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a b s t r a c t

In many of the continuum processes typically found in chemical engineering, the functional

dependency of the dependent variable is only known for large and small values of the independent

variable. Exact solutions in the transitional regime are often obscure for various reasons (e.g. narrow

band within which the transition from one regime to the other occurs, inadequate knowledge of the

physics in this area, etc.). An established method for the matching of limiting solutions is reviewed and

subsequently applied. The method regards the known solutions as asymptotes and proposes addition to

a power of such asymptotes. It yields a single, adjustable correlating equation that is applicable over the

entire domain. This procedure circumvents the introduction of ad hoc curve fitting measures for the

different regions and subsequent, unwanted discontinuities in piece-wise fitted correlative equations

for the dependent variables. Experimental data of two diverse processes, namely flow in a straight-

through diaphragm valve and the fluidisation of a packed bed, are analysed as case studies. Empirical

results are investigated for possible asymptotic bounds whereafter power addition is applied to the

functional dependencies. The outcome is compared to those of the empirical models and the results

discussed. The procedure is revealed to be highly useful in the summarising and interpretation of

experimental data in an elegant and simplistic manner. It may also, in general, aid the setup of

experimental apparatus for investigation of continuum processes.

& 2011 Published by Elsevier Ltd.

1. Introduction

The dependence of modern chemical engineering research on

precise, credible experimental practices is undeniable. The empirical

equations derived from these investigations impart understanding

of the underlying physics are crucial for the development of

computational routines and form an integral part of the design

process. It is common practice to represent the general trend in a set

of collected data by drawing a line through the individual datum

points on the plot. Correlation between the drawn predictive curve

and the data is then evaluated against some norm. Although

theoretical knowledge of the functional behaviour is helpful it is

not a prerequisite for the construction of graphical correlation and a

curve best suited to the particular problem is chosen. The better the

predictive curve on the graphical presentation corresponds to the

physical reality, the greater the accuracy is with which the curve’s

functional expression will predict physical trends.

Knowledge of the asymptotic behaviour (traits at extreme values

of the independent variable) of the dependent variable may often be

used to glean information about the process as a whole. One such

method, in use for some time especially in engineering practice, has

been to simply match the asymptotic conditions by straightforward

addition of the respective expressions. In so doing a single relation is

obtained that is supposed to hold over the entire domain of the

independent variable. Frequently, however, intermediate values do

not lie on this matched solution. In Churchill and Usagi (1972) Q1

formalised a method that not only combines the solutions at

extremal values into a single expression, but also yields close

correlation in the transitional zone between the extremities. In the

aforementioned article and subsequent work (Churchill and Usagi,

1972, 1974; Churchill, 1988, 2001) the use and wide application

possibilities of the method and its variations were accentuated.

Their method, which yields an equation of simple, elegant form that

interpolates between limiting solutions, is applicable to phenomena

which vary uniformly between known, limiting solutions and is

especially useful for the evaluation and summarising of experimen-

tal and computational data. Furthermore, it is particularly conve-

nient for design purposes as it renders an expression that holds

true over the entire domain of the dependent variable and has

the same form for all correlations. Whether it presents an exact
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representation of the transfer process cannot be proven scientifi-

cally, yet the method is widely applicable and accepted.

In the present work the general method proposed by Churchill

and Usagi is applied to collected experimental data for two diverse

chemical engineering processes: flow in a straight-through dia-

phragm valve (De Wet, 2010); and the fluidisation of a packed bed

(De Wet et al., 2009). Different scenarios of the limiting functions

and or values are investigated. Curve adjustment and the impor-

tance of the point of intersection of asymptotes on obtained results

are discussed.

2. Power addition as curve fitting technique

This section presents a condensed outline of the method

thoroughly described by Churchill and Usagi (1972, 1974) and

Churchill (1988, 2001, 1974).

Chemical engineering processes, such as momentum and

thermal transfer processes, are often expressed in terms of a

continuum process. In many of these instances the value of a

sought after parameter is expressible as a function of certain

known parameters at low and high values. These limiting solu-

tions for large and small values of the independent variables may

be regarded as asymptotic conditions of the dependent variable.

Power addition of expressions valid for two opposing ranges is a

procedure used to produce a combined result which is valid for

both of these ranges. Since each of the limiting expressions

predominates in their respective regions of applicability, a unified

model can be obtained using such a technique.

Often the functional expression of the dependent variable is in

the form of a power dependency upon some independent vari-

able, x. Suppose the functional dependence, f, of such a process is

described by (Churchill and Usagi, 1972, 1974)

f-f0fxg ¼ Axa as x-0, ð1Þ

f-f1fxg ¼ Bxb as x-1, ð2Þ

where Eqs. (1) and (2) denote the functional expressions at the

lower and upper extremal values of x, respectively. Frequently,

however, the values of the dependent variable at the transition

between the asymptotic extremities do not lie exactly on a

matched solution. This is due to the cross-over ‘rate’ between

the two asymptotic processes. Churchill and Usagi (1972, 1974)

and Churchill (1988, 1974) demonstrated that the use of power

addition, the most general forms of which are given by

f sfxg ¼ ½ðAxaÞsþðBxbÞs�, ð3Þ

or

f fxg ¼ ½ðAxaÞsþðBxbÞs�1=s, ð4Þ

may lead to dramatic improvement in correlation with experi-

mental data. It is important to note that the explicit expression of

the asymptotes in terms of a power dependency is not permu-

table. In other words, in the present study the lower asymptote

will always be associated with coefficient A and exponent a; the
upper with B and b.

By adjusting the value of the exponent, s, the curve may be

shifted so as to more closely trace the expected or empirical

values, yielding better correspondence between predictive equa-

tion and experimental results for a particular process. The higher

the value of jsj, the more closely the solution traces the asympto-

tic expressions, i.e. the more abrupt the transition. Conversely, a

gradual change-over between extremal solutions will signify that

a small jsj should be used. Hence, s is indicative of the rate of

transition between the constituent predictive equations.

2.1. Increasing dependence

When the dependent variable is an increasing power of the

independent variable, in other words if the power of x in Eq. (3) is

greater at the higher limit, that is

aob, ð5Þ

the expression

f fxg ¼ ½f s0fxgþ f s1fxg�1=s, ð6Þ

is usually desirable for interpolation between the extremal values.

Theoretically the matched function in Eq. (6) will have no

upper bound and will only be bounded from below by the

functional expression for small values of x, i.e the term Axa in

Eq. (3) will form a lower bound on the values that the indepen-

dent variable may take on. The arbitrary exponent s will in this

case have a positive value.

2.2. Decreasing dependence

Should the dependence of f{x} decrease with an increase in the

independent variable, i.e.

a4b, ð7Þ

in Eq. (3), two possibilities exist: the asymptotes may either

together determine (a) the lower bound; or (b) the upper bound

of the resulting matched curve. Knowledge of the process being

modelled and/or experimental data will be indicative of the

particular case.

2.2.1. Bounded from below

Decreasing dependence upon the independent variable is such

that the solutions for extremal values, i.e. the functional expres-

sions for the asymptotes, bind all possible solutions to the process

from below. Suppose, for the sake of an illustrative example, that

the limiting solutions to such a process are given by the simple

relations

f-f0fxg ¼
1

x
as x-0, ð8Þ

f-f1fxg ¼ 1 as x-1: ð9Þ

This corresponds to Eqs. (1) and (2) with coefficients A¼1, B¼1

and exponents, a¼ÿ1 and b¼ 0. The matched solution, raised to

the shifting exponent will thus be

f fxg ¼
1

x

� �s

þ1

� �1=s

: ð10Þ

2.2.2. Bounded from above

The asymptotes, f0{x} and f1fxg, of the process being modelled

form an upper bound on the possible values that the function can

assume. Consider, as an example, the very simple case in which

the asymptotes constituting the matched equation are given by

f-f0fxg ¼ x as x-0, ð11Þ

f-f1fxg ¼ 1 as x-1: ð12Þ

To ensure that the matched solution approaches the limiting

functions from below, the shifting exponent now needs to take on

a negative value. However, the obtained curve will still approach

the asymptotes as jsj increases. The introduction of a negative

value for s may be circumvented by taking the reciprocal of the
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original dependent variable, i.e. by defining

1

gfxg
¼

1

Axa
þ

1

Bxb
¼

1

g0fxg
þ

1

g1fxg
, ð13Þ

before it is raised to s, ensures that s40.

2.3. Crossing of one limiting solution

In some phenomena the process is not bound completely by

the limiting solutions and one of the limiting functions may be

crossed as the solution approaches it. Although it is presumed

that both the lower functional dependency, f0{x}, and the upper

limiting value, f f1g, are known, Eq. (3) is not directly applicable,

since for any positive values of the shifting exponent, Eq. (3) gives

values that fall above f0{x} and f f1g (see Sections 2.1 and 2.2.1).

In cases such as these a function is postulated viz.,

f1fxg-f f1g as x-1, ð14Þ

which not only forms an upper bound on attainable values of the

dependent variable, but also approaches the limiting value from

above. Using a function of the form (Churchill and Usagi, 1972,

1974),

f1fxg ¼ f f1g 1þ
xA
x

� �a
� �

, ð15Þ

instead of f f1g, solves this problem, since as x-1 the second

term in square brackets on the right hand side of Eq. (15)

approaches zero (provided that aZ0).

Constructing a new dependency of the form suggested by

Eq. (3), with g{x}¼1/f{x}, g0{x}¼1/f0{x} and g1fxg ¼ 1=f1fxg, with

f1fxg the newly defined relation of Eq. (15), yields

f0fxg

f fxg

� �s

¼ 1þ
f0fxg

f f1g 1þ
xA
x

� �a
� �

0

B

B

@

1

C

C

A

s

, ð16Þ

after simplification. An example of the family of curves obtained

through the procedure outlined above is illustrated in Fig. 1. To

show the influence of a change in the value of the shifting

exponent upon the obtained solution a few selected values of s

were plotted: a low s-value implies gradual transition with the

change-over becoming more abrupt as s is increased. A function of

the form of Eq. (15), with xA¼5 and a¼ 2 kept constant (allocated

values selected purely for demonstrative purposes), was utilised

to approximate the upper limit. Investigation of the influence of

the arbitrary constant, xA, and arbitrary exponent, a, in Eq. (16)

showed that the former adjusts the point of intersection of the

newly defined function, f1, with f0, while the latter alters its

curvature.

2.4. Critical point and shifting exponent

The central or critical point, xc, of the matching curve is the

value of the independent variable at which the asymptotes meet.

Since the asymptotes intersect at this point, the numerical value

of their respective functional expressions must be equal, that is

f0fxcg ¼ f1fxcg: ð17Þ

As both functions, f0 and f1, contribute equally to the added

solution at this point, the resultant curve is most sensitive to

variations in the value of the shifter, s, in the vicinity of xc.

Furthermore the maximal fractional deviation of the matched

solution from either of the limiting solutions or asymptotic values

will occur at precisely this point. Thus, from Eq. (17) it follows

that

f sfxcg ¼ f s0fxcgþ f s1fxcg ¼ 2f s0fxcg ¼ 2f s1fxcg, ð18Þ

whence

f fxcg

f1fxcg

� �s

¼
f fxcg

f0fxcg

� �s

¼ 2: ð19Þ

The value of s may now be determined straightforwardly from

Eq. (19) as

s¼
ln2

lnf fxcgÿlnf1fxcg
¼

ln2

lnf fxcgÿlnf0fxcg
: ð20Þ

In performing an experiment, it is therefore advantageous to

arrange the physical conditions in such a manner that the

independent variable is in close vicinity of xc. Whenever the

experimental value of f{xc} is known, one may proceed to

determine the value of the shifter by Eq. (20). Alternatively, visual

inspection by trial and error adjustment of the correlation

between the predictive curve and data points may lead to an

assignment of a value to s. As noted by Churchill and Usagi (1972)

the matched curve is relatively insensitive to small variations in s.

The required accuracy is determined by considerations such as

the process involved, tunability of other parameters and allow-

able error-margin.

The following two sections involve application of the theory,

outlined above, to two specific case studies.

3. Flow in straight-through diaphragm valves

Diaphragm valves possess several advantages that lead to their

extensive use in diverse industrial applications. There are two

types of diaphragm valves: the weir type used in piping systems

that carry less viscous fluids; and the straight-through type suited

to slurries and suspensions (Myles, 2000). The data sets of Mbiya

(Mbiya, 2007; Fester et al., 2007), on which the current work is

based, is concerned with the latter type of valve. Despite the

broad scope of their use, only a few studies dealing with valve

openings of aperture less than unity is available in the literature

(Mbiya, 2007; Mbiya et al., 2009), hence the scarcity of other

experimental data. The study of Mbiya supplied supplementary

data sets and is an attempt at improving the prediction of the

pressure losses through these valves.

The addition of a component, such as a valve, to a piping system

leads to a local constriction (or dilation) of the cross-sectional area
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Fig. 1. Application of power addition when the solution crosses one of the limiting

functions. The effect on the matched solution for selected values of the shifting

exponent, s, is demonstrated.
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and consequently also to a change in the flow path. Initially, at low

Reynolds numbers the streamlines will trace out the irregular

geometry caused by the valve’s presence. While still in the laminar

flow regime, an increase in Reynolds number will lead to the gradual

development of localised areas of recirculation within the indenta-

tions of the diaphragm until, at turbulent flow conditions, the

streamlines bypass these areas altogether. This is an intuitive

explanation accounting for the constant resistance coefficients

(pressure loss) obtained at high Reynolds numbers as reflected in

the data (Mbiya, 2007; Fester et al., 2007; Mbiya et al., 2009). The

aim of Mbiya’s (Mbiya, 2007; Fester et al., 2007; Mbiya et al., 2009)

experimental investigation was to more accurately predict the

additional pressure loss incurred (i.e. the pressure loss coefficient),

for four different opening positions, once a pipe had been fitted with

a straight-through diaphragm valve.

3.1. Choice of Reynolds number

Often the relation between the shear rate, dvx/dy, and shear

stress, t, of a non-Newtonian fluid is described by the power

dependency,

t¼ K ÿ
dvx

dy

� �n

, ð21Þ

where K is the fluid consistency index and n the flow behaviour

index (Streeter, 1966). Fluids exhibiting such behaviour are called

power-law fluids. Depending on the value of the flow behaviour

index, power-law fluids are classified into three broad groups:

pseudo-plastic fluids if no1; Newtonian fluids for n¼1; and

dilatant fluids for n41. A true plastic substance has an initial

yield stress that needs to be overcome before it assumes fluid-like

properties, i.e. continuous deformation when subjected to a

(further) shear stress (Streeter, 1966). The constitutive equation

for the yield pseudo-plastic model can thus be formulated as

t¼ tyþK ÿ
dvx

dy

� �n

, ð22Þ

with ty denoting the yield stress. Setting n¼1 in Eq. (22) yields

the so-called Bingham-plastic model, while ty ¼ 0 results in it

reverting back to that for power-law fluids, Eq. (21).

The Slatter–Reynolds number, Re3, is based on the yield

pseudo-plastic model and starts from the assumption that, in

the presence of a yield stress, the core of the fluid moves as a

solid, unsheared plug (Fester et al., 2007; Slatter, 1999), resulting

in annular flow. It can be expressed as (Slatter, 1994)

Re3 ¼
8rv2

ann

tyþK
8vann

Dshear

� �n : ð23Þ

In Eq. (23) vann denotes the corrected mean velocity in the

annulus and Dshear the sheared diameter.

3.2. Empirical correlation

The two-constant, empirical model proposed by Mbiya (Mbiya,

2007; Fester et al., 2007; Mbiya et al., 2009) is based on a large set

of accrued experimental data. The test rig consisted of pipes of

different diameters (40, 50, 65, 80 and 100 mm), each of which

was fitted with a diaphragm valve of similar diameter. The test

fluids carboxymethyl cellulose (CMC) (at 5% and 8% concentra-

tion), glycerine or glycerol (concentrations of 75% and 100%),

kaolin (a claylike mineral, at 10% and 13% concentrations) and

water were, in turn, pumped through the pipes. Four different

valve opening positions (25%, 50%, 75% and 100% open) were

selected and the pressure drop in the pipe was recorded. The aim

was to predict the pressure loss coefficient, kv{Re3}, for straight-

through diaphragm valves. Mbiya (Mbiya, 2007; Fester et al.,

2007; Mbiya et al., 2009) concludes by summarising his model, as

being applicable to all sizes of valves tested, with the pressure

loss coefficient given by

kv ¼

1000

Re3
, Re3o10,

CO
ffiffiffiffiffiffiffiffi

Re3
p

y2
þ
lO

y2
, Re3Z10:

8

>

>

>

<

>

>

>

:

ð24Þ

Here CO is a newly introduced model parameter or constant

(Mbiya, 2007; Mbiya et al., 2009), inserted to facilitate proper

agreement in the transitional region between the experimental

data and correlative equation (24). The nominal turbulent loss

coefficient is denoted by lO, while y is the partial valve opening

coefficient as ratio of the fully opened position, i.e. y¼ 0 for a

closed valve and y¼ 1 for a fully opened valve. Note, however,

that a fully opened valve does not correspond to an open tube

flow condition.

Unfortunately, as can be seen in Eq. (24), to obtain good

agreement with experimental results, an ‘if’-condition and addi-

tional term had to be introduced at a Slatter–Reynolds number of

10. The two different solutions on either side of this value lead to

an unwanted jump in the values of the dependent variable, i.e. the

predicted cross-over at this Reynolds number is not smooth and

contradicts the expected, intuitive-orderly behaviour of such a

continuum transfer process.

3.3. Applying power addition

Regarding Eq. (24) in the limit where Re3-1, it is clear that

kv-lO=y
2
. Hence, lO=y

2
may be regarded as an asymptotic lower

bound on kv. Inspection of Mbiya’s proposal thus evidently leads

to the following definitions:

k0 �
1000

Re3
for Re3-0, ð25Þ

and

k1 �
lO

y2
for Re3-1: ð26Þ

The direct addition of these results, kv ¼ k0þk1, is then consid-

ered as a matching between the two asymptotic conditions,

yielding a single solution, namely kv ¼ 1000=Re3þlO=y
2, that

covers the entire range of Reynolds numbers. Instead of the direct

addition of the two asymptotes, power addition may now be

applied to the asymptotic expressions, yielding

ksv ¼ ks0þks1, ð27Þ

which may be normalised to obtain

kv
k1

¼
k0
k1

� �s

þ1

� �1=s

: ð28Þ

Instead of dividing Eq. (27) by k1, one may alternatively have

chosen to designate k0 as denominator. An extremely useful

consequence of this type of modelling is the direct possibility of

non-dimensionalisation.

Determination of the critical point and the value of the shifting

exponent may now be performed in the manner outlined

in Section 2.4. The critical point will thus be where

k0 ¼ k1, ð29Þ

i.e.

1000

Re3,c
¼

lO

y
2

, ð30Þ

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

119

121

123

125

127

129

131

133

P. de Wet et al. / Chemical Engineering Science ] (]]]]) ]]]–]]]4

Please cite this article as: de Wet, P., et al., Application of power addition as modelling technique for flow processes: Two case studies.
Chemical Engineering Science (2011), doi:10.1016/j.ces.2011.01.040



whence

Re3,c ¼
1000y2

lO
, ð31Þ

where Re3,c denotes the Slatter–Reynolds number at the critical

point. Since both lO and y are constants for a given pipe diameter

and valve opening, the Slatter–Reynolds number at which the

critical point is to be found may easily be determined. The

pressure loss coefficient at the critical point is thus given by

kv,c¼kv{Re3,c}, the corresponding functional value obtained by

using Eq. (31).

The preceding discussion of Section 2.4, cf. Eq. (20), now yields

a value for the shifting exponent at the critical point, i.e.

s¼
ln2

lnkv,cÿlnk1,c
¼

ln2

lnkv,cÿlnk0,c
, ð32Þ

or in explicit form as

s¼
ln2

lnkvðRe3,cÞÿln
lO

y2

� � ¼
ln2

lnkvðRe3,cÞÿln
1000

Re3,c

� � : ð33Þ

Traversal of the data sets in search of the Re3-value closest to

those obtained by Eq. (31) may now be effected, the objective

being to find the corresponding value of the dependent variable,

kv,c, at this point. Substituting these values into Eq. (33) will then

yield a possible value for the shifting exponent. However, the

datum point chosen may be a poor choice (an outlier, the result of

a poor reading, etc.) and grounding the s-value solely on this one,

single reading may lead to erroneous results. It is therefore

recommended that the value of the intersection of the asymptotes

be determined beforehand and the bulk of experimentation

conducted in the area of the yielded independent variable, i.e.

Re3,c. In so doing a more accurate prediction will be obtained

(from averaging numerous data points) and the fractional devia-

tion of the matched solution from either of the limiting solutions

or asymptotic values minimised. It is nevertheless important to

note that the method is still an empirical one, based on experi-

mental results, the wish being for an analytical expression in

which this shifting exponent is linked to some quantifiable

parameter in the process under consideration.

Since Mbiya’s experimental readings were not arranged in

such a manner as to focus on the transitional area between the

asymptotes, the aforementioned methodical approach could not

be used. In lieu, to circumvent the shifting exponent being based

on an incorrect or inaccurate reading, a trial-and-error graphical

approach was used. In Fig. 2 the data of one experimental setup,

that of a pipe with internal diameter of 40 mm and a valve

opening of 25%, have been plotted for illustrative purposes. Also

in this figure is shown the empirical model of Mbiya (Mbiya,

2007; Fester et al., 2007; Mbiya et al., 2009), Eq. (24) and the

solution obtained after application of power addition, Eq. (28).

Two different values, namely 0.4 (solid curve) and 1.4 (dashed

curve), were chosen for the shifting exponent, s, to illuminate the

influence thereof on the obtained matching curve. The ‘jump’ in

the value of the dependent variable, cf. Eq. (24), is evident.

Eq. (28) with a shifting exponent of 0.4 yields a fairly accurate

prediction for kv=k1 over the entire range of Slater–Reynolds

numbers considered. Moreover, an overall qualitative improve-

ment in prediction ability of the process is achieved by elimina-

tion of the discontinuity which results from application of

Eq. (24). What is important to emphasise is that a single equation

is obtained for prediction over the entire range of the indepen-

dent variables. The expression not only correctly predicts the

extremal values, but it also produces a curve that may be adjusted

to closely fit the data. It is, however, evident from the present

analysis that more careful, controlled experimentation with an

individual fluid under different conditions will be needed. To

arrive at a more accurate prediction of the shifter, s, it is

recommended that experiments be tailored so as to specifically

investigate the flow parameters in the transitional regime.

4. Fluidised bed

A fluidised bed has a number of highly useful properties that

may be utilised in industrial applications. Although the mechan-

ism may be both physical and chemical in nature, the dominating

attribute utilised in a specific industrial process, will determine

its application (a broad classification of fluidised bed applications

is given by Geldart, 1986). Experimental data was obtained from

measurements performed on laboratory-scale fluidised beds.

Upon analysis of the sets of collected data it became evident that

asymptotes exist for some variable dependencies in the transition

from packed- to fluidised bed. The transition between such

asymptotes is governed, amongst others, by parameters such as

particle size, particle size distribution, superficial gas velocity and

bed height. Power addition to a power, s, of such asymptotes f0
and f1, leads to a single correlating equation that is applicable

over the whole range of flow rates.

4.1. Experimental procedure

The bed was contained in a cylindrical perspex tube with an

inner diameter of 72 mm. Since the investigation was only con-

cerned with the pressure drop across a specified section of the bed

(i.e. between two pressure sensors), the porosity of the plate on

which the bed was supported was irrelevant. It was only required

not to allow particles to drop through into the antechamber and to

function as a uniform gas distributor. To prevent particle entrain-

ment the uppermost end of the containing perspex tube was

covered with a porous paper cap and the bed illuminated from

behind to allow easy visual detection of the onset of fluidisation.

The beds comprised glass powders, consisting of spherical glass

particles, with a density of 2485 kg/m3 and available in three

different diameter-ranges: 100–200; 400–600; and 75021000 mm.

These particles all fall into Groups B and D according to the Geldart

(1986) powder classification. Since the particles are manufactured

they were assumed, for the sake of simplicity, to be perfectly

spherical in shape and thus have a Waddell sphericity factor of
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Fig. 2. Typical correlation of experimental data with the empirical two-constant

model, Eq. (24), showing the ‘jump’ at Re3¼10, and the Churchill–Usagi matched

solution as per Eq. (28).
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C¼ 1 (Geldart, 1986). In all of the experiments performed the fluid

used to fluidise the bed was air at ambient conditions, with a density

of 1.2 kg/m3 and viscosity of 1.78�10ÿ5 N s/m2. Air was pumped

into the bed by a compressor and flow into the antechamber was

controlled via a manual valve. A digital flow meter, situated between

the valve and the antechamber, registered the fluid velocity. By using

different gas velocities and only one particle diameter-range or a

mixture of the particle diameter-ranges, the parameters of the

experiment could be varied. Eight equidistantly spaced pressure taps

were placed along the height of the bed and were connected to

digital pressure sensors that measured the pressure (in mbar) at

these fixed intervals within the bed. An experiment-specific software

program was used with which the data from each sensor were

recorded and written to file. The program, once calibrated, allowed

for the interval between consecutive readings to be varied. A

minimum of three runs were performed for each of the three

different diameter-ranges mentioned above. A run consisted of a

gradual increase in gas velocity up to and beyond fluidisation,

followed by a gradual and controlled decrease to zero fluid flow. It

was noted that hysteresis only became apparent if the bed was

allowed a period of rest between consecutive fluidisations. Conse-

quently, runs for a particular diameter-range were conducted in

succession allowing the obtained pressure-values to be averaged. It is

to this averaged data that the power addition was applied.

4.1.1. Determining the porosity of the packed bed

For each of the diameter-ranges an amount of powder was

weighed and poured into the cylindrical perspex tube comprising

the fluidised bed. Once inside the tube, the powders were briefly

allowed to settle before commencing experimentation. By mea-

suring the distance between the supporting porous plate at the

base of the bed and the bed surface, the bulk volume, U0, occupied

by the powder (and hence that of the bed) could be calculated.

Simple substitutions with, and algebraic manipulation of, the

basic definitions for porosity, e, and density, r, leads to an

expression for the porosity (or bed voidage) in terms of known

or easily measurable quantities, i.e.

e¼
rsÿr0

rsÿrf

: ð34Þ

In the idealised situation of an infinitely sized bed, the diameter of

spherical particles would have no influence on the porosity of the

bed. However, in the constrained bed found in small-scale

experimental applications, the cross-sectional area of the bed will

influence the packing of the particles. Conversely the diameter of

particles thus impacts indirectly on the porosity of the bed by

having an influence on the bulk volume (and thus the bulk

density), as evident in the different porosities obtained for each

of the diameter-ranges: 0.391, 0.368 and 0.362, respectively, as

listed above.

4.2. Asymptotic dependencies

Three regimes are to be identified, namely the two regimes

corresponding, respectively, to the physical conditions related to

the two asymptotes f0 and f1 and the change-over regime

connecting the two. This latter regime surrounds the critical

point, qc, where the asymptotes meet. Of particular interest is

the relation between the extent of the change-over regime

surrounding the critical point and the shifting exponent s. In the

present case of onset of fluidisation the change-over between the

packed bed condition and the fluidised state is fairly abrupt

leading to a relatively high value of s. These effects will be

discussed in the following section.

4.2.1. Lower asymptote

Before the onset of fluidisation, the bed may be regarded as a

packed bed or porous medium consisting of spherical particles. To

describe the pressure drop of Newtonian flow through such a

structure, the Ergun equation (e.g. Bird et al., 1960) has proven to

be satisfactory in most applications as is evident from its

extensive utilisation in chemical engineering. In the original

Ergun equation, which is incidentally already a special case of

power addition with shifter, s¼1,

Dp

H
¼M

ð1ÿeÞ2

e3
mq

D2
p

þN
1ÿe

e3
rfq

2

Dp
: ð35Þ

The values of coefficients M and N were acquired experimentally

and reported as 150 and 1.75, respectively (Bird et al., 1960;

Niven, 2002; Churchill, 1999). Here Dp denotes the finite pressure

difference (measured in the streamwise direction of fluid flow), H

the bed height, q the magnitude of the superficial velocity of the

traversing fluid and Dp the spherical particle diameter. In their

paper Du Plessis and Woudberg (2008), compare the RUC (repre-

sentative unit cell) model to the Ergun equation for the descrip-

tion of Newtonian flow through a packed bed of uniformly sized

spherical granules and find the agreement to be satisfactory. The

cubic RUC contains a solid, cubic granule which resembles the

average solid geometry of the granular porous medium. The

choice, in this paper, of their RUC model to describe the asymp-

totic relation at small values of the independent variable is due to

the fact that it is adaptable to different physical situations,

whereas the Ergun equation is empirically based and the coeffi-

cients, M and N, will thus vary according to the situation to which

it is applied. Furthermore the RUC model permits the usage of the

average bed porosity and is applicable over both the entire

porosity and laminar Reynolds number ranges. The work of Du

Plessis and Woudberg (2008) allows one to purge Eq. (35) of some

of its empirical elements. Their pore-scale analysis of interstitial

flow conditions leads to the following expression of coefficients:

M¼
25:4e3

ð1ÿeÞ2=3ð1ÿð1ÿeÞ1=3Þð1ÿð1ÿeÞ2=3Þ2
, ð36Þ

and

N¼
e2cd

2ð1ÿð1ÿeÞ2=3Þ2
, ð37Þ

with cd a form drag coefficient. They thus succeed in rewriting

Eq. (35) such that it is not limited by the range of porosities used.

Here the particle Reynolds number, Rep, is defined as

Rep �
rf qDp

m
: ð38Þ

The spherical particle diameter, Dp, is assumed to be equal to the

linear dimension ds of the solid cube of the granular RUC model.

As in Du Plessis and Woudberg (2008) the value of the form drag

coefficient, cd in Eq. (37), was taken to be 1.9, presenting the most

empirical aspect of the procedure.

4.2.2. Upper asymptote

As noted by Geldart (1986), the pressure drop across a

fluidised bed, given by

Dp¼
m0g

Ac
¼
r0U0g

Ac
¼ r0gH, ð39Þ

is the only parameter that can be predicted with accuracy, since

at all times during fluidisation the downward force, i.e. the weight

of the bed, m0g, is balanced by the upward force, DpAc. Here m0

denotes the bulk mass, r0 the bulk density, U0 the bulk volume, g

acceleration due to gravity (taken as 9.81 m/s2) and Ac the cross-

sectional area of the bed. Division of Eq. (39) by the bed height
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yields

Dp

H
¼

m0g

AcH
¼
r0U0g

AcH
¼ r0g, ð40Þ

which forms the upper limiting asymptote.

4.3. Power addition of asymptotes

The original Ergun equation, Eq. (35), was obtained through

simple addition of the Blake–Kozeny and Burke–Plummer equa-

tions (e.g. Bird et al., 1960; Niven, 2002), the former being a

Darcy-type equation predominating in the regime where Rep-0

and the latter dominating in the Forchheimer regime. If power

addition is used to match the asymptotic conditions, i.e. Eqs. (35)

and (40) are combined, a single correlative equation,

Dp

H
¼ M

ð1ÿeÞ2

e3
mq

D2
p

þN
1ÿe

e3
rfq

2

Dp

 !s

þðr0gÞ
s

" #1=s

, ð41Þ

is obtained for the pressure drop over the bed. Here coefficients M

and N are as expressed in Eqs. (36) and (37), respectively.

4.3.1. Critical point and shifting exponent

As discussed in Section 2.4 the critical point of the matching

curve is the value of the independent variable at which the

asymptotes meet. To determine this value for the case of the

fluidised bed, the two asymptotes are set equal, i.e.

M
ð1ÿeÞ2

e3
mq

D2
p

þN
1ÿe

e3
rf q

2

Dp
¼ r0g, ð42Þ

which yields a quadratic equation in q. Let qc denote the value of

the independent variable at which the asymptotes meet. Solving

q¼qc in Eq. (42) yields

qc ¼
M

N

m

2rfDp
ð1ÿeÞ ÿ17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
N

M2

e3

ð1ÿeÞ3
4r0rf gD

3
p

m2

v

u

u

t

2

6

4

3

7

5
: ð43Þ

Since the second term inside the square root of Eq. (43) is greater

than or equal to zero and qcZ0, it follows that the negative root

may be disregarded. Substitution of this qc-value into Eq. (41) will

yield the function value at the intersection of the asymptotes. It is

also worth noting that once the pressure drop created by the fluid

flow becomes sufficient to support the weight of the bed, fluidisa-

tion will take an onset. This is referred to as the point of incipient

fluidisation and the corresponding superficial velocity of the fluid as

the minimum fluidisation velocity, qmf. Seeing as the upper limiting

asymptote predominates in the composition of the matched solu-

tion beyond the critical point, this point of intersection is the

threshold value of the superficial velocity at which fluidisation will

occur. The value found by Eq. (43) will thus be a theoretical

prediction of the minimum velocity required to fluidise the bed,

i.e. qmf¼qc.

The experimental data was traversed in search of the qc-value

matching the theoretically predicted value of the critical point, as

expressed by Eq. (43), most closely. From Eq. (43) it is clear that

the diameter of the particle impacts on the value of qc, and thus

on fc¼ f{qc}, Eq. (41). The latter in turn has a direct influence on

the value of s, as calculated by Eq. (20). In the format of Eq. (41),

with Dp=H the dependent and q the independent variable, the

relation shows a decreasing dependence as the superficial velo-

city grows. Furthermore, both the functions at the extremal

values are presumed to form upper bounds on the value that

the pressure drop may take. Hence, it is expected that the plot

should be qualitatively analogous to the case outlined in Section

2.2.2 and a negative value of the shifting exponent is to be

expected. Indeed, this turns out to be the case.

Once the experimental value of the pressure drop at the

critical point, fc¼ f{qc}, for each of the diameter-ranges had been

determined by the method discussed above, the value of the

shifter was calculated with the aid of Eq. (20) which yielded a

value of ÿ3. In these calculations, that is Eqs. (35), (41) and (43),

the median particle diameter (as determined by sieve-analysis) of

each range was used. In Fig. 3 the experimental data for the

1002200 mm diameter-range is plotted along with the result

obtained when applying Churchill and Usagi’s method (Churchill

and Usagi, 1972, 1974; Churchill, 1988, 2001) of power addition,

the specific instance of which is given by Eq. (41). Similar plots

may also be constructed for the 400–600 and 75021000 mm
particle diameter-ranges. The figure also indicates the asymptotes

applicable below (Eq. (35)) and beyond (Eq. (40)) the point of

fluidisation as well as its location (i.e. the critical point, qc, as per

Eq. (43)).

As mentioned in Section 3.3, it should be remembered that the

datum point chosen upon traversal of the experimental data may

be a poor choice. Establishing the s-value purely based on this

principle may lead to erroneous results and hence the value of

visual inspection should never be underestimated (besides, the

method is empirical). As Churchill and Usagi notes Churchill and

Usagi, 1972, 1974; Churchill, 1974, 1988) the solution is relatively

insensitive to small changes in s and hence the values for the

shifting exponent with the aid of Eq. (20) were rounded in each of

the corresponding figures. Alternatively the predictive curve

could have been manually adjusted until satisfactory visual

correlation with the data had been achieved, whence a value

would be assigned to s.

Fig. 3 shows that, using a shifting exponent of ÿ3, the values

predicted by Eq. (41) correspond well with the experimental data

in the two asymptotic extremities of the dependent variable.

However, in the transition regime Eq. (41) predicts a gradual

change-over whereas the experimental data exhibits a much

more abrupt transition, with some data points even crossing the

upper limit (see Fig. 3). This discrepancy between predicted and

measured values is addressed in the next section.

4.3.2. Crossing of the upper asymptote

In Section 2.3 a method was outlined to construct a (postu-

lated) dependence should the collected data cross the upper

limiting asymptote.

Referring to Fig. 3 it is evident from the experimental data that

this is the case for particles within the diameter-range 1002200 mm.
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Fig. 3. Experimental pressure drop data against superficial velocity for particles in

diameter-range 1002200 mm with curve-fitting by power addition.
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This phenomenon is, according to Geldart (1986) and Davidson and

Harrison (1963), caused by the wedging action within the bed and

cohesion between the particles and is prevalent in beds composed of

Group B particles (into which this diameter-range resorts).

Making use of the functional form suggested by Eq. (15), the

dependence

Dp

H
¼ r0g 1þ

qA
q

� �a� �

, ð44Þ

was postulated to represent behaviour of the bed in the upper

limit of the superficial velocity. Here qA is equivalent to the

arbitrary constant, xA of Eq. (15) and a is an arbitrary exponent

(see Section 2.3), and, respectively, determine the point of

intersection and curvature of the postulated function with

Eqs. (35)–(37). The values of both these variables were chosen

by trial and error, with the former being selected relative to the

critical point, calculated in Eq. (43), as qA¼1.2qc, and the latter as

a¼ 5. Since both qA and a influence the form of the function

postulated for the upper limit they may essentially be regarded as

turning parameters with which the postulated function is

‘shaped’. These constants are however assigned values before

power addition is effected. The RUC model, as per Eqs. (35)–(37),

was kept as representative of the lower asymptote. After applying

power addition to the constituent terms in the functional expres-

sion and some rearrangement, the pressure drop across the bed

may be expressed as

Dp

H
¼

z0fqgz1fqg

ðz0fqg
sþz1fqgsÞ1=s

: ð45Þ

Here z0fqg is the functional dependence of the pressure drop on

the superficial velocity in the lower limit as given by Eq. (35) and

z1fqg as per Eq. (44).

As in Fig. 3 the pressure drop was plotted against the super-

ficial velocity. In Fig. 4 the outcome of plotting the matched curve,

Eq. (45), against the collected data is demonstrated. Once again,

similar plots may be drawn for the 400–600 and 75021000 mm
particle diameter-ranges. It is important to note that the asymp-

totes need not necessarily be straight lines, for instance, the

quadratic nature of the RUC model in the lower asymptote only

becomes apparent with the larger particle diameters

(75021000 mm) where an increased superficial velocity is

required before fluidisation takes an onset. In Fig. 4, qA¼1.2qc,

a¼ 5 and s¼2 were substituted into the functional relation given

in Eq. (45). Noteworthy is the fact that in Fig. 3 the value of the

shifting exponent is negative, whereas s40 in Fig. 4. Rearrange-

ment, as outlined in Section 2.2.2, Eq. (13), was performed to the

constituent equations to obtain Eq. (45) and hence a positive

value for s. The degree of agreement between the experimental

data and predictive curve is a satisfactory result. Also shown in

this Fig. 4 is the original two asymptotic relations, Eqs. (35) and

(40), as well as the postulated function, described by Eq. (44).

5. Discussion

The method of power addition, formalised by Churchill and

Usagi (1972), succeeds, through simple exponentiation of the

constituent terms, in adjusting the solution so as to more closely

trace the experimental or computational data. The procedure

should not be regarded as a trick; rather linear addition of

asymptotic functions should be regarded as a special case of

power addition with a shifting exponent equal to unity. Prior

knowledge of the functional behaviour in at least one of the limits

makes the direct application of the proposed method possible.

Should, however, only the limiting value be known at one of the

extremities an empirical expression may be postulated, in which

case a power function is pertinent. The uncomplicated form of a

power function makes it a satisfactory choice and is in tune with

the method’s underlying philosophy of simplicity. Although the

routine has not yet been proven to accurately describe the

relative behaviour of the different parameters during a transfer

process, it may be argued to be appropriate, since the rate of

change between the two asymptotes can be adjusted to fit

experimental readings. For instance, the higher the (absolute)

value of the shifter-exponent, s, the more abrupt the change-over

between the two asymptotic processes. Furthermore, irrespective

of the rate at which the change-over occurs, it will be a smooth

transition as is expected for the cross-over from one continuum

process to another. The method thus ensures that the solution is

correct at the extreme values and allows careful adjustment in

the transitional regime. This is often not the case with polynomial

fitting. It may also be argued that the leading coefficients and

constants of a polynomial (even if unity) would each require a

physical interpretation or validation, which is a drawback of a

polynomial fitting technique.

In the examined cases in this study, and the various examples

listed in the literature by Churchill et al. (Churchill and Usagi,

1972, 1974; Churchill, 1974, 1988, 2001), powered addition

appears to be favoured over the introduction of ad hoc curve-

fitting or bridging functions which might introduce unwanted

jumps. Thus, although primarily a curve-fitting exercise, this

procedure leads to better physical modelling since the only

‘tuneable’ parameter is the shifter-exponent, s. Adjusting its value

does not change the value of the asymptotic conditions and leaves

the double-asymptote character of the transfer process intact. In

certain instances the shifting exponent may be linked to specific

parameters of the process. The choice of s for both the cases of

this study was however made purely by inspection of the

collected data without any physical justification.

Due to the sensitivity of the matched curve to changes in the

shifter, s, in the vicinity of intersection of the asymptotes, it is

recommended that experiments be designed so as to focus on this

area. More specifically, in performing an experiment it is advan-

tageous to arrange the physical conditions in such a manner that

the independent variable is in close proximity of the critical point.

Should the experimental values of the dependent variable at the

critical point be known, a good indication of the value of the
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Fig. 4. Curve-fitting by power addition with a postulated function for the upper

limiting dependency to enable crossing of the upper extremal value. Particles in

diameter-range 1002200 mm.
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shifting exponent may be obtained analytically. It is however

important to keep in mind that, since the method is empirical in

nature, an exact solution is not obtained and therefore the

potential benefit of visual inspection and evaluation on the result

should not be disregarded (visual inspection by trial and error

adjustment often leads to a better value assignment of the

shifting exponent). As noted by Churchill and Usagi (1972) the

matched curve is relatively insensitive to small variations in s and

the required accuracy should be determined by considerations

such as the process involved, tunability of other parameters and

allowable error-margin.

The main advantages of the method are that a singular funct-

ional dependence of the independent variable upon the dependent

variable is established over the entire range of the latter. The

inherent simplicity of the method suggests that in such a curve-

fitting exercise the greater deal of effort should be exerted in

determination of the asymptotes, the value of the exponent, s, and

possible relation of the latter to some quantifiable parameter.

6. Conclusion

A single predictive equation is proposed for predicting the

pressure drop over a straight-through diaphragm valve which

serves as an improvement on an existing empirical set of

equations. The latter involves a discontinuity in the pressure drop

in the transition regime of superficial flow velocities, whereas the

equation proposed in this study ensures a smooth change-over as

the Slatter–Reynolds number increases.

In the second case study a single equation is proposed for

predicting the pressure drop over a fluidised bed. This equation

accounts for both the packed bed state at low superficial velo-

cities and the fluidised state at higher superficial velocities. It was

illustrated how the characteristic ‘hump’, often exhibited in

experimental pressure drop values due to particle interlocking,

can be accounted for in the predictive equation with promising

results.

Although the authors have not yet succeeded in quantifying

the power, s, for the cases discussed in this paper, and despite the

lack of an obvious physical meaning being attached to the

parameter at this stage, it was shown that the shifting exponent

is closely linked to the changeover rate between the limiting,

asymptotic solutions. Application of the approach to two diverse

continuum processes, often found in chemical engineering, were

discussed to illustrate the wide utilisation possibilities of the

method.
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