
 
 

 
Abstract 
Recent studies have developed many approaches to learn 
onset of rainfall with the help of highly skilled domain 
experts. This research investigates an alternative approach 
to automatically evolve the hidden temporal distribution of 
onset of rainfall directly from multivariate time series 
(MTS) data in the absence of domain experts. Temporal 
probabilistic modelling of the emergent situation 
awareness (ESA) is proposed to reveal hidden variability 
and dependencies over time for the onset of rainfall. 
Several weather parameters such as sea surface 
temperature, 700hPa wind anomalies, and climate indices 
such as El-Niño/Southern Oscillation (ENSO), etc. are 
analysed using the ESA technology to evolve model of 
temporal dependencies among these parameters. The target 
parameter, onset of rainfall is meant to reveal the degrees 
of beliefs for false, early, normal, late or failed state. Using 
rainfall observations from Botswana, this work has shown 
that three month lead time of Southern Oscillation Index 
(SOI); geopotential height anomalies at 500hpa level and 
wind anomalies at 700 hpa parameters are better indicators 
for the onset of summer rains in Southern Africa. Our 
experimental results give promising insights to approaches 
to sustainable food security, water conservation and early 
warning systems in Southern Africa. 
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1. Introduction 

The economies of most Sub-Saharan African 
countries are linked to the onset, reliability and 
performance of seasonal rainfall. Failure of regular 
seasonal rains may signal food deficits or poor food 
security. Farmers, water conservationists and government 
bodies are responsible for food security, and all have an 
interest in the aspects seasonal rainfall. This includes 
approximate dates for start of the season or onsets, and 
probabilities for early, normal or late onset of rains. 
This knowledge enables them make crucial decisions as to 
the choice of crops, planting dates, management of dams, 
pasture and hydro-electric dams. Early planting of staple 
crops such as maize, wheat and sorghum may lead to crop 
failure, while late planting may also reduce crop yields 
due to rainfall deficits. For instance, late onset and 
subsequent rainfall deficits of summer rains in the region 
lead to drought, depletion of pasture, followed by animal  
 

 
 
 

 
 
 
 
 
 
 

 
and cattle losses as they happened following the El-Niño 
induced events of 1982-1984 and 1991-1992 [3].  
  While some studies on Southern African rainfall 
variability and onsets have been carried out, we do not 
know any research conducted to determine onsets of 
rainfall in the region with the capability of temporal 
probabilistic models handling such complex problems 
herein. Some researchers [5] investigated variability of 
onset of maize growing season over South Africa and 
Zimbabwe using self-organizing maps (SOM). They 
showed that late onset of rainfall in Zimbabwe is 
associated with heavier rainfall over the continent and 
accompanied by increased frequency of positive 500 hpa 
geopotential height anomalies to the South East of the sub-
continent. Hachingonta, Reason & Tadross  [4] studied the 
onset and cessation dates of summer rainfall in Zambia. 
They showed that conditions favourable for early (or late) 
onsets of rain are strong negative (or positive) anomalies in 
the 500 hpa geopotential height signifying convective 
developments (subsidence).  They also noted that during 
early onsets there were positive anomalies over South 
Africa and Indian Ocean. 

While the summer rainfall season for much of 
Southern Africa generally lasts from September to April, 
rains occur in Botswana mainly from November to March 
[6]. There is very little rainfall during winter months (May 
– September). Figure 1 shows dominant synoptic features 
that influence weather patterns and rainfall in Southern 
Africa. This study aims to determine degres of beliefs and 
probabilities for false, early, normal, late or failed onset of 
rains given normal and anomalies of weather parameters 
and climate indices. 

 
Figure 1: Synoptic features and air-masses over Southern Africa, 

described by [7]. Background map taken from                    
UNEP/GRID Library [1]. 
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This study takes an in-depth investigation of onset 
of rainfall in Botswana and atmospheric features that may 
influence variability of the onsets of rainfall over time. 
This paper also investigates the emergent situation 
awareness (ESA) modelling as an alternative technique 
which reveals the hidden rainfall onsets over time. The 
ESA technology [2] evolves temporal probabilistic models 
directly from complex environments captured as 
multivariate time series (MTS) in the absence of domain 
experts. It reveals what is currently happening in the 
meteorological stations by facilitating the relationships of 
the various climate indices, rainfall and weather 
parameters. The major contributions in this paper are as 
follows: 
 The application of the temporal probabilistic models to 

understand the variability of rainfall onset in Southern 
Africa. 

 The evaluation of the model using real life 
observations captured from Botswana meteorological 
stations, illustrating to agricultural researchers and 
practitioners on food sustainability and water 
conservation.  

The rest of this paper is arranged as follows: in section 2, 
we describe dominant synoptic features (weather patterns) 
that influence rainfall in Southern Africa; in section 3, we 
describe a proposed methodology for understanding the 
onset of rainfall. Experimental evaluations of statistical and 
temporal probabilistic modeling of the ESA are presented 
in section 4. In section 5, we discuss experimental results 
and conclude the paper in section 6. 

 
2. Theoretical Backgrounds 
 
  2.1 Synoptic Weather Patterns 
   There are a number of distinct large scale 
atmospheric weather patterns and synoptic systems that 
influence rainfall and onset of rainfall in Southern Africa; 
They are (i) El-Nino/La-Nina; (ii) Sea surface temperatures 
(SSTs); (iii) The Inter-Tropical Convergence Zone (ITCZ) 
- It is generally a zone of convergence of North-Easterly 
and South-Easterly trade winds, and is characterized by 
convective activities: thunderstorms, precipitation and 
clouds, Nicholson (2009); (iv) Botswana Upper high - It is 
a mid-tropospheric or medium-level (850 hPa - 600 hPa) 
anticyclone found in Southern Africa. It is characterized by 
marked subsidence and consequently suppression of 
convection, resulting in clear skies and prolonged dry 
spells, [7]; and (v) The Angola Heat Low - is a heat low 
pressure system that exists below 700hpa level in the 
summer half of the year over south-eastern Angola and 
north-eastern Namibia [9].  
Some of the patterns are illustrated in Figure 1. Each of 
these systems has an influence on rainfall and the onset 
dates of rainfall in the region in varying degrees. 
 
2.2 The Theory of Temporal Probabilistic    

Modelling of the ESA 
The simplest form of a temporal probabilistic 

model or Dynamic Bayesian Network (DBN) is a Hidden 

Markov Model with V as state variables and E as evidence 
variables repeated in say, three time steps. DBNs are 
temporal probabilistic models which are often referred to 
as an extension of the Bayesian Network (BN) models in 
artificial intelligence [2]. A Bayesian belief network is 
formally defined as a directed acyclic graph (DAG) 
represented as G = {V(G), A(G)}, where V(G) = 
{V1,…,Vn}, vertices (or variables) of the graph G and 
A(G) ⊆ V (G) × V (G) , is the set of arcs of G. Every 
variable V with a combination of parent(s) values on the 
graph G captures probabilistic knowledge (distribution) as 
a conditional probability table (CPT). However, the 
inability of the BNs to capture time as temporal 
dependencies facilitated the developments of various ways 
of modelling the Dynamic Bayesian networks. More 
information can be found in [2]. 
 
3. The Proposed Methodology  

3.1 Data Analysis 
Daily and monthly rainfall datasets used in this 

work were obtained from Botswana Meteorological 
Services. The data covered 29 stations and years 1971 – 
2004. Daily rainfall data was arranged with day 1 being 
July 1st and the last day (day 366), June 30th the 
following year. For the purpose of labeling, each year in 
Botswana was determined if it was normal, wet, or dry 
using the formula in equation (1): 
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     where m is the total number of stations used,  Xt is the 
time-dependent rainfall index as a percentage of the mean 
and averaged over the whole country. 
 The wet years had large values of the index (Xt 
>75%) while dry years had low values (Xt <=75%). 
Normal years had values of this index between -75% and 
+ 75%. Rainfall was normalised to ensure that the mean is 
zero and the standard deviation was unit. Figure 2 is a 
standardised anomalies of annual rainfall over Botswana. 
We obtained monthly sea level pressure (SLP) anomalies, 
sea surface temperature (SST) anomalies, and other 
parameters from National Centre for Environmental 
Prediction (NCEP) and National Centre for Atmospheric 
Research (NCAR) (1948 – Present) [10].  
 
3.2 Determination of the Start-Of-Season 
      Since Botswana has a semi-arid climate with 
large annual rainfall variability, subjective criteria was 
used to determine the Start of Season (SOS) for each 
station. In this work, the following definition was used: 
the day after 1st October when cumulative rainfall 
exceeded 20 mm, and that no dry spell exceeding 20 days 
occurs in the next 30 days. This definition was adopted 
and modified from that used by Famine Early Warning 
System (FEWS) for Southern African countries.                                  

Using a statistical package, a summary was done 
for each year for each station to determine the mean onset 



date, standard deviation, minimum and maximum onset 
dates.  Types of onset were determined for each year and 
categorized as False (0), Early (1), Normal (2), Late (3), 
and Failed (4) Onsets. 
 
3.3 Theory of Correlation Analysis 

A correlation technique was used to examine 
lagged relationship between seasonal rainfall and grid SST 
values, [11]. The correlation coefficient (rk) between the 
seasonal rainfall (yt) and any lagged SSTs at time lag k, 
(xt-k) may be expressed as  
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 Where xt = Xt - 
t

X  , yt = Yt - 
t

Y , and -1≤ rk ≤ 1.   

Positive and negative values of rk are indicative of 
positive/negative relationship.  

The weather parameters, the climate indices, and 
the result from statistical analysis for onsets are organised, 
as listed in Table 1. This serves as input for the ESA. 
 

Table 1: Required Attributes for probabilistic modelling 
 

a. Station#; Year; Month – Station Number, Year, 
Month 

b. MTLY_RR  - Monthly Rainfall (in mm) 
c. Ind_SST_Anom -Indian Ocean Sea Surface 

Temperature Anomalies (0C) 
d. Atl_SST_Anom  - Atlantic Ocean Sea Surface 

Temperature Anomalies (0C) 
e. SOI -  Southern Oscillation Index (Indicator for 

El-Niño/La-Niña) . 
f. (T- 3)SOI - Three months lag in SOI 
g. Atl_SLP_Anom - Atlantic Ocean Sea Level 

Pressure Anomalies (hPa/mb) 
h. SInd_SLP_Anom – Southern Indian Ocean                

( Mascarene area) Sea Level Pressure Anomalies 
(hPa/mb).    Domain :340S-380S, 34oE-460E 

i. CInd_SLP_Anom – Centra Indian Ocean (North 
of Malagasy area) Sea Level Pressure Anomalies 
(hPa/mb). Domain: 70S-140S, 56oE-640E 

j. 500Hpa_Anoms – 500 hPa level anomalies (in  
                                      meters) 
k. 700Hpa_U    -   700 Hpa level zonal winds     
                     (meters per second) 
l. 700Hpa_V   -   700 Hpa level meridional winds    
                        (meters per second). 
m. Onset    - Onset type in Botswana for particular 

year, (False (0), Early (1), Normal (2), Late (3), 
and Failed (4) Onsets) 

 
 
 
3.4 The ESA Modelling 

The system model of the ESA comprises three 
essential components which are; learning algorithms, 
probabilistic distributions, and the trend analysis [2]. The 

first two components collectively discover system 
knowledge of rainfall distribution, which are integrated 
into the third component called the interface (or projection) 
knowledge. The analysts use this knowledge as a platform 
to understand the onsets of rainfall over time.  

The learning algorithms dynamically evolve 
temporal models from the weather parameters embedded in 
the multivariate time series (MTS). The MTS serves as 
input to the ESA technology. The algorithms emerge 
interlink temporal models from frames 0 to n. Let t

iV  
represent variables of the ESA at time t; the temporal 
dependency relation between the time frames is shown in 
equation (3).  

 

 
From equation (3), the relationships embedded 

among variables V at time step 1 may or may not be 
equivalent to the variables’ relationships at time step 2, and 
for subsequent time steps t. This is as a result of the 
changes in environmental patterns, which affect the 
relationships of the model variables over time. An 
optimized genetic algorithm (GA) is upgraded to evolve 
over time and is used as a proof of concept in this system 
model. The algorithm uses information theoretic measures 
(e.g. Minimum Description Length) and mathematical 
components (e.g. PowerSet in set theory) as genetic 
operators and as a means of balancing between efficiency 
and decomposability.  

The other functionality of the probabilistic 
distribution of the system model is a Bayesian inference of 
the variable elimination algorithm, which is used to reason 
over time. This reasoning algorithm is based on Bayes’ 
theorem, expressed as posterior probability in equation (4) 
for some random variables Vs and Ve. The Vs implies state 
variable of the model while Ve implies evidence variable. 
 

    )Pr(

)Pr(*)|Pr(
)|Pr(

eV
sVsVeV

eVsV    (4) 

 
4. Experimental Evaluations 

This section brings our theory to practice from 
statistical analysis and temporal probabilistic modelling. 
  
    4.1 Experiment 1: Understanding the Onsets     
         Using the Statistical Methods 
 
     4.1.1. Wet and dry years 

Figure 2 below is a time series plot of 
standardized anomalies of rainfall over Botswana. The plot 
captures wet, dry and normal years over the country. 

(3) 
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Figure 2: Standardized anomalies of annual rainfall over 

Botswana. 
From the above plot and as noted before, the years 

1974 – 1977, 1988, and 2000 were wet years in Southern 
Africa, [12], while the years 1982-85; 1991-94 and 2002 
were dry years in Botswana, mainly influenced by El-Nino 
phenomenon, [ 3]. 

 
4.1.2 Start-of-Season 

Figure 3 is a plot of average onset dates (number 
of days from 1st July) for Botswana.        

                 

 
Figure 3: Spatial distribution of onset of rainfall in 

Botswana. Figures represent days after July 1st. 
 
The earliest onset date is 1st October around the hilly areas 
in South East District, while the latest is 23rd March in dry 
areas of Kgalagadi District. The arid extreme south-west 
(Kgalagadi District) represented by stations Ncojane and 
Werda are the last to receive rains on 17th and 19th 
December respectively.  

Figure 4 below is a resulting time series plot of 
onset of rainfall and categories of onsets for Botswana. 
Results from the analysis show that the mean onset date of 
rainfall in Botswana is 25th November (day 148). Normal, 
early, late and failed onset dates are shown. The average 
variability (standard deviation) of start of rains in 
Botswana is 38 days. The largest variability, 55 days, is in 
the arid Kgalagadi District, while the lowest being in the 
North-East and the Southern District (20 days). 

 

 
Figure 4: Time series plot of rainfall onset in   Botswana 

4.1.3 Correlation Analysis 
The significant SST modes (Pacific, Atlantic and Indian 

Oceans) of July, August, September (JAS) months were 
correlated with October, November, December (OND) 
rainfall over each of the different regions in Botswana. 
The following are some of the results obtained: 

a. Atlantic Ocean  
 Region: 00N -80N, 390W-480W correlated 

positively with stations in Kgalagadi (Ncojane and 
Werda). 

 Region 450S -500S, 500W-560W correlated 
negatively with stations in Northern areas of 
Botswana. 

b. Indian Ocean  
 Regions: 70S-140S, 56oE-640E and 340S-380S, 

34oE-460E, were correlated negatively with Central 
and South Eastern Stations. 

The two domains in the Central and Southern Indian Ocean 
correspond to regions of dominant synoptic systems, where 
SLP data were extracted and their anomalies determined. 
The resulting parameters are CInd_SLP_Anom and 
SInd_SLP_Anom. 
 
4.2 Experiment 2: Understanding the Onsets Using the 
Temporal Probabilistic Models 
 
    4.2.1 Dynamic Bayesian Network for  
      Botswana Rainfall 
       Figure 5 shows an evolved DBN model for 
Botswana rainfall distribution. The Directed Acyclic 
Graph model reveals temporal dependencies among 
weather parameters and climate indices over time. The 
ESA technology learns the model from MTS over the 
time-steps of months. The result was 12 temporal frame 
model. Frame 1 is equivalent to a Bayesian model for 
January rainfall situation, while frame 12 corresponds to 
December. Each Frame reveals hidden relationships 
among the nodes (or attributes) from the frame data for 
that particular time step (month). 

In the four representative frames of the DBN, the 
onset parameter is characteristic to any geographical 
location (that is Station and Year parameters). This implies 
that Station and Year parameters have direct influence on 



the onset of rainfall. In Frame 1, the Onset of rainfall has 
direct influence on meridional component of 700 hPa 
winds (700 hPa_V) which has direct influence on monthly 
rainfall (MTLY_RR). However in frame 2, the variable 
Onset of rains has direct influence both on meridional and 
zonal components of winds at 700 hPa level (700 hPa_U, 
700 hPa_V), while in Frame 11, the Onset parameter has 
direct influence on Rainfall (MTLY_RR). 

In Frame 12, the Onset parameter has direct 
influence on (T-3)SOI,  the three months lead time of SOI, 
this implies also that (T-3)SOI has direct influence on 
Onset using the principle of “forward and backward 
propagation”. Both meridional and zonal components of 
winds at 700 hPa level (700 hPa_U, 700 hPa_V) have 
direct influence on monthly rainfall (MTHLY_RR), similar 
to Frame 2. 

 

 
 

 
      

  

 

 
Fig. 5. DBN for Botswana rainfall and associated weather 

parameters 
 

In frame 11, the Southern Oscillation Index (SOI) 
variable has direct influence the Onset, while the Onset 
has direct influence on monthly rainfall, (MTLY_RR). In 
frame 12, the Onset parameter has direct influence on (T-
3)SOI,  the three months lead time of SOI. This implies 
also that (T-3)SOI has direct influence on Onset with 
conditional dependencies of BNs.  
 
  4.2.2 Relationships of rainfall onsets to various 
parameters 
  
  4.2.2.1 Normal, Wet and Dry Years 
 
     Normal Year 

We take a normal rainfall year 1998 in Botswana 
that had a normal onset from statistical analysis. Figure 6 
below shows a graph of probabilistic reasoning over time 
followed by a user’s interaction. The model reveals the 
probability as a normal (2) onset given that monthly 
rainfall was at most 56.2 mm but more than 26.6mm. It 
can be seen that probability for a normal onset for 
November Month is very high (90%). November to March 
reveal high probability of onset of rainfall (above 82%), 
January to March (100%). However, we have lower 
degrees of belief for normal onset for April to October 
(less than 70%).  
 

 
Figure 6a: Emergent Situation of onset in 1998 when monthly 

rainfall (MTLY_RR) was within   ‘26.6 <= 56.2’. The onset was 
normal (2). 

   



Dry Year 
  A similar experiment was done for a dry year, 
1985, which showed that the probability for failed (4) 
onset for November and December months were 65% and 
55% respectively.  
 
   El-Nino years 

The figure below is an example of a well 
marked El-Niño episode, (T-3)SOI <= -13.9.  There 
is some marked probabilities for a late (3) onset in 
November (40%), December (47%) and March 
(55%). 
  

     
Fig 6b: Emergent Situation of late onset when    (T-3) SOI is 

small (<= - 13.9). (A well marked El-Nino situation). 
 
    4.2.2.2 Sea level pressure  

From Figure 7 below, the probability for normal 
onset given the negative SLP anomalies in the South 
Indian Ocean (Mascarene region)   (SInd_SLP_Anom <= -
1.082) are: (i) October (30%), (ii) November (90%), and 
(iii) December (50%). However given positive pressure 
anomalies (SInd_SLP_Anom 0.4<= 1.25), the 
probabilities for normal onset are lower for November 
(62%), but higher for October (50%), and December 
(70%).  

 

        
Figure 7: Emergent Situation of Onset when 

Sind_slp_Annom <= ‘-1.082’,and  Cind_slp_Annom 
falls within ‘-0.129<=2.47’ 

 
 4.2.2.3 Sea Surface Temperature 

Figure 8 below reveals high probabilities for 
normal onset for November – December month given 
anomalous warming in Indian Ocean. This agrees with 

arguments advanced by [9],[3]. The probabilities are 
reduced for lower SST values. 
 

 
Figure 8: Emergent Situation of normal onset when 

Ind_SST_Anom is high (0.265<=0.82). 
 
  4.2.2.4 The 500 hPa geopotential height anomalies 
Result from the ESA showed that when there are positive 
geopotential height anomalies in 500 hPa level, there were 
reduced degree of beliefs, compared to that of negative 
anomalies (500HPa_Anoms <= -7.974) as shown in 
Figure 9. The probabilities of onset for the negative 
anomalies of 500 hPa geopotential heights are: (i) 
November (80%), and (ii) December (55%). This agrees 
with reasons presented by [5]. Figure 10 is a 
NCEP/NCAR reanalysis for 500 hPa height anomalies 
over the region confirm that during a wet year (2000) 
there were marked negative height anomalies. 
                                                                                                                             

 
Figure 9: Emergent Situation of normal onset, when 

500HPa_Anoms <= -7.974 
 

 
Fig. 10: NCEP/NCAR reanalysis for 500 hPa 

geopotential height anomalies for wet year – 2000. 
 



 4.2.2.5 Winds at 700 hPa level 
In a case where there are weak southerly winds at 

700hPa level, the degrees of belief for normal onset were 
higher in November (65%) and December (75%), figure 
11. A 700 hPa NCEP/NCAR reanalysis for wet year 
(2000) showed marked southerly meridional components 
of winds as shown in Figure 12. A similar analysis for a 
dry year (1985) showed that there was marked northerly 
meridional flow. 

 
 
 

 
 
 
 
 
 
 
 

         
 

Figure 11: Emergent Situation of normal onset, when 
700HPa_V<= -1.904 

 

 
Figure 12: NCEP/NCAR reanalysis for 700 hPa 

meridional wind anomalies for year 2000. 
 
5. Discussion  
 
In this section, the results for the statistical and the DBN 
are presented. 
a. Results from the DBN of the ESA showed that in the 

years that had normal and above normal rainfall (wet 
years), the probability of a normal onset was high. The 
month of November had probability of 90% for a 
normal onset. This agreed with statistical results that 
showed that the mean onset date in Botswana is 25th 
November, and the mean variability (standard 
deviation) of onset of rains is 38 days.  

b. In a dry year the probability for failed (4) onset for 
November and December months were found to be 
65% and 55% respectively. Except for Serowe Station 
in Central District, nearly all stations in Botswana 
experienced late onset of rains in 1985. 

c. During an El-Nino year, there is some probability for 
late (3) onset of rains: 40% in November and 55% in 
March. 

d. While it is an established fact that the strengthening of 
Mascarene High pressure cell induces moisture influx 
into the interior of Southern Africa, leading to wetter 
conditions, [13], this research found that if there are 
negative sea level pressure (SLPs) anomalies in 
Mascarene area and near normal SLPs in Central 
Indian Ocean, the degrees of beliefs are  high for 
normal onset in Botswana for the months of November 
(88%) and December (70%).  

e. There are higher degrees of belief for normal onset of 
rains given positive (warming) sea surface 
temperatures (SSTs) anomalies in Indian Ocean, 
(November and December - 80%) and Atlantic Ocean 
(November – 77%, December – 82%). There are 
reduced degrees of belief for negative (cooler) SSTs. 
This agrees with reasons advanced by [9]. 

f. Positive 500 hPa geopotential height anomalies in the 
interior of the sub-continent, lead to lower degrees of 
belief for normal onset of rains. Conversely negative 
500 hPa geopotential height anomalies lead to higher 
degrees of belief for normal onset for the month of 
November (80%), but lower for other months (less 
than 50%).  

g. A marked southerly component of wind flow at 700 
hPa level lead to higher probabilities for normal onset 
while a northerly flow leads to reduced probabilities 
for normal onset. The results showed that during wet 
year, 2000, there was marked southerly flow across 
Botswana, while in a dry year, 1985, there was marked 
northerly flow over the region. 

h. From the DAG that models relationships among the 
parameters, the monthly rains (MTLY_RR) are caused 
by the following parameters: Onset of rains (Onset); 
the Southern Oscillation Index (SOI); winds at 700hPa 
level (700hPa_U, 700hPa_V); Atlantic Ocean Sea 
Surface Temperature anomalies (Atl_SST_Anom) and 
Central Indian Ocean Sea Level Pressure Anomalies 
(CInd_SLP_Anom). 

i. From figure 5, the three month lead time in  SOI ((T-
3)SOI), has direct influence, for the four time slices, on 
the following parameters: 

i DBN for January – SOI and 700hPa_U 
ii.  DBN for February – 500hPa_Anom, 

Ind_SST_Anom, Atl_SLP_Anom and 
Atl_SST_anom.  

iii. DBN for November - 700hPa_V 
iv. DBN for December – Ind_SST_Anom,   

    CInd_SLP_Anom. 
j. The parameter (T-3SOI), among others, can be used as 

indicators by planners, farming community and policy 
makers to make early warning, in case of impending 
drought or floods; conserve water or put in place  
contingency measures for food supplies and 
distribution. 
 
 



6. Conclusion and Future Work 
 
 The methodology and results obtained in this paper are 
based on the following recent work [14]. From statistical 
analysis, one can determine Start-of-Rains or onset dates, 
their means and variability, while the temporal 
probabilistic modelling of the ESA reveals hidden 
variability of parameters over time. Each of the parameters 
and climate indices revealed varying degrees of beliefs for 
early, normal, late or failed rainfall onsets in Botswana.
 Results from the ESA show that the onset of rains 
takes place in the month of November. The ESA does not 
show the actual dates, since the time-step was month and 
not daily. While the two approaches are complementary in 
understanding and determining the onset of rainfall, the 
temporal probabilistic modelling of the ESA is better in 
revealing hidden variability and dependencies of onset of 
rainfall over time. 

This work has shown that the temporal 
probabilistic model suggests that all the parameters and 
climate indices positively or negatively influence the onset 
of rains in Botswana. The differences are the degrees of 
beliefs. Owing to the complexity of the atmosphere and its 
processes, weather parameters and climate indices are 
related and interlinked.  

We have shown that the following parameters 
revealed higher degrees of beliefs for onset of rains in 
Botswana (i) three month lead time of Southern 
Oscillation climate index (T-3SOI), (ii) geopotential height 
anomalies at 500 hPa level (500hPa_Anoms), (iii) 
anomalously warmer SSTs in Indian and Atlantic Oceans 
and (iv) meridional component of winds at 700 hPa level 
(700hPa_V). These parameters may be useful to policy 
makers, farmers as indicators to ensure food security and 
water conservation. 

This work used larger time-step, (the Month). 
Future work should use shorter time-steps, like 10 day 
(dekad) or 5 day (pentad) periods. The results could then 
be compared with statistical determination of onset dates. 
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