Sol-gel fabrication and optical absorption properties of C-NiO nanocomposite coatings

Ngcali Tile^{1,2}, Kittessa Roro¹, Andrew Forbes^{1,2}

¹ CSIR National Laser Centre, Pretoria

² School of physics, university of KwaZulu-Natal, Durban

The ideal is to absorb as much of the sunlight as possible, then prevent thermal emittance

The manufacturing process for most commercial thermal products is complicated

C-NiO/AI has been fabricated using a simple and cheap **sol-gel** procedure combined with **spin coating** technique

The samples are fabricated in a simple wet chemistry lab following a simple 3 step procedure

By suitable choice of precursor, we can engineer novel composite materials

Sol-gel technique can be adapted to different coating methods

Spray coating

Spin coating

The material is compact and porous

EDS confirms NiO while Raman reveals a presence of predominantly graphite Carbon

The absorption increases with temperature

The absorptance decreased with an increase in coating thickness

A typical near normal reflectance curve in the UV/Vis-Infrared shows that C-NiO coatings are selective

Thank You

