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Abstract. The conventional theory of the piezoelectric rod is based on an assumption that its lateral vibrations are 
negligible. In this case the rod, vibration could be described in terms of one-dimensional wave equation and a set of 
mechanical and electric boundary conditions. However, the main assumption of the model is only valid in the case of 
long and relatively thin rods. As a rule, the linear dimensions of piezoelectric components used in real transducers are 
comparable with the characteristic dimensions of their cross-sections, and hence, their lateral displacements have to be 
taken into consideration. In the present paper, the theory of the piezoelectric rod is developed on the basis of the 
Mindlin-Herrmann model. In the frame of this theory, the longitudinal and lateral displacements are described by two 
independent functions and vibration of the rod is obtained in terms of a system of two partial differential equations. The 
Hamilton variational principle is used for derivation of the system of equations of motion and for obtaining the 
mechanical and electric boundary conditions. On the basis of the formulated Mindlin-Herrmann model, the electric 
impedance of the piezoelectric rod is calculated. Possible generalizations of the proposed approach are considered and 
conclusions are formulated. An example of the application of the piezoelectric rod based on the Mindlin-Herrmann 
theory is given. 
 
Keywords: lateral displacement, Mindlin-Herrmann model, piezoelectric, thick rod. 
 
1. INTRODUCTION  
 
The piezoelectric transducers generate and detect ultrasonic waves in continuous media such as fluids, solids, etc 

(Risstic, 1983). They have been developed for many industrial applications. The conventional theory of the thickness 
vibrator transducer is based on an assumption that its lateral vibrations are negligible. In this case, the transducers’ 
dynamics could be described in terms of one-dimensional wave equation and a set of mechanical and electric boundary 
conditions. However, the main assumption of the model is only valid in the case of long and relatively thin rods. As a 
rule, the linear dimensions of thickness vibrators are comparable with the characteristic dimensions of their cross-
sections and hence, it is necessary to take into consideration the lateral displacements of these transducers. Theory of 
relatively thick transducers was developed (Shatalov et al., 2009b). In the present paper, the theory of the relatively 
thick piezocomposite rod is developed on the basis of the Mindlin-Herrmann model of longitudinal vibrations of rods. 
In the frame of this theory, it is supposed that the lateral displacements are proportional to the product of an independent 
function which is subjected to determination and the distance from the neutral line of the transducers’ cross-section 
(Shatalov et al., 2009a). The Hamilton variational principle is used for derivation of the system of equation of motion 
and for obtaining the mechanical and electric boundary conditions. On the basis of the obtained Mindlin-Herrmann 
model, the electric impedance of the thickness vibrator is calculated. Possible generalizations of the proposed approach 
are considered and conclusions are formulated. General solution of the problem is obtained from the variational 
principle using two orthoganalities conditions of the eigenfunctions (Fedotov et al., 2009). 
 
2. MINDLIN-HERRMANN MODEL FOR THICKNESS VIBRATOR 
 

Suppose that ( )03Oz  is the axis of polarization of a piezoelectric rod. According to the Rayleigh-Love and 

Bishop theories displacements in ( )01Ox , ( )02Oy , Oz - directions are correspondingly , ,u v  and w : 
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where ( ),z tϕ ϕ=  represents the lateral or transverse contraction about the z -axis and x , y - displacements from the 
neutral axis of any symmetric cross-section of the bar. Note that the transverse displacements  and u v  are both 
connected by the function ϕ  and are independent of the longitudinal displacement, w . This proves the independence of 
the shearing deformation thus, the entire motion can be described by two independent functions:  and w ϕ . 
 Linear strain are: 
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 Linear stress-strain relations are: 

Normal stress: 
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Where D
ijc - elastic constants at constant electric charge density and 1 2 0D D= = , 3 30

i tD D e ω=  are the electric 
displacements in which 30D const=  and 2 fω π= - frequency of excitation. 
 Expression for kinetic energy: 

( ) 2 2

02

l

pT A z w I dzρ ϕ = + ∫          (3) 

where l - thickness of the transducer, ( )A A z=  is the cross-section area and ( )2 2

( )
p

A
I x y dA= +∫  is the polar 

moment of inertia 
 Strain energy is as follows: 
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where ijh  is the piezoelectric coefficient and 
( )A

A dA= ∫  

Electric energy is: 

( )
( )

( )

( )

1 1 2 2 3 3
0

2
31 1 3 33 3 3 3 3

0

2
3 3 31 3 33 3

0

1
2

1 1    
2 2

1    2
2

l

A

l
S

A

l
S

W E D E D E D dAdz

h S D h S D D dAdz

AD h AD h AD w dz

β

β ϕ

= + +

 = − − + 
 

′= − −

∫ ∫

∫ ∫

∫

        (5) 

where 3
sβ  is the dielectric constant 

It is also necessary to keep in mind the following electric boundary condition: 

( )3
0

l

E dz V V t= =∫        (6) 

where ( ) 0
i tV t V e ω=  ( )0V const= - excitation voltage applied at the edge of the thickness vibrator and 

3 31 33 3 32 sE h h w Dϕ β′= − − +  is the electric field on the z -axis. 
 Total Lagrangian of the system: 



Proceedings of PACAM XI       11th Pan-American Congress of Applied Mechanics 
Copyright © 2009 by ABCM January 04-08, 2010, Foz do Iguaçu, PR, Brazil 

 

( )

( ){ } ( )

3
0

2 2 2 2 2 2
11 12 33 13 44 3 3 31 33 3 3

0 0

1  2 4 2 ( ) (0)
2

l

l l
D D D D D S s

p p

L K P W E dz V t

Aw I c c c w c w A I c AD dz h dz h w l w lD

λ

ϕ ρ ϕ ϕ ϕ β λ ϕ λ β λ

 
= − + + ⋅ − 

 

 ′ ′ ′ = + − + + + − + − − − +   

∫

∫ ∫

                 (7) 
where λ  is the Lagrange multiplier 
We can rewrite the pervious expression in the compact form as follow: 
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0
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is the Lagrange density and 
( ) ( )0 0 3 3 3 33, , ( ), (0) ( ) (0)  sD w l w lD h w l wλ β λ λΛ = Λ = − −       (9) 

Applying the Hamiltonian variational principle to Lagrangian (7a) we obtain the system of equation of motion in the 
compact form: 
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with the mechanical boundary conditions  
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The explicit form of the Mindlin-Herrmann model for the polarised piezocomposite thick rod is given as follow. 
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associated boundary conditions 

33 13 330,
2 0D D

x l
c Aw c A hϕ λ

=
′ + + =   (11)  or  0, 0x lw

=
=      (12) 

and 

0, 0x lϕ
=

′ =     (13)  or  0, 0x lϕ
=

=     (14) 

and the electric boundary condition 
3 0AD lλ+ =              (15) 

( )31 33 3 32 ( ) (0) 0sh h w l w lDϕ β+ − − =           (16) 

From equation (15), we have 3AD
l

λ = − , and substituting it into (10) and (11), this leads to: 



Proceedings of PACAM XI       11th Pan-American Congress of Applied Mechanics 
Copyright © 2009 by ABCM January 04-08, 2010, Foz do Iguaçu, PR, Brazil 

 
 

( )

2 2

33 132 2

2 2

44 11 12 13 31 32 2

2 0

22 2

D D

D D D D
p p

w wA c A c A
zt z

wI c I A c c c A Ah D
z lt z

ϕρ

ϕ ϕρ ϕ

 ∂ ∂ ∂
− − =

∂ ∂ ∂


∂ ∂ ∂ − + + + = ∂∂ ∂

    (17) 

with the electro-mechanic boundary conditions (here we choose these boundary conditions without loosing the 
generality stated in our main objective): 
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The main problem is entirely defined by considering the initial conditions: 

0 0( , ) ( ),  ( , ) ( )t tw z t g z w z t h z
= =

= =  and 0 0( , ) ( ),  ( , ) ( )t tz t z z t q zϕ φ ϕ
= =

= =     (20) 
 
3. FREE VIBRATION PROBLEM 
 

In this section, we are dealing with the free vibration problem, that means 3 0D = (no electric displacement). 
Thus we apply the Fourier method to the obtained homogeneous problem. Let us assume that 

( , ) ( )  and ( , ) ( )i t i tw z t Z z e z t z eω ωϕ= = Φ  where 2i  and ω  is the circular frequency. This leads to the Sturm-Liouville 
problem: 

2
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With the associated boundary conditions 
33 13 0,0,2 0  and  0z lz lc Z c

==
′ + Φ = Φ =        (22) 

The above Sturm-liouville problem is unusual (two-dimension). So, to compliment the lack of theory in this particular 
problem, we trade the difficulty by considering the case of a travelling wave. Thus we can write: 

0 0( )   and  ( )ikz ikzZ z Z e z e− −= Φ = Φ        (23) 
where 0 0  and  Z Φ  are respectively the longitudinal and lateral non zero amplitude (unknowns) and k  is the wave 
number and need to be determined. 
Hence system (21) becomes: 
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Solving the characteristic equation of the determinant of system (21) for k , we obtain: 
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Using formula (23) we can express ( )Z z  as follows: 
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and the constants 1 2 3 4, ,  and a a a a  are not all equal to zero. 
Without loss the generality, the case [ ]1Im 0k =  is considered in the discussion that follows. Hence 

1 1 2 1 3 2 4 2( , ) cos( ) sin( ) cosh( ) sinh( )Z Z z a k z a k z a k z a k zω= = + + +      (25) 
Substituting (25) into the first equation of system (21) and solving the obtained equation for Φ : 
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Substituting Eq(25) and Eq(26) into the boundary conditions (22), yields a system of four equations with four 
unknowns: 1 2 3 4, ,  and a a a a . Solving the characteristic equation of the determinant for ω  using the method developed 
by Fedotov et al. (2008) for solving transcendental equation, we obtain many positive roots ,  1, 2,...n nω = , so called 
eigenvalues corresponding to the couple of eigenfunction ( )( , ), ( , )n n n nZ z zω ωΦ . 
 
4. SOLUTION OF THE FORCED VIBRATION PROBLEM 
 
4.1. Orthogonalities of the eigenfunctions 
 
Using system (21) and boundary conditions (22) we can prove two kind of orthogonality condition of the 
eigenfunctions:  

First orthogonality 
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Second orthogonality 
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4.2. Solution of the problem 
 
In this section, we give the solution of problem (17)-(20) on the basis of the method of eigenfunction orthogonalities for 
vibration problem developed by Djouosseu (2008) and Fedotov et al. (2009). 
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4.3. Electrical response of the Rod 
 
The electrical response of the rod to the excitation voltage ( )V t  applied at the edge of its thickness is characterised by: 

• the current through this thickness 
( ) 3 3I AD i A Dω ω= =  and 

• the associated electric impedance 

( ) ( )
( )imp

V t
Z

I
ω

ω
=  

 
5. CONCLUSIONS 
 

1. The Mindlin-Herrmann approach was used to build a model describing a thick and short piezocomposite rod 
longitudinally polarised. 

2. The Hamilton variational principle was used to derive the system of equation of motion in the process of which 
the electromechanical boundary conditions were obtained. The method of eigenfunction orthogonalies based 
on the variational principle was used to obtain the exact solution of the problem in terms of the Green function. 

3. The electric impedance through the thickness of the piezocomposite rod is formulated in terms of the excitation 
frequency. 
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