because of (�1). (∗2) holds because, as is easily seen,α ≡ γ implies
rα(x) = rγ(x) for all x ∈ W. (∗3) and (∗4) hold as direct consequences of (�2) and (�3) respectively.
(∗5) holds as a consequence of (�4′). For (∗6) supposex ∈ [α], y ∈ [¬α] and y ≤∗α x. From the first two
we knowrα(x) = x+ andrα(y) = y−. Using these withy ≤∗α x givesy− � x+. From this and (�4) we have
y+ ≺ y− � x+ ≺ x−. Thus, we see that foranyγ ∈ L, we will haverγ(y) � rγ(x), i.e., y ≤∗γ x as required.
(∗7) is proved similarly.

Completeness:
Starting from any revision operator∗ for ≤ we can define an ordering�∗ overW± as follows. Letx, y ∈ W
andδ, ǫ ∈ {+,−}. If δ = ǫ then we setxδ �∗ yδ iff x ≤ y. If δ , ǫ we consider two cases: Ifx = y then we
simply setx+ ≺∗ x−. Otherwise we setx+ �∗ y− iff x ≤∗x y andx− �∗ y+ iff x ≤∗y y. Here, when we use a
world x as a subscript in≤∗x, we are using it to denote any sentenceα such that[α] = {x}. Likewise, in the
proofs which follow, whenx appears within the scope of a propositional connective, e.g., x∨ y, (note that if
∗ satisfies (∗2) the precise choice ofα is irrelevant).

We need to show two things:(a)�∗ is a≤-faithful tpo, and then(b) the revision operator generated from
�∗ is precisely∗.

(a) �∗ is a≤-faithful tpo.
To show this we need to show that (�1)–(�4) are satisfied. (�2), (�3), and (�4) obviously hold by construc-
tion. It remains to prove (�1), i.e.,�∗ is a tpo.

�∗ is connected: We need to show, for anyx, y ∈ W andǫ, δ ∈ {+,−}, eitherxǫ �∗ yδ or yδ �∗ xǫ. If
δ = ǫ this reduces to showing eitherx ≤ y or y ≤ x by construction of�∗, and this clearly holds since≤
is itself connected. So supposeδ , ǫ. Now if x = y then the result holds since our construction ensures
thatprecisely oneof xδ � xǫ andxǫ � xδ holds (the former ifδ = +, the latter ifǫ = +). So suppose also
x , y. Then the construction tells usxǫ � yδ iff x ≤∗

A
y andyδ � xǫ iff y ≤∗

A
x, whereA = x if ǫ = + while

A = y if δ = +. Whatever the value ofA we know≤∗
A

is connected by (∗1), thus at least one ofxǫ � yδ and
yδ � xǫ must hold as required.
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�∗ is transitive: We need, for anyx, y, z ∈W andδ, ǫ, ν ∈ {+,−},

if xδ �∗ yǫ andyǫ �∗ zν thenxδ �∗ zν.

For this proof let us denote these three byA,B,C respectively. ProvingA + B ⇒ C is a tedious mat-
ter of individually going through all eight combinations ofchoices forδ, ǫ, ν. The easiest cases are when
δ = ǫ = ν = + or δ = ǫ = ν = −, for in these cases showingA + B ⇒ C reduces to showing thatx ≤ y
andy ≤ z impliesx ≤ z, which clearly holds since≤ is itself transitive. Now let’s go through the other six
cases:

(i) δ = ǫ = +, ν = −.
Firstly if x = y thenB andC reduce to the same thing and so the result holds. Also ifx = z thenC holds
by construction. So we assumex , y andx , z. ThenA becomesx ≤ y. We now split into two subcases
according to whethery = z. If y = z then the target consequentC becomesx ≤∗x y. But usingx ≤ y with
our assumptionx , y we may apply (∗5) to deducex <∗x y. ThusC certainly holds. Now supposey , z.
ThenA + B ⇒ C reduces to showingx ≤ y + y ≤∗y z ⇒ x ≤∗x z. Suppose for contradiction thatA + B
holds butC does not. IfC doesn’t hold thenz <∗x x by (∗1) so, since we assumez , x, z <∗x∨y x by (∗7).
Fromx ≤ y we getx ≤∗x∨y y by (∗3) and soz <∗x∨y y. Since we also assumez , y we may apply (∗7) to this
to obtainz <∗y y – contradictingy ≤∗y z. Hence the consequent must hold also in this case.

(ii) δ = +, ǫ = −, ν = +.
Now B reduces toy− �∗ z+ which means, by the already established (�4), we must havey , z. Meanwhile
C becomesx+ �∗ z+, i.e.,x ≤ z. If x = z thenC clearly holds. So we assume alsox , z. We now consider
two subcases. Subcase 1: Ifx = y thenB becomesx− �∗ z+, i.e.,x ≤∗z z (sincex , z). SoB ⇒ C by (∗5).
Subcase 2: Ifx , y thenA is x ≤∗x y andB is y ≤∗z z, so we must showx ≤∗x y + y ≤∗z z⇒ x ≤ z. Assume
for contradictionA + B holds butC doesn’t. From the latterz < x, thenz <∗x∨z x by (∗3). Meanwhile, since
y , z, the assumptiony ≤∗z z givesy ≤∗x∨z z by (∗6). Hencey <∗x∨z x using (∗1). Since we assumex , y , z
we apply (∗7) here to deducey <∗x x, contradictingx ≤∗x y. Hence the consequent must hold.

(iii) δ = +, ǫ = −, ν = −.
If x = z thenC becomesx+ �∗ x−, which already holds by (�4). Thus we assumex , z and soC is x ≤∗x z.
MeanwhileB reduces toy ≤ z. If x = y then this reduces in turn tox ≤ z and so in this case we getB⇒ C
by (∗5). If x , y thenA is x ≤∗x y and soA + B ⇒ C reduces tox ≤∗x y + y ≤ z ⇒ x ≤∗x z. Assume for
contradictionA andB hold andC does not. Thenz <∗x x from notC by (∗1). Since we assumey , x , z we
may apply (∗4) to y ≤ z to obtainy ≤∗x z. Using this withz <∗x x and (∗1) yields y <∗x x, contradictingA.
HenceC must follow fromA andB.

(iv) δ = −, ǫ = +, ν = +.
Here,A is x− �∗ y+, which impliesx , y by (�4) and so givesx ≤∗y y. MeanwhileB is y+ �∗ z+, which
givesy ≤ z. We first claimA + B implies x , z. For if x = z thenB would givey ≤ x. Sincex , y this
then yieldsy <∗y x using (∗5), contradicting thex ≤∗y y we obtained fromA. Hencex , z as claimed, and
so givenA + B, C becomesx ≤∗z z. We must now showx ≤∗y y + y ≤ z⇒ x ≤∗z z. But sincex , y we may
use (∗6) to getx ≤∗y∨z y from x ≤∗y y, while y ≤∗y∨z z from y ≤ z using (∗3). x ≤∗y∨z y andy ≤∗y∨z z together
give x ≤∗y∨z z using (∗1). From this, sincey , x , z, we may apply (∗6) to deducex ≤∗z z as required.

(v) δ = −, ǫ = +, ν = −.
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As in the previous case,A impliesx , y andx ≤∗y y, while this timeC reduces tox ≤ z. In the casey = z
then this in turn becomesx ≤ y, which is a consequence ofx ≤∗y y by (∗5). Thus in this caseA ⇒ C. So
suppose insteady , z. ThenB reduces toy ≤∗y z and soA + B⇒ C reduces tox ≤∗y y + y ≤∗y z⇒ x ≤ z.
FromA+B and the transitivity of≤∗y it follows thatx ≤∗y z, from which it follows thatx ≤ z using (∗4) with
the assumptionsx , y , z.

(vi) δ = −, ǫ = −, ν = +.
Now B yields y , z (by (�4)) andy ≤∗z z, while A is equivalent tox ≤ y. If x = z were the case then this
latter would becomez ≤ y which would implyz <∗z y by (∗5) (sincey , z from B). But this contradicts the
y ≤∗z z we obtained fromB and so we must havex , z. Hence, givenA + B, C reduces tox ≤∗z z and so we
must showx ≤ y + y ≤∗z z⇒ x ≤∗z z. But sincex , z , y we may usex ≤ y to deducex ≤∗z y using (∗4).
From this andy ≤∗z z we obtainx ≤∗z z as required.

(b) the revision operator generated from�∗ is precisely∗.
Now let ∗′ be the revision operator generated from�∗. We now need to show∗′ is precisely∗, i.e., for any
α ∈ L andx, y ∈ W, x ≤∗α y iff x ≤∗

′

α y. Since this latter is equivalent torα(x) �∗ rα(y), this means we need
to show thatx ≤∗α y iff rα(x) �∗ rα(y). We split into the three casesx <α y, x ∼α y andy <α x. (Using the
≤α-notation defined in Definition 3.)

Casex <α y

In this caserα(x) = x+ andrα(y) = y−. So we must showx ≤∗α y iff x+ �∗ y−. Sincex <α y we must
havex , y so by construction of�∗ the right-hand side is equivalent tox ≤∗x y. We will showx �∗α y iff
x �∗x y. By (∗1) this is equivalent to showingy <∗α x iff y <∗x x. But by (∗7) each side of this biconditional
is equivalent to [y <∗γ x for all γ]. Hence in this case the result holds.

Casex ∼α y

In this case we show that bothx ≤∗α y andrα(x) �∗ rα(y) are equivalent tox ≤ y. Thatx ≤∗α y iff x ≤ y
follows from either (∗3) or (∗4) (depending on whetherx, y ∈ [α] or x, y ∈ [¬α] respectively). Meanwhile
we haverα(x) �∗ rα(y) iff xδ �∗ yδ (whereδ = + if x, y ∈ [α] andδ = − otherwise). By construction of�∗
this latter is equivalent tox ≤ y as required.

Casey <α x

In this case we show that bothx ≤∗α y andrα(x) �∗ rα(y) are equivalent to sayingx ≤∗γ y for all γ. For
x ≤∗α y this follows from (∗6). Meanwhilerα(x) �∗ rα(y) iff x− �∗ y+. Sincey <α x we knowx , y so
by construction of�∗ this latter is equivalent tox ≤∗y y. That this is equivalent to [x ≤∗γ y for all γ] follows
once more from (∗6).

4.1 The link with preference aggregation and social choice theory

In this subsection we discuss some more properties satisfiedby our revision operators. These properties are
recognisable as versions of properties familiar from the theory ofsocial choice, or preference aggregation
[3]. The problem of preference aggregation is the problem offinding some functionf which, given any list
of tpos (over some given setX of alternatives) ≤1, . . . ,≤n, with the≤is representing the preferences over
X of the individuals in a group, will return a new single orderingf (≤1, . . . ,≤n) over X which adequately
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represents the preferences of thegroup as a whole. Now, we can think of our problem of determining≤∗α
as a highly specialised case of this problem. To do this we need to repackage the new evidenceα ∈ L into
tpo-form. The simplest way to do this is as follows.

Definition 3 For anyα ∈ L, the tpo≤α generated byα is the tpo overW given byx ≤α y iff x ∈ [α] or y ∈
[¬α].

In other words≤α is the tpo overW consisting of (at most) two ranks: the lower one containing all the
α-worlds and the upper one containing all the¬α-worlds. Then we can think of revision of≤ by α as an ag-
gregation of≤ with ≤α. (This manoeuvre is also carried out by Glaister [19] and Nayak [31]. An alternative
way of generating tpos from sentences, based on the Hamming distance between two propositional worlds,
is mentioned by Benferhat et al. [4].)

Many properties of preference aggregation operators have been proposed. One well-known property,
known as theParetocondition, is that, given two alternativesx andy, if every individual prefersx at least
as much asy, and if at least one individualstrictly prefersx over y, then the group shouldstrictly preferx
over y. In our case, this condition translates into the following property:

(Pareto) Ifx ≤ y andx ≤α y, and at least one of these two inequalities is strict, thenx <∗α y

The case of the above rule where≤α is strict is nothing other than (∗5), while the case wherex ∼α y and
x < y is easily seen to follow mainly from (∗3) and (∗4). Thus we have:

Proposition 2 Every revision operator∗ generated by some≤-faithful tpo� overW± satisfies (Pareto).

Another well-known property from preference aggregation,known as theIndependence of Irrelevant Alter-
natives, states that for any two alternativesx and y, the group preference betweenx and y should depend
only on how each individual ranksx and y. More precisely, if we were to replace individuali’s tpo ≤i by
any other tpo≤′

i
which ranksx andy in exactly the same way as≤, thenx andy would be ranked in exactly

the same way inf (≤1, . . . ,≤
′
i
, . . . ≤n) as in f (≤1, . . . ,≤i, . . . ≤n). It turns out that our family of operators

satisfy a restricted version of this rule, which we callIndependence of Irrelevant Alternatives in the Input.
We will make use of the following terminology:

Definition 4 Givenα, γ ∈ L, andx, y ∈ W, we sayα andγ agree onx and y iff either bothx <α y and
x <γ y, or bothx ∼α y andx ∼γ y, or bothy <α x and y <γ x.

In other wordsα andγ agree onx andy if they both “say the same thing” regarding the relative plausibility
of x andy.

(IIA-Input) If α andγ agree onx andy thenx ≤∗α y iff x ≤∗γ y

That this is a property of our family of tpo-revision operators can be straightforwardly shown by considering
an arbitrary≤-faithful tpo� overW±. But in fact we can show the following:

Proposition 3 Let ∗ be any revision operator for≤ which satisfies (∗1) and (∗3)–(∗5). Then∗ satisfies (IIA-
Input) iff ∗ satisfies both (∗6) and (∗7).

Proof: Let ∗ satisfy (∗1) and (∗3)–(∗5).

(IIA-Input) ⇒ (∗6) + (∗7).
First we show the following property, which will be useful:

If x <α y, y ≤∗α x and γ andα do not agree onx andy, theny <∗γ x

11



To see this, first note ifx <α y and y ≤∗α x then we must havey < x by (∗5). Also note ifγ andα do not
agree onx, y then, sincex <α y, we must have eitherx ∼γ y or y <γ x. In the first case we knowx ≤∗γ y iff
x ≤ y andy ≤∗γ x iff y ≤ x by (∗3) and (∗4). Using these with the already establishedy < x givesy <∗γ x as
required. In the casey <γ x we can use the facty < x to concludey <∗γ x by (∗5).

Now to show (∗6) supposex <α y andy ≤∗α x. If γ andα do not agree onx, y theny <∗γ x by the above
property, soy ≤∗γ x as required. Ifγ agrees withα on x, y then we can concludey ≤∗γ x from y ≤∗α x using
(IIA-Input).

(∗7) is proved similarly: Supposex <α y and y <∗α x. If γ does not agree withα on x, y then, since
obviouslyy <∗α x implies y ≤∗α x we may apply the above proved property to conclude the required y <∗γ x.
If γ agrees withα on x, y then from (IIA-Input) we havex ≤∗γ y iff x ≤∗α y andy ≤∗γ x iff y ≤∗α x. Hence we
can concludey <∗γ x from y <∗α x.

(∗6) + (∗7)⇒ (IIA-Input).
Supposeα andγ agree onx, y. To show (IIA-Input) it suffices by symmetry to showx ≤∗α y impliesx ≤∗γ y.
First supposex <α y, x <γ y andx ≤∗α y. If it were not the case thatx ≤∗γ y then we would havey <∗γ x by
(∗1). Using this withx <γ y and (∗7) would then givey <∗α x, contradictingx ≤∗α y. Hence we must have
x ≤∗γ y as required. Now look at the case in which bothx ∼α y andx ∼γ y. In this case using these with
(∗3) or (∗4) we getx ≤∗α y iff x ≤ y iff x ≤∗γ y. Hencex ≤∗α y impliesx ≤∗γ y (and conversely) as required.
Finally we consider the case in which bothy <α x andy <γ x. This time we getx ≤∗α y impliesx ≤∗γ y (and
conversely) using (∗6).

Thus, given the basic properties (∗1)–(∗5) for tpo-revision, requiring∗ to satisfy the two supplementary prop-
erties (∗6) and (∗7) amounts to enforcing (IIA-Input). Note this equivalencedoes not require the presence
of the syntax-irrelevance property (∗2). In fact, since sentences which are logically equivalentagree onall
worldsx andy, we see that (∗2) actually follows from (IIA-Input). Consequently, we have established that
in the list (∗1)–(∗7), property (∗2) is redundant.

For more discussion on social choice-like conditions and their relevance to tpo-revision we refer the
reader to the work of Glaister [19].

5 On the sentential level

So far all our properties of tpo-revision operators have been expressed on the semantic level, directly in
terms of worlds. But there is also a sentential level on whichwe can recast our properties. For any tpo≤′

over W and anyβ ∈ L we let min(β,≤′) denote the set of≤′-minimal elements of[β], i.e., min(β,≤′) =

{x ∈ [β] | ∄y ∈ [β] s.t. y <′ x}. Then we define:

≤′ ◦β = Th(min(β,≤′)).

≤′ ◦β represents what is believed in≤′ on thesuppositionthatβ is the case. Ifλ ∈ ≤′ ◦β then we might
also sayβ ֌ λ is a conditional beliefin ≤′. Note that we do not necessarily assume this is the same
thing as sayingλ would be believed after receivingβ explicitly as evidence. This is because we want to
support non-prioritised revision, so in particularβ itself might not necessarily be believed after receiving
it as evidence (it might be simply too far-fetched). Nevertheless, new evidence will have some impact on
the set of conditional beliefs. Note that this notation enables us to denote the belief set associated to≤′ by
≤′ ◦⊤.
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We can give all the properties (∗2)–(∗7) an equivalent formulation in terms of◦, thus giving a set of
sound and complete properties for our family of revision operators which has a different flavour:

(◦2) If α ≡ γ then≤∗α ◦β =≤
∗
γ ◦β

(◦3) If β ⊢ α then≤∗α ◦β =≤ ◦β

(◦4) If β ⊢ ¬α then≤∗α ◦β =≤ ◦β

(◦5) If ¬α < ≤ ◦β thenα ∈ ≤∗α ◦β

(◦6) If α < ≤∗α ◦β thenα < ≤∗γ ◦β

(◦7) If ¬α ∈≤∗α ◦β then¬α ∈≤∗γ ◦β

(◦2) just says revising by logically equivalent sentences yields the same set of conditional beliefs. (◦3) and
(◦4) are essentially the postulates (C1) and (C2) in section 2,while (◦5) corresponds to rule (P) of Booth &
Meyer [7], also referred to asIndependenceby Jin & Thielscher [23]. The correspondences between these
last three rules and their counterparts in the previous section were proved in those papers. (Although these
papers all assume the prioritised setting for belief revision in which revision inputs are always believed after
revision.) The last two rules are neatly explained with the help of the following terminology:

Definition 5 Given any revision operator∗ for ≤ and givenα, β ∈ L, we shall sayβ overrulesα (relative to
∗) iff either β is inconsistent orα < ≤∗α ◦β. We shall sayβ strictly overrulesα (relative to∗) iff ¬α ∈≤∗α ◦β.

The inclusion of the clause “β is inconsistent” in the definition of “overrules” allows fora smoother exposi-
tion. This way we get the intuitively expected chain of implications:β ⊢ ¬α implies thatβ strictly overrules
α, which implies thatβ overrulesα. If ∗ satisfies (◦5) then this in turn implies¬α ∈≤ ◦β. Now suppose
that evidenceγ is received and we then make a further suppositionβ. (◦6) says that ifβ overrulesα andβ is
consistent thenα will not be believed, while (◦7) says that ifβ strictly overrulesα thenα will be rejected.

Proposition 4 Let ∗ be a revision operator for≤ which satisfies (∗1). Then for eachi = 2, . . . , 7, ∗ satisfies
(∗i) iff ∗ satisfies (◦i).

Proof: Suppose∗ satisfies (∗1), i.e.,≤∗α is a tpo given anyα. Note that forany tpo≤′ (in particular≤∗α) and
x, y ∈W, we have

x ≤′ y iff x ∈ min(x ∨ y,≤′) (1)

where, recall, in the expressionx ∨ y, x andy stand for any sentences whose only model isx, respectively
y, and so[x ∨ y] = {x, y}.

(∗2)⇔ (◦2)
The left-to-right direction is obvious. For the converse direction supposeα ≡ γ. Then using (1) we
know, given anyx, y, x ≤∗α y iff x ∈ min(x ∨ y,≤∗α) andx ≤∗γ y iff x ∈ min(x ∨ y,≤∗γ). But by (◦2)
min(x ∨ y,≤∗α) = min(x ∨ y,≤∗γ). Hencex ≤∗α y iff x ≤∗γ y for all x, y, i.e.,≤∗α=≤

∗
γ as required.

(∗3)⇔ (◦3) and (∗4)⇔ (◦4)
Proofs given by Darwiche & Pearl [12] (Theorem 13).

(∗5)⇔ (◦5)
Proof given by Booth & Meyer [7] (Proposition 2) and Jin & Thielscher [23] (Theorem 5).
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(∗6)⇔ (◦6)
For the left-to-right direction, suppose (∗6) holds and supposeα <≤∗α ◦β. Then there existsy ∈ [¬α] ∩

min(β,≤∗α). Assume for contradictionα ∈≤∗γ ◦β. Theny < min(β,≤∗γ) so there existsx ∈ min(β,≤∗γ) such
that x <∗γ y. Since we assumeα ∈≤∗γ ◦β we must havex ∈ [α]. Hence we may apply a contrapositive
version of (∗6) to obtain (with a little help from (∗1)) x <∗α y. But this contradictsy ∈ min(β,≤∗α). Hence it
must be the case thatα <≤∗γ ◦β as required.

For the converse direction, suppose (◦6) holds and letx ∈ [α], y ∈ [¬α] be such thaty ≤∗α x. Then from
equation (1) on page 13,y ∈ min(x ∨ y,≤∗α). Hence, sincey ∈ [¬α], α < ≤∗α ◦(x ∨ y). Using (◦6) we infer
α <≤∗γ ◦(x ∨ y). Since necessarilymin(x ∨ y,≤∗γ) ⊆ {x, y}, the only way we can haveα <≤∗γ ◦(x ∨ y) is if
y ∈ min(x ∨ y,≤∗γ), i.e., y ≤∗γ x as required to show (∗6).

(∗7)⇔ (◦7)
For the left-to-right direction, suppose (∗7) holds and suppose¬α ∈≤∗α ◦β. Suppose for contradiction
¬α <≤∗γ ◦β. Then there existsx ∈ [α] ∩min(β,≤∗γ). Since¬α ∈≤∗α ◦β we knowx < min(β,≤∗α) so there
existsy ∈ min(β,≤∗α) such thaty <∗α x. We knowy ∈ [¬α] since¬α ∈≤∗α ◦β, hence we may apply (∗7) to
deducey <∗γ x – contradictingx ∈ min(β,≤∗γ). Hence¬α ∈≤∗γ ◦β as required.

For the converse direction, suppose (◦7) holds and letx ∈ [α], y ∈ [¬α] such thaty <∗α x. Then
min(x∨y,≤∗α) = {y} and so, sincey ∈ [¬α],¬α ∈≤∗α ◦(x∨y). Applying (◦7) to this yields¬α ∈≤∗γ ◦(x∨y)

and so, sincex ∈ [α], x < min(x ∨ y,≤∗γ), i.e., y <∗γ x as required to show (∗7).

Corollary 1 Let ∗ be a revision operator for≤. Then∗ is generated from some≤-faithful tpo� overW± iff
∗ satisfies (∗1) and (◦2)–(◦7).

This sentential reformulation is useful since there are some interesting properties which can be formulated
in sentential terms, but for which obvious semantic counterparts do not exist. For example:

(Disj1) (≤∗α ◦β) ∩ (≤∗γ ◦β) ⊆ (≤∗α∨γ ◦β)

(Disj2) (≤∗α∨γ ◦β) ⊆ (≤∗α ◦β) ∪ (≤∗γ ◦β)

These two properties were essentially first proposed by Schlechta et al. [35], and seem to be natural prop-
erties to have. The first one says if a conditional belief is held both after receiving evidenceα and after
receiving evidenceγ, then it is also held after receiving their disjunction as evidence. The second one says
a conditional belief is not held after receiving a disjunction as evidence,withoutbeing held after receiving
just one of the disjuncts in isolation.

Proposition 5 Every revision operator∗ generated from some≤-faithful tpo� over W± satisfies (Disj1)
and (Disj2).

We prove this result by considering an arbitrary≤-faithful tpo �, rather than trying to derive these rules
syntactically from (∗1) and (◦2)–(◦7). A key property used in the proof is that, for anyα, γ ∈ L andx ∈W,
rα∨γ(x) = min{rα(x), rγ(x)}.

Proof: Let� be a given≤-faithful tpo overW±.
(Disj1): It suffices to showmin(β,≤∗α∨γ) ⊆ min(β,≤∗α)∪min(β,≤∗γ). So letx ∈ min(β,≤∗α∨γ) and suppose
for contradiction bothx < min(β,≤∗α) and x < min(β,≤∗γ). From these latter two we know there exist
y1 ∈ min(β,≤∗α) and y2 ∈ min(β,≤∗γ) such thaty1 <

∗
α x and y2 <

∗
γ x. Equivalentlyrα(y1) ≺ rα(x) and
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rγ(y2) ≺ rγ(x). But sincex ∈ min(β,≤∗α∨γ) we knowx ≤∗α∨γ yi, equivalentlyrα∨γ(x) � rα∨γ(yi), for i =
1, 2. Sincerα∨γ(yi) = min{rα(yi), rγ(yi)} this means we have bothrα∨γ(x) � rα(y1) andrα∨γ(x) � rγ(y2).
But sincerα∨γ(x) = min{rα(x), rγ(x)} we knowrα∨γ(x) is equal to eitherrα(x) or rγ(x). In the first case we
getrα(x) � rα(y1), contradictingrα(y1) ≺ rα(x). In the second case we obtainrγ(x) � rγ(y2), contradicting
rγ(y1) ≺ rγ(x). Thus in either case we arrive at the required contradiction.

(Disj2): We first claim the following: Given any pair of worldsy1, y2 such thaty1 ∈ min(β,≤∗α) and
y2 ∈ min(β,≤∗γ), at least one of these worlds must be inmin(β,≤∗α∨γ). For suppose neither is an element
of this set. Then there must existz ∈ min(β,≤∗α∨γ) such thatz <∗α∨γ yi, equivalentlyrα∨γ(z) ≺ rα∨γ(yi),
for i = 1, 2. Sincerα∨γ(yi) = min{rα(yi), rγ(yi)} we obtain from this bothrα∨γ(z) ≺ rα(y1) andrα∨γ(z) ≺

rγ(y2). Then sincerα∨γ(z) = min{rα(z), rγ(z)} we get from these eitherrα(z) ≺ rα(y1) or rγ(z) ≺ rγ(y2).
But in the former case we havez <∗α y1, contradictingy1 ∈ min(β,≤∗α), while similarly in the latter case
z <∗γ y2, which contradictsy2 ∈ min(β,≤∗γ). Hence no suchz can exist and so the claim must be true.
This then allows us to show (Disj2), for suppose bothλ <≤∗α ◦β andλ <≤∗γ ◦β. Then there must exist
y1 ∈ min(β,≤∗α) and y2 ∈ min(β,≤∗γ) such thatyi ∈ [¬λ] for i = 1, 2. From the above claim we know
yi ∈ min(β,≤∗α∨γ) for eitheri = 1 or i = 2. Either way we end up with somey ∈ min(β,≤∗α∨γ) such that
y ∈ [¬λ], which is enough to proveλ <≤∗α∨γ ◦β.

The next result shows that≤∗α ◦β falls neatly into one of three categories. Note that we don’tneed (◦6) and
(◦7), nor do we need (◦2) for this.

Proposition 6 Let ∗ be any revision operator for≤ satisfying (∗1) and (◦3)–(◦5), and let the overrules
relations be given relative to∗. Then for allα, β ∈ L,

≤∗α ◦β =



















≤ ◦(α ∧ β) if β doesn’t overruleα
(≤ ◦(α ∧ β)) ∩ (≤ ◦β) if β overrulesα, but not strictly
≤ ◦β if β strictly overrulesα

Proof: We make use of the following standard properties, which holdfor any tpo ≤′ over W (note the
assumption (∗1) is satisfied permits us to apply these properties to≤∗α):
(i). If α ∈≤′ ◦β then≤′ ◦β =≤′ ◦(α ∧ β) (Cumulativity).
(ii). If ¬α <≤′ ◦β then≤′ ◦β ⊆≤′ ◦(α ∧ β) (Rational Monotony).
(iii). (≤′ ◦β1) ∩ (≤′ ◦β2) ⊆ (≤′ ◦(β1 ∨ β2)) (Or).

Supposeβ does not overruleα. We must show≤∗α ◦β =≤ ◦(α ∧ β). But if β does not overruleα then
α ∈≤∗α ◦β so, using property(i) above,≤∗α ◦β =≤

∗
α ◦(α ∧ β). Using (◦3) we conclude≤∗α ◦β =≤ ◦(α ∧ β)

as required.
Now supposeβ strictly overrulesα. We must show in this case≤∗α ◦β =≤ ◦β. Firstly, if β is inconsistent

then both these sets are equal to the entire set of sentencesL and so the result clearly holds. So we assumeβ
is consistent. We will in fact show both≤∗α ◦β and≤ ◦β are equal to≤ ◦(¬α∧β). For the former, ifβ strictly
overrulesα then¬α ∈≤∗α ◦β so, again using(i) above,≤∗α ◦β =≤

∗
α ◦(¬α ∧ β). Using (◦4) we then obtain

≤∗α ◦β =≤ ◦(¬α ∧ β) as required. Meanwhile from¬α ∈≤∗α ◦β and the assumptionβ is consistent we can
infer α <≤∗α ◦β. From this and (◦5) we get¬α ∈≤ ◦β and so, from(i) once more, also≤ ◦β =≤ ◦(¬α ∧ β)
as required.

Finally we check the intermediate case whereβ overrulesα, but not strictly, which meansα,¬α <≤∗α ◦β.
We must show≤∗α ◦β = (≤ ◦(α∧ β))∩ (≤ ◦β). Looking back at the last sentence of the previous paragraph,
we see we showed there that ifα <≤∗α ◦β then≤ ◦β =≤ ◦(¬α ∧ β). Hence we may equivalently formulate
our target identity as≤∗α ◦β = (≤ ◦(α ∧ β)) ∩ (≤ ◦(¬α ∧ β)). Applying (◦3) and (◦4), this in turn is the
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same as requiring≤∗α ◦β = (≤∗α ◦(α ∧ β)) ∩ (≤∗α ◦(¬α ∧ β)). We can prove the right-to-left inclusion here
by noting by property(iii) above that(≤∗α ◦(α ∧ β)) ∩ (≤∗α ◦(¬α ∧ β)) ⊆≤

∗
α ◦((α ∧ β) ∨ (¬α ∧ β)) =≤∗α ◦β.

For the converse direction note that from property(ii) we haveα <≤∗α ◦β implies≤∗α ◦β ⊆≤
∗
α ◦(¬α∧ β) and

¬α <≤∗α ◦β implies≤∗α ◦β ⊆≤
∗
α ◦(α ∧ β). Thus the result holds.

Thus if β doesn’t overruleα then making the suppositionβ after receivingα as evidence is the same as
supposingα andβ togetherin the initial tpo≤. If β strictly overrulesα then evidenceα is just ignored when
making the further suppositionβ. In the intermediate case whereβ overrulesα, but not strictly, supposingβ
following evidenceα results in a mixture of these two.

In particular note what happens whenβ ≡ ⊤. We see that≤∗α ◦⊤ equals either(i) ≤ ◦α, or (ii)
(≤ ◦α) ∩ (≤ ◦⊤), or (iii) ≤ ◦⊤. Thus either the evidence is fully incorporated into the belief set using the
AGM revision operator corresponding to≤ [24] (case(i)), or the belief set remains unchanged (case(iii) ),
or there is an intermediate possibility ((ii) ), which amounts to removing¬α from the initial belief set using
the AGM contraction operator corresponding to≤. That is, we don’t commit to believing the evidence, but
we leave open the possibility that it might hold. We will havemore to say on these notions of overruling in
the next section.

6 Notions of strict preference

In this section we shall assume a fixed≤-faithful tpo � over W±. From a single� we can extractthree
different notions ofstrict preferenceoverW. First we have the simple one given by

x < y iff x+ ≺ y+

(equivalentlyx < y iff x− ≺ y−), i.e.,< is just the strict part of the tpo overW associated to�. In terms of
our graphical representation,x < y iff the stick corresponding tox lies to the left of that associated toy, but
possibly with some overlap. For example in Figure 2 we havex1 < x3.

x1

x2

x3

x4

x5

Figure 2: Example of abstract interval ordering

A second, stronger notion of strict preference can be expressed by:

x≪ y iff x− ≺ y+.

In other words,x≪ y iff x, even when represented negatively, is preferred toy or, in terms of the picture, iff
the stick associated tox liescompletely to the leftof that associated toy, and furthermore there is “daylight”
between them. E.g., in Figure 2 we seex2 ≪ x5.

Finally a third case, intermediate between≪ and<, can be expressed by:

x≪ y iff x− � y+.
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In other wordsx≪ y iff x being represented negatively isat least aspreferred toy. This third case captures
a “hesitation” [32] between strong strict preference≪ and mere ordinary strict preference<. We will have
x≪ y andx 6≪ y precisely when the right endpointx− of thex-stick and the left endpointy+ of they-stick
are vertically aligned with each other. E.g., in Figure 2 we havex1 6≪ x4 butx1 ≪ x4. The next proposition
collects some properties of these orderings.

Proposition 7
(i)≪⊆≪⊆< (where recall< is the strict part of the initial tpo≤).
(ii) ≪ and≪ are both strict partial orders (i.e., irreflexive and transitive).
(iii) ≪ and≪ both satisfy thefiltered condition [16], i.e., for all x, y ∈ W and β ∈ L, if x, y ∈
[β] \min(β, <′) then there existsz ∈ [β] such thatz <′ x andz <′ y.

(Recall for a strict partial order<′, min(β, <′) = {x ∈ [β] | ∄ y ∈ [β] s.t. y <′ x}.)

Proof: (i). The inclusion≪⊆≪ is immediate. The inclusion≪⊆< follows from (�4′).

(ii). The irreflexivity of≪ follows directly from the inclusion in(i). Since≪⊆≪ this means≪ must
be irreflexive as well. To show transitivity of the two relations, we actually show something stronger holds,
namely

If x≪ y andy≪ z thenx≪ z. (2)

This is true since ifx ≪ y andy ≪ z then x− � y+ and y− � z+. Sincey+ ≺ y− by (�4) we obtain
x− � y+ ≺ y− � z+, thusx− ≺ z+, i.e., x ≪ z as claimed. (2) yields the transitivity of both≪ and≪
using the fact≪⊆≪.

(iii). To show≪ satisfies the filtered condition letx, y ∈ [β] \min(β,≪). Sincex, y are not minimal
there existz1, z2 ∈ [β] such thatz1 ≪ x andz2 ≪ y, i.e., z−

1
≺ x+ andz−

2
≺ y+. Since� is connected

(since it is a tpo by (�1)) we know eitherz−
1
� z−

2
or z−

2
� z−

1
. In the first case we obtainz−

1
≺ y+ from

z−
2
≺ y+ and so there exists somez ∈ [β] (namelyz1) such that bothz≪ x andz ≪ y as required. In the

second case we obtainz−
2
≺ x+ from z−

1
≺ x+ and so again we find az (this timez = z2) with the required

properties. Hence≪ satisfies the filtered condition. The case for≪ is analogous.

By (i) we see<,≪ and≪ form progressively more stringent notions of strict preference. If we let∗ = ∗�
then we seex ≪ y implies rγ(x) ≺ rγ(y) for all γ ∈ L, and sox <∗γ y for anyγ. Thus≪ can also be
viewed as a set ofcore, or protectedstrict preferences in< which are always preserved in any revision.
Meanwhile we havex ≪ y impliesx ≤∗γ y for anyγ. Thus≪ may be viewed as a set ofweakly protected
strict preferences, in the sense that ifx≪ y then no evidence will ever cause this preference to be reversed.

It turns out that these relations≪ and≪ are closely related to the notions of overruling and strict
overruling from Definition 5.

Proposition 8 Let the overrules relations be given relative to∗�. Then(i) β overrulesα iff min(β,≪) ⊆

[¬α]. (ii) β strictly overrulesα iff min(β,≪) ⊆ [¬α].

Proof: (i). We must show thatmin(β,≪) ⊆ [¬α] iff either β is inconsistent orα <≤∗α ◦β.
⇒: Supposemin(β,≪) ⊆ [¬α]. If β is inconsistent we are done, so assumeβ is consistent. We must show
α <≤∗α ◦β, i.e.,min(β,≤∗α) ∩ [¬α] , ∅. Supposemin(β,≪) = {y1, . . . , yk}. Sincemin(β,≪) ⊆ [¬α] we
know yi ∈ [¬α] for all i = 1, . . . , k. We will show that at least one of these elements ofmin(β,≪) must also
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be an element ofmin(β,≤∗α), which will suffice. Suppose for contradictionyi < min(β,≤∗α) for all i. Then
(since≤∗α is a tpo) there must be at least one elementz ∈ [β] such thatz <∗α yi, equivalentlyrα(z) ≺ rα(yi),
for all i. Sincerα(yi) = y−

i
for all i, this givesrα(z) ≺ y−

i
for all i. Clearly it cannot be the case thatz = y j

for somej (since then we would haverα(y j) ≺ rα(y j), which is impossible), hencez < min(β,≪). Hence it
must be the casey j ≪ z, i.e., y−

j
� z+ for somej. But this impliesy−

j
� rα(z), contradictingrα(z) ≺ rα(yi),

for all i. Hence there must exist somej such thaty j ∈ min(β,≤∗α) as required.

⇐: If β is inconsistent thenmin(β,≪) = ∅ and so the required conclusionmin(β,≪) ⊆ [¬α] holds true.
So supposeβ is consistent andα <≤∗α ◦β. Then there exists somey ∈ min(β,≤∗α) ∩ [¬α]. Suppose for
contradictionmin(β,≪) * [¬α], so there existsx ∈ min(β,≪) ∩ [α]. Using the minimality ofy we get
y ≤∗α x, i.e., rα(y) � rα(x). Sincey ∈ [¬α] andx ∈ [α] this translates intoy− � x+, i.e., y ≪ x. But this
contradictsx ∈ min(β,≪). Hencemin(β,≪) ⊆ [¬α] as required.

(ii). We must showmin(β,≪) ⊆ [¬α] iff ¬α ∈≤∗α ◦β.
⇒: As mentioned above, just after the proof of Proposition 7, wehave≪⊆<∗α. This impliesmin(β,≤∗α) ⊆

min(β,≪). Hence ifmin(β,≪) ⊆ [¬α] then alsomin(β,≤∗α) ⊆ [¬α], i.e.,¬α ∈≤∗α ◦β as required.

⇐: Suppose¬α ∈≤∗α ◦β, i.e., min(β,≤∗α) ⊆ [¬α], and suppose for contradictionmin(β,≪) * [¬α].
Then there existsx ∈ min(β,≪) ∩ [α]. Sincex ∈ [α] and min(β,≤∗α) ⊆ [¬α] this implies thatx <
min(β,≤∗α), so there existsy ∈ min(β,≤∗α) such thaty <∗α x, i.e.,rα(y) ≺ rα(x). Sincey ∈ min(β,≤∗α) and
min(β,≤∗α) ⊆ [¬α] we knowy ∈ [¬α] and sorα(y) = y−. Meanwhile sincex ∈ [α] we knowrα(x) = x+.
Hencerα(y) ≺ rα(x) translates intoy− ≺ x+, i.e., y ≪ x, which contradictsx ∈ min(β,≪). Hence
min(β,≪) ⊆ [¬α] as required.

For each of the two overrules relations we may consider an interdefinableinferencerelation. We define:

β⇒ α iff β overrules¬α

β⇛ α iff β strictly overrules¬α.

Using fundamental results by Freund [16] and Kraus et al. [28], classifying various families of nonmonotonic
inference relations, Proposition 8 together with the properties of≪ and≪ now allows us to deduce many
properties of⇒ and⇛, and thereby of the overrules relations:

Corollary 2 The binary relations⇒ and⇛ are both (consistency-preserving)preferentialinference rela-
tions, in the sense of Kraus et al. [28]. Furthermore they both satisfy the rule ofDisjunctive Rationality, i.e.,
if β ∨ γ⇒ α then eitherβ⇒ α or γ⇒ α.

The first part is a consequence of the fact that≪ and≪ are strict partial orders [28]. In particular it implies
that⇒ and⇛ both satisfy the following rules (among others):

β⇒ α, α ⊢ γ

β⇒ γ
(Right Weakening)

β⇒ α, β⇒ γ

β⇒ α ∧ γ
(And)

β⇒ α, β⇒ γ

β ∧ γ⇒ α
(Cautious Monotony)
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Switching things around in terms of the corresponding overrules relations, Right Weakening implies ifβ
(strictly) overrulesα thenβ (strictly) overrules every sentence logicallystrongerthanα. The And-rule tells
us that ifβ (strictly) overrules bothα andγ separately, then it (strictly) overrules theirdisjunction. While
Cautious Monotony translates into the rule that ifβ (strictly) overrulesα, then so doesβ ∧ ¬γ, providedβ
(strictly) overrulesγ.

The second part of Corollary 2 follows from results by Freund[16] and Proposition 7(iii) . It implies
a disjunctionβ ∨ γ cannot (strictly) overruleα without at least one of its disjuncts doing so. However
it’s possible for neither⇒ nor⇛ to satisfy the well-known rule Rational Monotony [28] (and thus also
Monotony). I.e., ifβ⇒ α andβ ; ¬γ thenβ ∧ γ ⇒ α. This is because it can be shown that the relations
≪ and≪ are not in generalmodular, i.e., they do not verify the propertyx <′ y implies eitherx <′ z or
z <′ y. In fact the following condition, which is easily seen to be weaker than the both the modularity of≪
and of≪, fails to hold in general:

If x≪ y then eitherx≪ z or z≪ y.

For the counterexample, consider the following picture:

x

y

z

Then clearly we havex≪ y, but neitherx≪ z nor z≪ y.

7 Limiting cases

In this section we investigate some special limiting cases of our family of revision operators. Firstly, suppose
we insist on the following strengthening of property (�4):

(�L) x+ ≺ y−.

In other words, given a choice between a positive representation of any worlds and a negative representation
of any world, we choose the world with a positive representation every time. This is equivalent to the
limiting case where≪ = ∅ (thus also≪ = ∅). Hence this condition can be thought of as expressing
minimal confidence behind the initial tpo≤. Note that adding this rule to (�2) and (�3) is enough to specify
a unique tpo overW±, thus causing (�1) to become redundant. Indeed we are left with the tpo definedby,
for all x, y ∈W andδ, ǫ ∈ {+,−}, xδ � yǫ iff either (δ = + andǫ = −) or (δ = ǫ andx ≤ y). In terms of the
graphical representation of�, this corresponds to the case where every right-point of a stick appears strictly
to the right of the left end-points ofeverystick.

x1

x2

x3

x4

x5
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The revision operator∗L defined by this� then reduces to:

x ≤∗α y iff either x <α y or (x ∼α y andx ≤ y)

This is the well-knownlexicographicrevision operator studied and axiomatised in the context ofiterated
belief revision [19, 30, 36]. It amounts to≤α being refined by≤. We can characterise∗L within our family
in the following way:

Proposition 9 If ∗ is generated from some≤-faithful tpo overW± satisfying (�L) then∗ satisfies:

(∗L) If x ∈ [α] and y ∈ [¬α] thenx <∗α y.

Furthermore if∗ is any revision operator for≤ which satisfies (∗L) then the≤-faithful tpo�∗ defined in the
completeness proof of Theorem 1 satisfies (�L).

Proof: Suppose� satisfies (�L) and let∗ = ∗�. Let x ∈ [α] andy ∈ [¬α]. Thenrα(x) = x+ andrα(y) = y−.
By (�L) rα(x) ≺ rα(y), i.e.,x <∗α y as required to show (∗L).

Conversely suppose∗ is a revision operator for≤ satisfying (∗L) and let�∗ be as defined in the com-
pleteness proof of Theorem 1. We must showx+ ≺∗ y− for all x, y. If x = y thenx+ ≺∗ x− directly by
construction. So supposex , y. We need to showx+ �∗ y− and y− �∗ x+. By construction these are
equivalent tox ≤∗x y andy �∗x x respectively, i.e.,x <∗x y. But by (∗L) x <∗x z for all z , x. Hencex <∗x y as
required.

From this result we see that∗L is axiomatically characterised by (∗1)–(∗7) plus (∗L). However it is easy to
see that (∗L) implies (∗5)–(∗7). (∗1) also becomes redundant, since (∗3), (∗4) and (∗L) are enough to force
the unique tpo≤∗α, and we already established after Proposition 3 that (∗2) can be removed. Hence (∗3), (∗4)
and (∗L) form a sound and complete axiomatisation for∗L. The sentential counterpart of (∗L) is the rule
Recalcitranceof Nayak et al. [30], i.e.,

(◦L) If β 0 ¬α thenα ∈≤∗α ◦β.

Note also that new evidence is always believed after lexicographic revision. A characterisation of∗L in terms
of social choice-like conditions was given by Glaister [19], who referred to it asJ-revision.

At the other extreme, suppose instead we insist on

(�P) x < y impliesx− ≺ y+.

This rule is equivalent to saying≪ = <. (Thus also≪ = <.) This property expresses maximal confidence
behind the initial tpo≤, or skepticism towards new evidence. Adding this rule to (�2)–(�4) is again enough
to specify� completely. It is not difficult to show this time we are left with xδ � yǫ iff either x < y or [x ∼
y and(δ = + or ǫ = −)]:

x1

x2

x3

x4

x5

The associated revision operator∗P is then given by

x ≤∗α y iff either x < y or (x ∼ y andx ≤α y).
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This is a so-called reverse lexicographic method, studied in the context of iterated belief revision [33]. This
time it corresponds to≤ being refined by≤α. In this case new evidence is not always believed.

Proposition 10 If ∗ is generated from some≤-faithful tpo overW± satisfying (�P) then∗ satisfies

(∗P) If x ∈ [¬α], y ∈ [α] andx < y thenx <∗α y.

Furthermore if∗ is any revision operator for≤ which satisfies (∗P) then the≤-faithful tpo�∗ defined in the
completeness proof of Theorem 1 satisfies (�P).

Proof: Suppose∗ = ∗� for some� satisfying (�P). To show∗ satisfies (∗P) supposex ∈ [¬α], y ∈ [α] and
x < y. Thenrα(x) = x− andrα(y) = y+. Sincex < y we may apply (�P) to deducerα(x) ≺ rα(y), i.e.,
x <∗α y as required.

For the second part let∗ be a revision operator which satisfies (∗P) and supposex < y. We want to show
x− ≺∗ y+, i.e., bothx− �∗ y+ and y+ �∗ x−. If x < y then clearlyx , y, hence by construction this is
equivalent to showingx ≤∗y y andy �∗y x, i.e., x <∗y y. But from (∗P) we knowz <∗y y for all z , y such
thatz < y. Hencex <∗y y as required.

This result implies that∗P may be characterised axiomatically by (∗1)–(∗7) plus (∗P). However we may
significantly simplify this list by observing the following:

Proposition 11 Let ∗ be any revision operator for≤ satisfying (∗3), (∗4) and (∗5). Then∗ together satisfies
(∗6), (∗7) and (∗P) iff ∗ satisfies:

(∗p) < ⊆ <∗α.

Proof: (∗6), (∗7), (∗P)⇒ (∗p)
In fact we show that, in the presence of the other rules, (∗P) is enough to prove (∗p) on its own. Suppose
x < y. To show (∗p) we must showx <∗α y. We look at each of the casesy <α x, x <α y andx ∼α y. If
y <α x then the required conclusion follows immediately from (∗P). If x <α y then the conclusion follows
from (∗5). Finally if x ∼α y then the conclusion follows from (∗3) or (∗4).

(∗p)⇒ (∗6), (∗7), (∗P)
(∗p)⇒ (∗P) is immediate. To show (∗p) implies the other two rules we show in fact (∗p) implies the following
property, which is easily seen to be stronger than both (∗6) and (∗7):

If x <α y andy ≤∗α x theny <∗α x.

This property holds since ifx <α y andy ≤∗α x theny < x by (∗5). Hencey <∗α x follows by (∗p).

Again (∗1) becomes redundant, and so we arrive at the following characterisation of∗P.

Proposition 12 ∗P is the unique revision operator for≤ which satisfies (∗3)–(∗5) plus (∗p).

It is easy to see that the sentential counterpart of (∗p) is the following rule:

(◦p) ≤ ◦β ⊆ ≤∗α ◦β.

(◦p) states thatall conditional beliefs in≤ are preserved after revision.
As the following example shows (partly based on one by Darwiche & Pearl [12], rigid use of either of

these limiting cases∗L and∗P can lead to counter-intuitive results.
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Example 2 Suppose we have a murder trial with two main suspects, John and Mary. Letp represent “John
is the murderer” andq represent “Mary is the murderer”. Furthermore letr represent “The victim is an alien
from outer-space”.

Initially we believe the murder was committed by one person,either John or Mary. However wewouldn’t
be surprisedto discover that either both or neither were involved in the crime. Whatwouldbe surprising –
indeed highly shocking – would be if we found out the victim was an alien. However we are still capable of
imagining a hypothetical situation in which this turns out to be the case, and we think this would not alter
our belief that either John or Mary acted alone. If we were to represent all this using a tpo≤, it seems the
following is the best candidate:

100

010

110

000

101

011

111

001

Now during the trial we receive testimony that John is the murderer, leading us to revise≤ by p. Supposing
we then receive testimony that Mary is the murderer, the mostreasonable conclusion would be that both
John and Mary were involved in the murder. But using the operator ∗P gives

≤
∗P
p ◦q = Cn(¬p ∧ q ∧ ¬r)

We are forced to drop our belief that John is the murderer.
Now consider the situation where we receive testimony that John is the murderer, followed by the sup-

position that if John is the murderer, then the victim is an alien. In this case it seems the reasonable thing to
do is drop the acquired belief that John is the murderer. However, using the operator∗L gives

≤
∗L
p ◦(p→ r) = Cn(p ∧ ¬q ∧ r)

That is, we end up believing John murdered an alien!
The move to our more general family of tpo-revision operators enables a correct treatment of both these

scenarios simultaneously. Consider the≤-faithful tpo� represented by:

In the first case where we receive evidence pointing towards John’s guilt followed by the supposition Mary
did it, we have

≤∗p ◦q = Cn(p ∧ q ∧ ¬r)

which is the intuitive result. In the case where we receive evidence for John being the murderer, followed
by supposing that if John is the murderer then the victim is analien, we have

≤∗p ◦(p→ r) = Cn(¬p ∧ q ∧ ¬r)

which is what we would expect.
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Figure 3: Example of abstract interval ordering

8 Another subclass

Close inspection reveals that both the limiting cases mentioned above share something in common – in both
cases we have≪=≪. Writing out this condition in full, the unique� defined in each case satisfies:

(�5) x− � y+ iff x− ≺ y+.

This condition states that nox− appears in the same�-rank as ay+. In this section we take a look at the
subclass of our family of revision operators defined by enforcing this condition.

One thing to notice is that if≪=≪ then the distinction between the overrules relation and thestrictly
overrules relation relative to∗� disappears – they collapse into the same binary relation. Asfor an axiomatic
characterisation of this subfamily, the next result pointsthe way:

Proposition 13 If ∗ is generated from some≤-faithful tpo overW± satisfying (�5) then∗ satisfies

(∗8) For x ∈ [α] and y ∈ [¬α], eitherx <∗α y or y <∗α x.

Furthermore if∗ is any revision operator for≤ which satisfies (∗8) then the≤-faithful tpo�∗ defined in the
completeness proof of Theorem 1 satisfies (�5).

Proof: For the first part let∗ = ∗� for some≤-faithful tpo satisfying (�5). Letx ∈ [α] andy ∈ [¬α]. Then
to show the consequent of (∗8) we need to show that eitherx+ ≺ y− or y− ≺ x+. By (�5) we can replace the
second disjunct here byy− � x+. But since� is a tpo (by (�1)) we always have eitherx+ ≺ y− or y− � x+.
Hence the consequent of (∗8) holds.

For the second part let∗ be a revision operator satisfying (∗8). We want to showx− �∗ y+ iff x− ≺∗ y+.
If x = y we knowx+ ≺∗ x− so neither of these conditions can hold, making the biconditional true in this
case. So supposex , y. In this case the first condition is equivalent tox ≤∗y y while the second is equivalent
to x <∗y y. But from (∗8) (sincex , y) we know eitherx <∗y y or y <∗y x, i.e.,x /∗y y. This meansx ≤∗y y
can hold iffx <∗y y, as required.

Condition (∗8) means that after revising byα, there is a separation betweenα-worlds and¬α-worlds, in the
sense that each≤∗α-rank containseitheronly α-worlds or only¬α-worlds. This property is called (UR) by
Booth & Meyer [7], where it is shown that its sentential counterpart is:

(◦8) If ¬α < ≤∗α ◦β thenα ∈≤∗α ◦β.
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Postulate (◦8) says that after receivingα as evidence and then making the suppositionβ,α should be believed
as long as it is consistent to do so.

(∗8), alias (◦8), is quite a strong rule, and adding it to the list (∗1)–(∗7) causes some redundancies.
Since (∗8) implies the equivalence ofx ≤∗α y with x <∗α y for x /α y, we see (∗6) now follows from (∗7).
Meanwhile (∗5) becomes equivalent to “ifx <α y andx ≤ y thenx ≤∗α y” (i.e., (CR4) proposed by Darwiche
& Pearl [12]. But using the fact that≤=≤∗⊤ (which follows from (∗3)), this is seen as just the instance of (∗7)
in which γ = ⊤. Hence (∗5) also disappears. Thus the class of tpo-revision operators generated by those
≤-faithful tpos overW± satisfying (�5) may be characterised as follows:

Theorem 2 Let ∗ be a revision operator for≤. Then∗ is generated from some≤-faithful tpo overW±

satisfying (�5) iff ∗ satisfies (∗1), (∗3), (∗4), (∗7) and (∗8).

Of course we can if we wish replace the last four rules above with their sentential equivalents.

9 Improvement operators

The problem of defining tpo-revision operators has also beenstudied recently by Konieczny et al. [27, 25].
Their purpose is to studyiterable tpo-revision operators in which repeated revision byα eventually leads to
acceptance ofα into the tpo’s associated belief set. This “weak success” property rules out, for example,
just blindly using∗P to always revise the current tpo at every turn. (We remark that this property is fully
formalised by Konieczny et al. We just provide an intuitive description here.)

Konieczny et al. study and axiomatise a series of classes of such operators. The general class ofim-
provement operatorssatisfies, in addition to the above weak success requirement, the rules (∗1)-(∗5). Next
comes the class ofsoft improvementoperators, which is obtained by adding the following postulate (referred
to as (S4) in [25]):

(∗soft) If x ∈ [α] andy ∈ [¬α] andy < x theny ≤∗α x

This rule limits the mobility ofα-worlds when revising byα. It says anα-world is not allowed toovertake
a¬α-world which was initially considered strictly more preferred. This obviously excludes∗L. However,
the following result shows that soft improvement operatorsdo satisfy another of our postulates. (Recall that
(Pareto) is a consequence of (∗1)-(∗5) - see the discussion just before Proposition 2.)

Proposition 14 Let ∗ be any tpo-revision operator satisfying (Pareto) and (∗soft). Then∗ satisfies (∗6).

Proof: Let x ∈ [α], y ∈ [¬α], i.e., x <α y, and supposey ≤∗α x. We must showy ≤∗γ x for anyγ. From
x <α y, y ≤∗α x and (Pareto) we knowy < x. If y ≤γ x theny <∗γ x from (Pareto) again and so we obtain
the conclusion. Ifx <γ y then we obtain the requiredy ≤∗γ x by (∗soft).

We will see below that soft improvement operators donot generally satisfy (∗7).
Konieczny et al. go on to describe three distinguished members of the family of soft improvement

operators, which we describe informally below (we refer thereader to [27, 25] for the formal details). In the
following we usex ⋖ y to denote the fact thatx < y and there is noz ∈W such thatx < z < y:

One-improvementThe one-improvement operator, which we denote here by∗o satisfies the following prop-
erty (called (S5) in [27]):

(∗o) If x ∈ [α] andy ∈ [¬α] andy ⋖ x thenx ≤∗α y
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Figure 4: An initial tpo≤ and the result of revising≤ by α using∗o, ∗h and∗b resp., where[α] = {x2, x4}.

Combined with (∗soft), this means that ify <α x andy < x, but y andx were neighbours in≤, then, after
revision byα, x ‘moves in’ with y, in the sense that they now share the same rank in≤∗α. To illustrate, look
at the example in Figure 4. The leftmost box depicts an initial tpo ≤ over W = {x1, x2, x3, x4}. The box
to the right shows the result of using∗o to revise≤ by some sentenceα whose models are{x2, x4}. After
revision,x2 joins the rank of the the immediately≤-preceding¬α-world x1, andx4 joins the rank of the the
immediately≤-preceding¬α-world x3.

Half-improvement The half-improvement operator∗h is just like one-improvement, except thatx ‘moves
in’ with y only if there were no¬α-worlds sharing the same rank asx in the initial tpo≤. Thus, in Figure
4 (third box from the left) we see thatx2 increases its plausibility with respect tox3 (in keeping with (∗5)),
but remains strictly less preferred thanx1, due to the presence of the¬α-world x3 in its ≤-rank. Forx4

however, since there is no¬α-world in the same≤-rank,x4 moves into the same rank asx3, as in the case
of one-improvement.

Best-improvement The best-improvement operator∗b behaves as half-improvement, except that nowx
moves in withy only if there are no ranksat all in ≤ which contain both anα-world and a¬α-world.
In such a caseα is said to beseparatedin ≤. Effectively best-improvement behaves like∗P, unlessα is
separated in≤, in which case it behaves like one-improvement. For example, in Figure 4α is not separated
in ≤ (sincex2 andx3 share the same rank), leading to the result of revision shownin the last box.

Of the three specific soft improvement operators mentioned above, only one-improvement falls within
the general family of tpo-revision which we described in theprevious sections:

Proposition 15 ∗o satisfies (∗7), but∗h and∗b generally do not.

Proof: To show∗o satisfies (∗7) we will show how (∗7) may be derived from (∗1)-(∗5), (∗soft) and (∗o).
Supposex <α y andy <∗α x. We must showy <∗γ x. Firstly, fromx <α y andy <∗α x we knowy < x from
(Pareto). If it were the case thaty ≤γ x then we would get the desired conclusion from (Pareto), so suppose
x <γ y. Now, if it were the case thaty ⋖ x then we would obtainx ≤∗α y from this andx <α y using (∗o),
thus yielding a contradiction. Hence we have shown thaty < x, but that it isnot the case thaty ⋖ x, and so
there is somez such thaty < z < x. We split into two cases, according to whetherz ∈ [γ] or not. If z ∈ [γ]

theny ≤∗γ z by (∗soft) andz <∗γ x by (∗3), giving the requiredy <∗γ x by (∗1). If z ∈ [¬γ] then y <∗γ z by
(∗4) andz ≤∗γ x by (∗soft), again giving the requiredy <∗γ x by (∗1).
To see that∗h and ∗b fail to satisfy (∗7) in general, consider again the example of Figure 4. We have
x1 ∈ [¬α], x2 ∈ [α] and bothx1 <

∗h
α x2 andx1 <

∗b
α x2. If ∗h and∗b satisfied (∗7) then we would also expect

x1 <
∗h
γ x2 andx1 <

∗b
γ x2, where[γ] = {x2, x3, x4}. However both∗h and∗b yield the following tpo when

revising byγ.
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x1

x2

x3

x4

So bothx1 <
∗h
γ x2 andx1 <

∗b
γ x2, contradicting (∗7).

Since one-improvement satisfies (∗1)-(∗7) we know it may be generated from some≤-faithful tpo over
W±. In fact it is generated by the unique tpo� satisfying (�1)-(�4) together with the property

(�o) x ⋖ y impliesx− ∼ y+

In other words, ifx < y andx, y are in adjacent ranks in≤, thenx− andy+ are in the same rank in�:

x1

x2

x3

x4

x5

10 Strict Preference Hierarchies (or Interval Orderings)

In this section we introduce a way of re-packaging a given ordering� over W± satisfying (�1)–(�4). We
show that this alternative representation is equivalent tousing the class of orderings�. This representation
in terms ofstrict preference hierarchieswill be used in section 11 to describe desirable properties for the
revision of, not just tpos, butthe strict preference hierarchies themselves. This is equivalent to the revision
of the class of orderings�, and therefore goes beyond the revision of just tpos, to provide the first steps in
the description of an approach for revising epistemic states containing the enriched structure to be found in
the class of orderings�.

As observed in section 6, from a single� we can extractthreedifferent notions ofstrict preferenceover
W.

1. x < y iff x+ ≺ y+

2. x≪ y iff x− � y+

3. x≪ y iff x− ≺ y+

We are now in a position to define our alternative representation of�.

Definition 6 The tripleS = (≪,≪, <) of binary relations overW is astrict preference hierarchy (overW)
(SPH for short) iff there is some relation� overW± satisfying (�1)–(�4) such that≪,≪ and< can all be
defined from� as above. We shall sometimes say thatS is relative to<.
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Such “interval orderings” like the above have already been studied in the context of temporal reasoning [2],
as well as in preference modelling [32]. Indeed, concerningthe former case, the relations≪,≪, < could
all be defined in terms of the relationsbefore, meetsandoverlapsbetween temporal intervals studied by
Allen [2].

What are the properties of the three relations(≪,≪, <)? A couple were already mentioned in Section
6. For example we already know from there that≪ and≪ are strict partial orders (i.e., irreflexive and tran-
sitive). But what else do they satisfy? In particular how do they interrelatewith each other? Furthermore,
given anyarbitrary triple S = (≪,≪, <) of binary relations overW, under what conditions onS can we be
sure thatS forms an SPH, i.e., under what conditions can we be sure thereis some� satisfying (�1)–(�4)
such thatS can be derived from� in the above manner. These questions are answered by the following
representation result for SPHs. We point out that part(iii) of the “only if” part (but not the “if” part) was
essentially already proved, in the temporal reasoning context, by Allen [2].

Theorem 3 Let≪,≪ and< be three binary relations overW. ThenS = (≪,≪, <) is an SPH iff the
following conditions hold (wherex ≤ y iff y ≮ x):
(i). ≤ is a total preorder.
(ii) .≪⊆≪⊆<.
(iii) . The following are satisfied, for allx, y, z ∈W:

(SPH1) z ≤ x andx≪ y impliesz≪ y
(SPH2) x≪ y and y ≤ z impliesx≪ z

(SPH3) z ≤ x andx≪ y impliesz≪ y
(SPH4) x≪ y and y ≤ z impliesx≪ z

(SPH5) z < x andx≪ y impliesz≪ y
(SPH6) x≪ y and y < z impliesx≪ z

Proof: The “only if” direction is straightforward, and in fact easyto visualise given our new graphical
representation of�. For the “if” direction supposeS = (≪,≪, <) satisfies(i)–(iii) . We must find some
relation�S overW± such that(a)�S satisfies (�1)–(�4), and(b) the relations≪,≪ and<may be defined
from �S as above. We define�S as follows. For eachx, y ∈ W andǫ, δ ∈ {+,−} we must specify the
conditions under whichxǫ �S yδ or not. First, in the caseǫ = δ we define

xǫ �S yǫ iff x ≤ y.

This clearly ensures�S satisfies conditions (�2) and (�3). If ǫ , δ but x = y then we declare

x+ ≺S x−.

This ensures (�4) is satisfied. Finally ifǫ , δ andx , y then we set

x+ �S y− iff y 6≪ x x− �S y+ iff x≪ y.

We still need to show�S satisfies (�1), i.e.,�S is connected and transitive.
Connectedness.We need to show for anyx, y ∈ W andǫ, δ ∈ {+,−} eitherxǫ �S yδ or yδ �S xǫ. If ǫ = δ
then, by construction of�S, this reduces to showing that eitherx ≤ y or y ≤ x, which obviously holds since
≤ is connected. So supposeǫ , δ. In this case if furthermorex = y then we know by construction that
preciselyoneof xǫ �S xδ andxδ �S xǫ holds, namelyx+ �S x−. So suppose bothǫ , δ andx , y. Assume
ǫ = + andδ = − (the reverse case is symmetrical). Then by construction we need to show eithery 6≪ x or
y≪ x. But this follows since≪⊆≪ as required.
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Transitivity.We need to show, for anyx, y, z ∈W andǫ, δ, ν ∈ {+,−},

xǫ �S yδ andyδ �S zν impliesxǫ �S zν.

If ν = δ = ǫ then this follows from the transitivity of≤. Now we consider the other possible combinations
of ǫ, δ andν.
ǫ = δ , ν.
In this case, sincexǫ �S yδ reduces tox ≤ y, we must show

x ≤ y andyδ �S zν impliesxδ �S zν.

So suppose the antecedent holds. Supposeδ = + andν = −. If z = x then the consequent holds by
construction of�S so supposez , x. Then the consequent reduces toz 6≪ x. If y = z then fromx ≤ y
we getx ≤ z and so, since≪⊆<, we obtain the required consequent. So suppose alsoy , z. Then from
yδ �S zν we obtainz 6≪ y. Then this together withx ≤ y gives us the requiredz 6≪ x using (SPH2).

Suppose insteadδ = − andν = +. Theny , z (since otherwiseyδ �S zν becomesy− �S y+, contrary
to the construction of�S) so yδ �S zν becomesy≪ z. If it were the casez = x then this would givey≪ x
and so, since≪⊆<, y < x – contradiction. Hencez , x which means to show the consequent holds we
needx≪ z. But this follows fromy≪ z andx ≤ y using (SPH3) as required.
ν = ǫ , δ.
In this case the consequent reduces tox ≤ z, and so we must show

xν �S yδ andyδ �S zν impliesx ≤ z.

Suppose the antecedent holds. First supposeν = + andδ = −. Then we knowz , y (since otherwise
yδ �S zν would bez− �S z+ which is not possible), hence fromyδ �S zν we know y ≪ z. If y = x then
the consequent becomesy ≤ z, which then follows fromy≪ z using the fact that≪⊆<. So supposey , x.
Thenxν �S yδ becomesy 6≪ x, and this together withy≪ z gives the requiredx ≤ z using (SPH6).

Suppose insteadν = − andδ = +. Then we knowy , x (otherwisexν �S yδ would lead toy− �S y+)
soxν �S yδ reduces tox≪ y. If z = y then this in turn givesx≪ z which implies the requiredx ≤ z using
the fact that≪⊆<. So supposez , y. Then fromyδ �S zν we getz 6≪ y which, together withx≪ y gives
the requiredx ≤ z using (SPH5).
ν = δ , ǫ.
In this case we must show

xǫ �S yδ andy ≤ z impliesxǫ �S zδ.

First supposeδ = + andǫ = −. Thenx , y since otherwisexǫ �S yδ would becomex− �S x+ which is
impossible. Hencexǫ �S yδ becomesx ≪ y. From this we knowx , z since otherwisez ≪ y, which
contradictsy ≤ z (since≪⊆<). Hence the consequent isx ≪ z. But this follows fromz ≪ y and y ≤ z
using (SPH4).

Now supposeδ = − and ǫ = +. If x = z then the consequent becomesx+ �S x−, which holds
automatically by construction of�S. So assumex , z, which means the consequent is equivalent toz 6≪ x.
Now if x = y then this would be justz 6≪ y, which then follows fromy ≤ z using the fact≪⊆<. So
assume alsox , y. Thenxǫ �S yδ becomesy 6≪ x. But this together withy ≤ z still implies the desired
consequentz 6≪ x using (SPH1).

Thus we have proved that�S satisfies all three rules (�1)–(�4). It remains to show≪,≪ and< may
all be recaptured from�S. For≪ we need to show for anyx, y ∈ W, x≪ y iff x− ≺S y+, in other words
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x ≪ y iff both x− �S y+ andy+ �S x−. If x = y then the left-hand-side will be false (since≪ is clearly
irreflexive) so in this case we must showx− ⊀S x+, i.e., x+ �S x−. But this holds by construction of�S.
If x , y the construction tells us we must showx ≪ y iff both x ≪ y andx ≪ y. But this holds since
≪⊆≪. Hence≪ may indeed be defined from�S. For≪ we need to showx ≪ y iff x− �S y+. The case
x = y holds as in the case above for≪, while the casex , y follows immediately by construction. Finally
for < we needx < y iff x+ ≺S y+. Again this is immediate from the construction.

The rules (SPH1)–(SPH6) each represent some sort of transitivity condition across the relations of the SPH.
Note it follows easily from these conditions that≪ and≪ are strict partial orders.

Two special limiting cases of SPHs were already mentioned inSection 7: Given any tpo≤ overW with
strict part<, the triples(∅, ∅, <) and(<,<, <) eachalwaysforms an SPH, as can easily be seen by checking
conditions(i)–(iii) of the theorem. In fact these are the SPH forms of the well-known lexicographic tpo-
revision operator [30] and Papini’s [33] “reverse” lexicographic tpo-revision operator respectively.

SPHs seem quite closely related to the notion of “PQI interval order” studied byÖztürk et al. [32].
Indeed several representation results in the same spirit asTheorem 3 can be found in their work. The main
difference with ours is that PQI interval orders make use of an explicit numerical scale, so the endpoints
of the intervals are ordinary real numbers, whereas our intervals are “abstract”, having endpoints only in
some totally preordered set (but see Section 11.1 of this paper). Also, with PQI interval orders, different
possibilities (i.e., possible worlds for us) may be assigned intervals of different length. It is even possible for
the interval assigned to one possibility to be completelyenclosedin the interval assigned to another. This
is something we do not allow. We are currently in the process of examining in more detail the relationship
between SPHs and PQI interval orders.

To summarise the findings of this section, we now see we have two different, but equivalent ways of
describing the structure required to revise a tpo≤:

1. As a≤-faithful tpo� overW± satisfying (�1)–(�4).

2. As a triple(≪,≪, <) of binary relations overW satisfying conditions(i)–(iii) from Theorem 3 (with
< being the strict part of≤).

Recall that the revision operator∗ for ≤ derived from a≤-faithful tpo� overW± is defined by settingx ≤∗α y
iff rα(x) � rα(y). The next result shows how we can describe∗ purely in terms of the SPH corresponding to
�.

Proposition 16 Let≤ be a tpo overW and let� be a given≤-faithful tpo overW±. LetS = (≪,≪, <) be
the SPH corresponding to� and let∗ be the revision operator for≤ derived from�. Then, for allx, y ∈W,

x ≤∗α y iff



















x ∼α y andx ≤ y
or x <α y and y 6≪ x
or y <α x andx≪ y.

Proof: Given x, y ∈ W, we can clearly split into three mutually exhaustive and exclusive casesx ∼α y,
x <α y andy <α x. In the first case we know alreadyx ≤∗α y iff x ≤ y by (∗3) and (∗4). This takes care of
the first clause in the above identity for≤∗α. If x <α y thenrα(x) = x+ andrα(y) = y− so by definition of
≤∗α we havex ≤∗α y iff x+ � y−. This is equivalent toy− ⊀ x+, i.e., y 6≪ x. This takes care of the middle
clause in the above identity. Finally ify <α x thenrα(x) = x− andrα(y) = y+, so nowx ≤∗α y iff x− � y+,
i.e.,x≪ y as required to show the last clause in the above identity.
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Since the class of orderings� and the class of SPHs are equivalent, any way of revising one of these
two types of structure will automatically give us a way of revising the other. We are free to use whichever
one seems more appropriate at the time. For the purpose of expressingdesirable propertiesof revising�, it
is easier to express such properties in terms of SPHs than�.

11 Properties of SPH Revision

Given an SPHS and a sentenceα, we want to determine the new SPHS � α which is the result of revising
the entire SPHS by α. AssumeS = (≪,≪, <) and let’s denoteS� α by (≪′,≪′, <′). Firstly, we have the
following three fundamental properties:

(�1) S� α is an SPH
(�2) <′=<∗α
(�3) If α ≡ γ thenS� α = S� γ

In (�2),<∗α is the strict version of the tpo≤∗α determined using≤,≪ and≪ as in Proposition 16. In other
words,S� α should be an SPH relative to<∗α. (�3) is a syntax-irrelevance property.

With <′ settled, it remains to specify≪′ and≪′. An initial suggestion for the new strong strict pref-
erences≪′ might be to keep it unchanged. That is, to set≪′ equal to≪. This can be seen as a pure
application of minimal change to≪. In addition, it is easy to see that≪ ⊆ <′ and so such a choice is not
at odds with part(ii) of Theorem 3. However, the following example shows this can’t be done in general.
ForS� α to be an SPH it is necessary to satisfy

(SPH1) z ≤∗α x andx≪′ y impliesz≪′ y

But if we set≪=≪′ this might not hold in general. For suppose we are given a portion of the� corre-
sponding toS as follows:

x

y

z

Sox≪ y andz 6≪ y. Now suppose we revise by a sentenceα such thatz ∈ [α] andx, y ∈ [¬α].

x

y

z

Thenz <∗α x, thus giving the required counterexample. Note, incidentally, that it is still a counterexample
if we assumey ∈ [α]. Thus there are times when the set of strong strict preferencesmustchange. In the
above counterexample, when we move from≪ to≪′ we musteither losex ≪ y, or gainz ≪ y. How
do we decide which? A useful approach is to distinguish between the casey ∈ [¬α], as indicated in the
counterexample above, and the casey ∈ [α]. In the former case intuition dictates thatx ≪ y ought to be
retained sinceα does not discriminate betweenx and y: they are both in[¬α]. Moreover, it is justifiable
to gainz ≪ y since we have a positive representation ofz (z ∈ [α]) and a negative representation ofy
(y ∈ [¬α]). On the other hand, in the case wherey ∈ [α] it can be argued that the strong preferencex≪ y
can be lost since we don’t have such a strong case to preferx over y anymore whenx ∈ [¬α] andy ∈ [α].
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Also, note that in this case it seems reasonable to require that the relative ordering ofz andy with respect to
<,≪ and≪ ought to remain unchanged sinceα does not distinguish betweenz andy: they are both in[α].
This brings us, in fact, to what can be regarded as the basic postulates for SPH revision, once (�1)-(�3) are
included as well:
(�4a) If x ∼α y thenx≪ y iff x≪′ y

(�4b) If x ∼α y thenx≪ y iff x≪′ y

(�5a) If x <α y thenx ≤ y impliesx≪′ y

(�5b) If x <α y thenx < y impliesx≪′ y

Definition 7 The SPH-revision operator� is admissibleiff it satisfies (�1)-(�3), (�4a), (�4b), (�5a) and
(�5b).

We refer to this as admissible SPH revision since it corresponds closely to admissible revision as defined
by [7]. (�4a) and (�4b) are versions of Darwiche and Pearl’s (CR1) and (CR2) [12], or rules (∗3) and (∗4)
defined earlier. They require that the ordering of two elements x and y be unchanged, wrt to≪ and≪,
provided that the circumstances forx and y are the same (i.e. either both are in[α] or both are in[¬α]).
This can be seen as an application of minimal change to≪ and≪. The postulates (�5a) and (�5b) are
versions of rule (∗5) defined earlier. In fact, in the presence of the fundamental rules (�1) and (�2), (�5a)
is astrengtheningof (∗5). They ensure that a “widening of the gap” betweenx andy occurs when we have
a positive representation ofx and a negative representation ofy. This can be viewed as making sure that the
evidenceα is taken seriously. A worldx in [α] will be more preferred with respect to a worldy in [¬α],
provided thaty was not preferred tox to start with. So, informally, admissible SPH revision effects a “slide
to the right” of those worlds in[¬α] in a manner similar to that described by Booth & Meyer. [7]. The
difference here is that, with the aid of≪ and≪, we can specify more precisely how such a slide is allowed
to take place.

We now turn to some additional properties which, on the face of it, seem to be desirable, and then
investigate how they square up against admissible SPH revision. The first one we consider is

(�6) S�⊤ = S

which states that everything remains unchanged if we reviseby a tautology. And indeed, (�6) follows
immediately from (�2), (�4a) and (�4b).

Next we consider the pair of properties

(�7a) If x≪ y andx3′ y theny <α x
(�7b) If x≪ y andx 6≪′ y theny <α x

which state that losing a≪-preference or a≪-preference ofx over y must be the result ofy being rep-
resented positively (y ∈ [α]) andx being represented negatively (x ∈ [¬α]). It’s easy to verify that (�7a)
follows from (�4a) and (�5a), while (�7b) follows from (�4b) and (�5b).

Next is the pair of properties

(�8a) If x3 y andx≪′ y thenx <α y
(�8b) If x 6≪ y andx≪′ y thenx <α y

which state thatgaining a≪-preference or an≪-preference ofx over y must be the result ofx being
represented positively (x ∈ [α]) and y being represented negatively (y ∈ [¬α]). It turns out that (�8a)
follows from (�1), (�2) and (�4a), while (�8b) follows from (�1), (�2) and (�4b).

Next we mention a propertynot compatible with admissible SPH revision:

(�9) If (≪,≪ ∩ <∗α, <
∗
α) is an SPH thenS� α = (≪,≪ ∩ <∗α, <

∗
α)
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Property (�9) is an attempt to enforce the principle of minimal change with respect to both≪ and≪.
To see that it is incompatible with admissible revision, supposeS is of the form(∅, ∅, <), i.e.,≪=≪= ∅.
Assume furthermore thatx < y and suppose we then revise byα such thatx <α y. Then(≪,≪ ∩ <∗α, <

∗
α)

= (∅, ∅, <∗α) is an SPH and so (�9) dictates thatS�α = (∅, ∅, <∗α). But observe that admissible SPH revision,
and more specifically (�5b), requires thatx≪′ y, which contradicts≪′

= ∅.
The difference between the approach advocated by (�9) and admissible SPH revision is that (�9) re-

quires all three orderings to change as little as possible, while with (�5a) and (�5b) we are advocating that
the new evidenceα overrides the principle of minimal change.

Finally we mention a couple of plausible properties which gobeyondthose of admissible revision, in
that they relate the results of revising bydifferentsentences. Recall (Definition 4) that we sayα andγ agree
on x, y iff they both “say the same thing” regarding the relative plausibility of x, y. The next 2 rules express
that whether or notx≪′ y andx≪′ y should depend only onS and on what the input sentence says about
the relative plausibility betweenx, y. They express a principle of “Independence of Irrelevant Alternatives
in the Input”. Here we are writingS� α = (≪∗

α,≪
∗
α, <

∗
α) andS� γ = (≪∗

γ,≪
∗
γ, <

∗
γ).

(�10a) Ifα andγ agree onx, y thenx≪∗α y iff x≪∗γ y

(�10b) If α andγ agree onx, y thenx≪∗
α y iff x≪∗

γ y

We omit the case for<∗α, <
∗
γ, since these were already proved in Proposition 3 to follow from (∗1)–(∗7). It is

thus already handled by (�2). It can be shown that adding these two rules to those for admissible revision
leads to the redundancy of (�3) and allows (�4a) and (�4b) to be replaced by the simple rule (�6).

11.1 A Concrete Revision Operator

In the previous section we proposed that any reasonable SPH-revision operator should at the very least be
admissible according to Definition 7. In this section we demonstrate that such operators exist by defining
a concrete operator for SPH revision which is admissible. This operator employs yet more structure which
goes beyond SPHs and their corresponding orderings� overW±, and which takes us a step closer to the PQI
interval orders of̈Oztürk et al. [32] and also to semi-quantitative representations of epistemic states such as
that of Spohn [36]. But we expect there will be other, interesting, admissible revision operators which can
still be defined in a purely qualitative fashion. This is a topic for further research.

To decribe our operator it will be useful to switch back to the�-representation of our tpo-revising struc-
ture rather than work directly with SPHs. The basic idea is toenrich the�-representation with numerical
information. More precisely, to each elementxǫ ∈W± we assign a real numberp(xǫ) such that for allx ∈W,

p(x−) − p(x+) = a > 0,

wherea is some given fixed real number. The idea is that the smaller the numberp(xǫ), the more preferred
xǫ is. To each such assignmentp we may associate an ordering�p overW± given by

xǫ �p yδ iff p(xǫ) ≤ p(yδ).

Essentially we replace our abstract intervals(x+, x−) with the real intervals(p(x+), p(x−)), all of lengtha. It
is obvious that�p satisfies (�1)–(�4). (Again, we point out it is notabsolutelynecessary for all the intervals
to be of thesamelengtha in order for�p to satisfy (�2) and (�3).)

To revise a given SPHS by sentenceα we will use the following procedure:

1. ConvertS to its corresponding tpo� overW±
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2. Choose somep such that�=�p

3. Revisep to get a new assignmentp ∗ α

4. TakeS� α to be the SPH corresponding to�p∗α

Clearly the crucial step here is step 3. How should we determinep ∗ α? We propose a very simple method
here. We definep ∗ α by setting, for eachxǫ ∈W±,

(p ∗ α)(xǫ) =

{

p(xǫ) if x ∈ [α]

p(xǫ) + a if x ∈ [¬α]

In other words, the interval(p(x+), p(x−)) associated tox remains unchanged ifx satisfiesα, but is “moved
back” by amounta to (p(x−), p(x−) + a) if x satisfies¬α. Essentially this boils down to nothing more than
an operation familiar from the context of Spohn-type rankings known asL-conditionalisation[18].

The following result reveals whatS� α will look like.

Proposition 17 AssumeS = (≪,≪, <) and letS�α = (≪′,≪′, <′) be as defined in the above procedure,
for suitablep in step 2. Then, for anyx, y ∈W,
(i) <′=<∗α, where∗ is the revision operator corresponding toS as in Prop. 16.
(ii)

x≪′ y iff



















x ∼α y andx≪ y
or x <α y andx ≤ y
or y <α x andp(x−) + a ≤ p(y+).

(iii)

x≪′ y iff



















x ∼α y andx≪ y
or x <α y andx < y
or y <α x andp(x−) + a < p(y+).

Proof: We assume� is the tpo overW± corresponding toS and thatp is chosen such that�=�p.
(i) We need to showx <′ y iff x <∗α y. By construction of<′, the left hand side here is equivalent to
x+ ≺p∗α y+, i.e.,

(p ∗ α)(x+) < (p ∗ α)(y+).

Meanwhile, using the identity in Prop. 16 we may reformulatethe right hand side, as follows:

x <∗α y iff



















x ∼α y andx < y
or y <α x andx≪ y
or x <α y andy≪ x.

We now check for identity in each of the casesx ∼α y, y <α x andx <α y.
First supposex ∼α y. Then we must show(p ∗ α)(x+) < (p ∗ α)(y+) iff x < y. But if x ∼α y then

either both worlds satisfyα or both do not. In the former case(p ∗ α)(x+) = p(x+) and(p ∗ α)(y+) = p(y+),
while in the latter case(p ∗ α)(x+) = p(x+) + a and(p ∗ α)(y+) = p(y+) + a. In both cases we are left with
(p ∗ α)(x+) < (p ∗ α)(y+) iff p(x+) < p(y+). But this is the same asx+ ≺ y+, i.e.,x < y as required.

If y <α x then we must show(p ∗ α)(x+) < (p ∗ α)(y+) iff x≪ y. But in this case we get(p ∗ α)(x+) =

p(x+) + a = p(x−) and(p ∗ α)(y+) = p(y+), so(p ∗ α)(x+) < (p ∗ α)(y+) iff p(x−) < p(y+). But this is the
same asx− ≺ y+, i.e.,x≪ y as required.
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Finally if x <α y then we must show(p∗α)(x+) < (p∗α)(y+) iff y≪ x. But in this case(p∗α)(x+) = p(x+)

and(p ∗ α)(y+) = p(y+) + a = p(y−), so(p ∗ α)(x+) < (p ∗ α)(y+) iff p(x+) < p(y−) iff p(y−) ≤ p(x+). But
this is the same asy− � x+, i.e., y≪ x as required.

(ii) We havex ≪′ y iff x− �p∗α y+ iff (p ∗ α)(x−) ≤ (p ∗ α)(y+). Again we check for identity in each
of the casesx ∼α y, x <α y andy <α x. First if x ∼α y then we need to show(p ∗ α)(x−) ≤ (p ∗ α)(y+) iff
x ≪ y. But as in part(i) above we have(p ∗ α)(x−) ≤ (p ∗ α)(y+) iff p(x−) ≤ p(y+) iff x− � y+, i.e.,x ≪ y
as required.

If x <α y then we need(p ∗ α)(x−) ≤ (p ∗ α)(y+) iff x ≤ y. But in this case(p ∗ α)(x−) = p(x−) and
(p ∗ α)(y+) = p(y+) + a = p(y−), so(p ∗ α)(x−) ≤ (p ∗ α)(y+) becomesp(x−) ≤ p(y−), i.e.,x− � y−, which
is the same asx ≤ y as required.

If y <α x then we need(p ∗α)(x−) ≤ (p ∗α)(y+) iff p(x−)+ a ≤ p(y+). But this holds since(p ∗α)(x−) =

p(x−) + a and(p ∗ α)(y+) = p(y+) directly by definition ofp ∗ α.
(iii) Proved along exactly similar lines to(ii) , but with strict inequalities< replacing the weak ones≤.

From this result we can see that� satisfies (�2), (�4a), (�4b), (�5a) and (�5b). We can also see from
this that the result of revision depends on[α] rather thanα, thus (�3) is also satisfied. Meanwhile rule (�1)
obviously holds. Thus:

Corollary 3 The SPH-revision operator� defined via the above procedure from a given assignmentp is
admissible. Furthermore (�10a) and (�10b) also hold.

12 Conclusion

We have introduced a new family of operators for revising tpos by sentences based on the simple intuitive
idea that when we compare possibilities, we are often able toimagine these possibilities with regard to
best case and worst case scenarios. We then extended this framework to revise not only tpos, but also the
structurerequired to guide the revision of the tpo. We showed that thisstructure may be described in terms
of strict preference hierarchies (SPHs), and proved the equivalence of this representation with the class of
orderings�. We provided some properties which any reasonable SPH-revision operator ought to satisfy, and
proved their consistency by giving a concrete example of an SPH-revision operator which satisfy them. We
placed our work firmly in the context of the problem of iterated belief revision, and showed that our results
significantly extend current work on this topic.

In this paper we have proposed a type of structure which can beplaced on top of the usual tpo repre-
sentation≤ of an agent’s epistemic state and whose role is in fact to calculate the agent’s new tpo in its
revised epistemic state. This structure takes a specific form in the guise of a≤-faithful tpo over the setW±

or, equivalently, a SPH relative to<. The question naturally arises as to whether any other kindsof structure
are conceivable which equally go beyond the basic tpo representation and which can be deployed to obtain
a new tpo following receipt of new propositional information. In fact several different representations can
be found in the literature. Bochman [5] represents an epistemic state as an ordered set of states, each state
being labelled with a logically closed set of sentences. Lehmann [29] uses a sequence of sentences repre-
senting the revision history of the agent (see also [26]). More generally one can use a sequence ofsetsof
sentences [13]. Revision is enacted by placing the new sentence in an appropriate position in the sequence
(e.g., at the right-most end), though the precise position may be determined by extra means which may de-
pend on the context of the revision episode. Another enrichment was considered by Booth et al. in [9], with
the tpo≤ overW being augmented by a second ordering, also overW. However, there the extra structure
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was deployed to calculate the result of asingle-step belief contractionrather than iteratedrevision. Finally
there are the more quantitative (or at least semi-quantitative) accounts of epistemic states, particularly Spohn
rankings [36] and possibility functions [14]. Deeper connections between these representations and the one
of the present paper remain to be worked out, as well as the question of which representation can be said
to be thebestway to represent an agent’s epistemic state. However such aninvestigation would probably
require a paper of its own.

On the level of belief sets, our operators for revising tpos fall within the realm of non-prioritised revision,
in that revision inputs are not necessarily elements of the belief set associated to the epistemic state. This
is in contrast to most work on iterated belief change, which are usually given in the prioritised setting (with
the works of Booth [6] and Konieczny et al. [27, 25] being exceptions). We envisage prioritised revision by
α as a two-stage process, with the first stage being carried outby one of the operators in this paper, and then
the second stage consisting of an application of Boutilier’s natural revision[11] of the resulting tpo byα,
i.e., the most preferredα-worlds are simply brought if necessary to the front of the new tpo. For the special
case of the operator∗P, this was already done by Booth & Meyer [7] (section 5), leading to therestrained
revisionoperator. For future work we plan to apply this to the more general family.

Another direction for future research is the investigationof larger families of revision operators, such as
those obtained by weakening one, or both, of (�2) and (�3). Observe that this is equivalent to weakening
(∗3) and (∗4), or (◦3) and (◦4). The weakening of (◦4) will be of particular interest, since it is essentially
equivalent to the much-criticised postulate (C2) proposedby Darwiche & Pearl [12] and reproduced in
section 2.

Conversely, it would be interesting to consider special subclasses of our general family. We considered
some in sections 7 and 8. Another example could be the family obtained by taking≪ or≪ to be modular
orderings. Finally note that our operators do not conform tothe principle ofcategorical matching– from an
initial tpo≤ together with a≤-faithful tpo� overW± they return a new tpo≤∗α, but give no help on defining
a new≤∗α-faithful tpo overW± which can then be used to further revise≤∗α. One way of rectifying this might
be to preserve as much of≪ and≪ as possible.

For future work on SPH-revision we plan to investigate more desirable properties, and to examine useful
equivalent ways to reformulate the ones we already have. In this paper all our properties are formulated as
rules for single-step revision of SPHs. But since an SPH encodes the structure required to revise its asso-
ciated tpo, these properties correspond to properties fordouble-steprevision of tpos. To give an example,
property (�5a) corresponds to the following rule governing revision ofa tpo≤ by α followed byβ, which
we denote for now by≤∗

α·β
:

If x <α y andx ≤ y thenx ≤∗
α·β

y.

As mentioned above we intend to come up with other concrete SPH-revision operators, which perhaps
can be described in purely qualitative terms rather than requiring extra numerical information like the oper-
ator described in this paper.

On a more fundamental level, as noted previously, the framework presented here can be viewed as a
special case ofpreference aggregationor social choice theory[3]. We intend to pursue this link by an
investigation into extending the positive and negative representations of worlds to a finer-grained version
in which representations of worlds cover a larger spectrum.A comparison of such an extended framework
with existing work in preference aggregation and social choice theory may well prove to be illuminating for
both disciplines.

In a similar vein, there seems to be a close connection between our work and the work on preference
modelling using interval orderings bÿOztürk et al. [32]. The possible relationships between iterated belief
revision and works such as these have, as far as we are aware, not been previously explored. We plan to look
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more closely at this. More generally, the question of how ourwork fits into the more general use of interval
orderings [15] is also well worth exploring.

Finally, it is worth noting that our work can be seen as refuting the conjecture by Spohn [36] that an
adequate treatment of prioritised iterated revision has tobe quantitative in nature. The conjecture is based
on the assumption that the only reasonable candidates for qualitative iterated revision are Boutilier’s natural
revision [11] and Nayak’s lexicographic revision [31], butthat both are flawed. The conjecture formed
part of his motivation for developing a theory ofordinal conditional functions. While we agree with the
claim that both natural and lexicographic revision can be problematic, we have shown in this paper that a
qualitative setting leaves room for much more than just these two iterated revision operators.
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[21] S. O. Hansson, E. Fermé, J. Cantwell, and M. Falappa. Credibility-limited revision. Journal of Sym-
bolic Logic, 66(4):1581–1596, 2001.

[22] S.O. Hansson. A survey of non-prioritized belief revision. Erkenntnis, 50(2):413–427, 1999.

[23] Y. Jin and M. Thielscher. Iterated belief revision, revised.Artificial Intelligence, 171(1):1–18, 2007.

[24] H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and minimal change.Artif.
Intell., 52(3):263–294, 1991.

[25] S. Konieczny, M. Medina Grespan, and R. Pino Pérez. Taxonomy of improvement operators and the
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