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ABSTRACT 
 
Previous work has shown the ability of waveform LiDAR sensors 
to accurately describe various land cover types [1] and biomass 
estimates made in the field [2]. What is lacking, however, is a way 
to describe the different structural components that are embedded 
in the digitized backscattered energy from the LiDAR pulse. This 
study aims to extract structural components from waveform 
LiDAR data in terms of woody, herbaceous, and bare ground 
components from data collected over a savanna environment in and 
around Kruger National Park (KNP), South Africa. These 
components are comprised of metrics extracted from the 
waveforms and validated using biomass measurements made in 
field plots.  Different size windows around plot centers, 3x3 pixels 
and 9x9 pixels (resulting in 1.5m and 4.5 m footprint, 
respectively), were used to examine scale effects of larger 
footprints. It was found that composite waveforms resembling plot 
sizes (9x9) most often are able to describe more than 80% of the 
woody biomass variability across the entire study site, and 
individually for two of the three land uses within the area. 
However, the herbaceous component of the waveform did not 
correlate well with the field measurements, while the bare ground 
component was verified visually in a side-by-side comparison with 
optical imagery. 
 

Index Terms— LiDAR, waveform, modeling, structure 
 

1. INTRODUCTION 
 
Remote sensing using light detection and ranging (LiDAR) 
technology has seen considerable advancement with the advent of 
full waveform digitizing sensors.  LiDAR remote sensing systems 
operate by transmitting a monochromatic light pulse and 
measuring the reflection of this light pulse off of a scattering 
surface.  The intensity of the laser pulse is recorded as a function 
of the time it takes for the energy to leave the emitter, interact with 
the surface, and return to the sensor.  Waveform LiDAR sensors 
have the advantage of being able to record the backscattered 
energy at a very high sampling rate, typically on the order of 
nanoseconds.  The combination of high temporal resolution 
detection and full backscatter digitization enable the extraction of 
structural information that is embedded within the waveform [3]. 
Various studies have shown that signal metrics, calculated from 
large footprint LiDAR waveforms (on the order of 10s of meters), 
can be used to assess vegetation structure in forested environments 

[e.g., 4, 5], while small-footprint LiDAR waveforms can be used to 
accurately classify various land cover types [1].  Measures such as 
tree height, crown volume, and biomass have been accurately 
predicted and modeled, resulting in good correlation between 
waveform-derived metrics and available field data [e.g., 2].  
However, two specific challenges remain in terms of land cover 
assessment: (i) most previous work has dealt with large-footprint 
systems, which results in the measured field data typically being an 
order of magnitude smaller in actual ground area than the footprint 
size and (ii) a detailed breakdown of woody, herbaceous, and bare 
ground structural components along the laser trajectory, similar to 
the "end member" concept in an imaging spectroscopy context [6, 
7], is still lacking.  This latter aspect has bearing on our ability to 
map land cover types in the structural (3D) domain, as opposed to 
the traditional spectral approaches. 

The objectives of this study are to (1) establish a method by which 
to extract structural components, e.g., woody, herbaceous, and bare 
ground  from small-footprint LiDAR waveforms, (2) assess how 
these components and their extraction vary across different 
footprint sizes, and (3) establish how these structural components 
can be mapped across the landscape. We will accomplish this by 
using plot-level waveforms, generated by compositing small-
footprint waveform LiDAR (0.56 m footprint) returns, and 
extracting waveform-derived metrics to identify unique structural 
components and map woody and herbaceous biomass for both a 
conserved and communal savanna land use area. This scalable 
approach will increase our understanding of the interaction 
between waveform footprint and land cover object sizes and aid in 
the development of improved relationships between structural 
waveform metrics and measured field data.  

 
2. STUDY AREA AND DATA 

 
The study area (Figure 1) is located in and around the Kruger 
National Park (KNP) in South Africa.  The area is bounded by 
(22°8’00”S; 30°34’52”E) and (25°32’48”S; 32°2’50”E). Field and 
remote sensing data were collected for structural assessment of 
land degradation across a land use gradient that includes the KNP 
and an adjacent subsistence farming, communal area; this layout 
effectively juxtaposes a “protected” and “communal" area (Figure 
1, left). An example of a degraded communal savanna site from the 
study area is shown in Figure 1 (right), which also shows 
placement of plot-level field data on 10 m grid spacings. The field 



data are based on 4-5 sites per land use type for a total of 9 sites. 

 

Figure 1 Left: Study area for this research.  Our study focuses on 
the protected Kruger National Park and degraded Buschbuckridge   
(communal) areas. Right: An example of a degraded communal 
land use site in Bushbuckridge, South Africa (LU7).  Field plots in 
red. 

 
Each site, in turn, consists of 36 plot-level measurements of 
herbaceous biomass, tree height and diameter, species, and a 
qualitative assessment of cover (crusting, bare soil, herbaceous, 
and woody cover). 

The field data were collected during May 2008 in association 
with an airborne data collection campaign, and are summarized in 
Table 1; woody biomass calculations were derived from allometry 
equations. Waveform LiDAR data were collected by the Carnegie 
Airborne Observatory (CAO), using an Optech waveform digitizer, 
at 0.56 m footprint size and 1 ns temporal (vertical) resolution [8].  

 
3. METHODS 

 
3.1. Bare ground component 
 
Bare ground is one structural component that is present in every 
waveform. Removing and quantifying this component potentially 
will allow us to determine how much bare ground is present in a 
waveform in the 2D domain, i.e., without vertical interactions. 

Three measurements were taken from the waveform once this 
component was removed. They are defined as “Road Ratio”, 
“Leftover”, and “Ratio Removed”. “Road Ratio” is measured as 
the ratio of an amplitude scaled dirt road sample to an original dirt 
road waveform sample extracted from LU8. “Leftover” is 
measured as the ratio of the sum of what remains in the ground 
pulse to the sum of these same points in the original waveform. 
“Ratio Removed” is measured simply as the area under the road-
removed waveform divided by the area of the original waveform 
(See Figure 2).  

A combination of these measures is hypothesized to provide a 
means to identify the amount of bare ground present in a 
waveform. These measures range in value from 0 to 1, can be 
performed on a per-waveform basis, and are independent of any 
amplitude variations observed waveform to waveform, given the 
normalization approach. 
 
3.2. Waveform features 
 
Once the bare ground was removed, the composite waveforms 
were formed by summing values in identical height bins of 
waveforms within the pixel window. From these composite 

Table 1 Land use biomass summaries (‘w’ denotes woody, and ‘h’ 
denotes herbaceous). Land use defined by LUx, where ‘x’ is 2, 7, 
or 8 (see Figure 1). 

LUx (sample 
size) 

kg (w) kg/ha (w) g (h) 

LU2  
(82) 

median 20.24 7.16E+03 34.00

mean 59.62 2.26E+04 39.84

std 104.00 4.08E+04 19.52

LU7  
(67) 

median 4.57 1.23E+04 20.00

mean 174.05 5.25E+05 27.37

std 1085.33 3.46E+06 21.80

LU8  
(32) 

median 4.83 4.98E+03 26.00

mean 21.67 5.00E+04 30.24

std 64.77 1.87E+05 16.19

 
waveforms we extracted numerous measurements related to plot 
structure. Metrics such as height of median energy (HOME), 
canopy energy, and ground energy developed by the United States 
Geological Society (USGS) [9] and Neunschwander et. al. [1] were 
extracted along with numerous other measures. 

Firstly, two height related metrics were extracted. One is 
similar to the canopy ratio (CRR) defined by the USGS, but 
adapted to focus on the energy of the first backscattered return in 
the waveform as opposed to the signal immediately above the 
ground pulse.  This is defined as ‘aCRR’. The other is simply the 
volume of the plot as measured by taking the height of the first 
interaction in each waveform in a plot and multiplying by the 
spatial resolution of the data (0.56 m). This is defined simply as 
VOL. 

Secondly, the time (in nanoseconds) it takes to complete the 
10-90% integration range of the entire integrated waveform energy 
was extracted. This is defined as the duration of the waveform, 
where a longer duration is proportional to the presence of complex 
above ground structure. 

Lastly, summary statistics (mean, mode, median, standard 
deviation, variance, and range) of the first and second derivative 
were taken, including the zero- and nonzero-values of the 
waveforms. Contrary to the aforementioned features, the derivative 
measures were performed on the composite waveform prior to 
ground removal. Also, these derivatives were peak normalized 
because of the amplitude dependency of the discrete derivative 
process. 

 
3.3. Regression and component mapping 

 
These measurements were taken from plot waveforms that 
comprise synthetic footprints of 5 meters and 1.5 meters, i.e., 9x9 
and 3x3 pixel windows, respectively. The waveform features were 
incorporated into forward regression models (α=0.1 for entry) to 
predict woody and herbaceous biomass measured at the plot level. 
Features that best explain the variance in these measurements were 
measured site-wide to show how the structural components could 
be mapped. 

Past work [10] has shown nonlinear relationships between 
waveform LiDAR metrics and field measured biomass.  For this 
reason, various transformations of the field data and waveform 
features (e.g., squared/square root value) were tested to determine 
ideal fit. This was performed across all land uses (generic model), 
across each individual land use (site specific models), and across  



Table 1 Regression results for modeling woody and herbaceous 
biomass from waveform features. Analysis performed across all 
land uses (LU278), land uses 7 & 8 (LU78), and each land use 
(LUx). “var” is the biomass transformation commensurate with R2 
value to its left.  

 

 
 
land uses 7 and 8 as a single data set (conservation vs. communal 
models). Linear representations of the data were also modeled. 

The bare ground component was evaluated by comparing the 
three ground-removal components to the visual estimate made by 
field researchers. It should be noted this is a purely subjective 
measurement being evaluated with objective data. 

  

4. RESULTS AND DISCUSSION 
 

The results from this analysis (summarized in Table 2) showed that 
the features extracted from the waveform can be applied in 
modeling woody biomass estimates in a savanna environment. 
Importantly, all woody biomass estimates were adequately 
modeled in a linear fashion (adjusted R2=0.80) when scaled from 
per-meter to per-hectare measurements. The equation that 
describes this general model is (scale in subscript, land use in 
superscript)  

 

 
with 1 and 2 subscripts denoting first and second derivative. 

When land use 7 and 8 were considered together, the waveform 
features were able to explain 80.48% (adjusted R2=0.80) of the 
variation in woody biomass estimates. The equation that describes 
this model is 
 
௛௔ݓ

଻଼ ൌ 10଺ݔ1.22 െ ሻܴܴܥ10଺6ሺݔ1.89    
൅ ଵሻ݁݀݋10ଽሺ݉ݔ6.09   െ      .ଶሻ݁݀݋10ଽሺ݉ݔ2.76

 (2) 

 
When each land use was considered separately, the waveform 

features were able to explain 48.19% (adjusted R2=0.38), 89.46%  
(adjusted R2=0.89), and 99.17% (adjusted R2=0.99), of the 
variation in woody biomass estimates for land use 2, 7, and 8, 
respectively. The equations that describe these models are  
 

 
Figure 2 Result of removing the dirt road sample from a multiple 
interaction waveform. The dirt road sample is aligned with the 
ground pulse of the waveform and removed, leaving the points 
marked in circles from the ground pulse of the original waveform. 
 
 
and 

 
 
The best model chosen to model woody biomass estimates for land 
use 2 unfortunately did not adequately explain the variance in 
estimates (<50%).  This was attributed to the narrow range of 
biomass, and influence of outliers. 

Disappointingly, none of the waveform features were able to 
create a model that efficiently described the herbaceous biomass 
estimates at the plot level. This was not wholly unexpected, as the 
herbaceous backscatter of the waveform is embedded in the ground 
pulse. Since the “bare ground” component was removed from the 
ground pulse, some information related to the herbaceous content 
may also have been removed. It would appear that previous work 
investigating multiple scattering of bi-modal waveforms generated 
more accurate regression models in estimating herbaceous biomass 
at the plot level (e.g., Wu et.al. [10]). 

The regression models for the woody biomass for land uses 2, 
7, and 8 did not all contain the same features. Also, the model for 
woody biomass across the entire study site contained features that 
were not present in any of the individual land use models. Of note 
is the number of features that were included from removing the 
bare ground component from the waveform. 

The features that best described the biomass in land uses 7 & 8 
did show overlap. Both models incorporate a ratio of the canopy 
energy to the total energy (aCRR for LU8 and CRR for LU7). 
LU8’s model was more dependent on the upper canopy elements, 
while LU7’s model was more dependent on the entire canopy 
(upper and lower). LU2’s model was also dependent on CRR, but 
more on the most frequently occurring values (mode) of the first 
and second derivative. This reflects the ecology of the different 
land uses; the rangelands in LU8 are well-kept so the vegetation 
density at higher heights is more prominent than is the case with 
the other land uses. LU7 is heavily utilized with fewer large trees 
but a more uniform and dense shrubbery population, so the woody 
components are physically more variable at lower heights. LU2 is 
in the protected KNP area, and the pattern and density of the 
biomass in this land use is driven more by wildlife than human 
interaction.  

Finally, no model was able to adequately explain the visual 
bare cover field estimates using the bare ground removal 

௛௔ݓ
ଶ଻଼ ൌ 10଼ݔ3.79 ൅ ሻݎ݁ݒ݋ݐ10଼ሺ݈݂݁ݔ2.19

െ 10଼ݔ1.26 ൬݈݂݁ݎ݁ݒ݋ݐ
ଵ
ଶ൰ െ ଶሻݎ݁ݒ݋ݐ10଼ሺ݈݂݁ݔ1.25

൅ ሻݐݑܱ݋݅ݐܽݎ10ଽሺݔ1.17    െ 10଼ݔ1.25 ൬ݐݑܱ݋݅ݐܽݎ
ଵ
ଶ൰

െ ଶሻݐݑܱ݋݅ݐܽݎ10଼ሺݔ2.83 ൅ ሻܧܯܱܪ10ହሺݔ3.35
െ ሻܴܴܥ10ହሺݔ3.79 െ ሻܴܴܥ10ହሺܽݔ6.42
൅ ଵሻ݁݀݋10ଽሺ݉ݔ3.36 െ  .ଶሻ݁݀݋10଼ሺ݉ݔ8.33

(1) 

ln ሺݓ௛௔ሻ௅௎ଶ ൌ 13.45 െ 4.42ሺݐݑܱ݋݅ݐܽݎଶሻ ൅ 0.05ሺ݀݊݋݅ݐܽݎݑሻ
െ 5.33ሺߪଶሻ  െ 16.52ሺߤଶሻ, 

(3) 

௛௔ݓ
௅௎଻ ൌ 10଺ݔ1.58 െ ሻܴܴܥ10଺ሺݔ2.67 ൅ ଵሻ݁݀݋10ଽሺ݉ݔ2.39    

             െ3.9810ݔଶହሺ݁݃݊ܽݎଶሻ,                    
 

(4) 



measurements. However, the model that performed best can be 
expressed as  

 
% ݀݊ݑ݋ݎ݃ ݁ݎܾܽ                 . ൌ  (6)                     ݐݑܱ݋݅ݐܽݎ

 
For example, if only 5% of the original waveform is present after 
subtracting the bare ground, then the waveform contains 95% bare 
ground. This can be verified visually in Figure 3. 
 

 
Figure 3 “Ratio Out” metric for a site located in protected land use 
area (KNP). 
 

5. CONCLUSION 
 

From this study we have extracted features from full waveform 
small-footprint LiDAR data that accurately and linearly describe 
the woody component in a savanna environment. By visual 
confirmation, the bare ground component has also been extracted 
from the data. Future work will focus on how the herbaceous 
component can be more accurately extracted from the full 
waveform LiDAR data and the development of a more general 
biomass model for this area that is not so specific to the data set 
used in this study.  
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