The use of Hyperspectral data for tree species discrimination: Combining binary classifiers

by

Xolani Dastile

supervised by Professor G. Jager Doctor P. Debba

1. Outline

- Hyperspectral Remote sensing
- Data description
- Classification
 - Classifiers: Nearest neighbour and Neural Networks
 - Estimate of the error probability
- Binary classifiers
- Combining binary classifiers: Error Correcting Output Codes
- Discussion
- References

2. Hyperspectral Remote Sensing

- Hyperspectral remote sensors record reflectances in many narrow and closely spaced bands.
- Reflectance is a ratio of the reflected radiation to the incident radiation *i.e* reflectance = $\frac{R_i}{R_r}$ (R_i incident radiation, R_r reflected radiation).

3. Data description

- Aim: Assess tree species diversity in Kruger National Park
- Study: Record hyperspectral measurements of leaf samples with Analytical Spectral Device (ASD) spectrometer
- The hyperspectral data consists of 2101 spectral bands (400nm-2500nm) for seven plant tree species in the area.

class 1	Lonchocarpus Capassa	LC	25 samples
class 2	Combretum Apiculatum	CA	23 samples
class 3	Combretum Heroense	СН	20 samples
class 4	Combretum Zeyherrea	CZ	19 samples
class 5	Gymnospora Buxifolia	GB	21 samples
class 6	Gymnospora Senegalensis	GS	18 samples
class 7	Terminalia Sericia	TS	22 samples

4. Reflectance spectra for CA and CH species

Note: high within-class variability, low between-class variability

5. Classification

- Aim of classification: Assign object into one class v_i of a set of given classes { v_1 , v_2 ,..., v_c }.
- Classification = supervised learning: training data with known classes available.

6. Classifiers: K-nearest neighbour classifier

- Given learning task $\{(x^1,t_1),(x^2,t_2),...,(x^p,t_p)\}$ $\{x^i \in R^n \text{ feature vectors,}$ $t_i \in \{v_1,...,v_c\} \text{ class labels.})$
- For a new object $x \in \mathbb{R}^n$:
 - + determine *k* closest samples
 - + Assign to x the class of the majority of the k closest samples
- Closeness is measured e.g. by using Euclidean distance

$$d(x^{i}, x) = \sqrt{(x_{1}^{i} - x_{1})^{2} + (x_{2}^{i} - x_{2})^{2} + \dots + (x_{n}^{i} - x_{n})^{2}}$$

- class 1
- class 2
- new sample

For 5-nearest neighbour classification: assign new sample to class 1.

6. Classifiers: Neural networks (I)

Single artificial neuron:

Multi-layer feedforward neural network:

- x_i inputs
- ω_i weights
- b bias
- f -transfer function e.g.

$$f(x) = \frac{1}{1 + e^{-x}}$$

• V - output

6. Classifiers: Neural networks (II)

- Parameters: weights and biases
- Initial parameter values assigned randomly.
- "Optimal" parameters minimize the error function

$$E = \frac{1}{2} \sum_{k=1}^{n} (y_k(\omega, b) - t_k)^2$$

 $y_k(\omega,b)$ network output, t_k target

 Find optimal parameters by using back-propagation training (steepest descent algorithm)

7. Error probability estimate

- Error probability = probability of misclassifying an object.
- For estimation:
 - Split data set into two independent sets (random split): training set and test set.
 - Construct classifier on training set.
 - Estimate error probability (proportion of misclassified samples) on test set.

8. Results of Seven-class classifiers

1-Nearest Neighbour:

Sets		10-experiments								mean	
train	0	0 0 0 0 0 0 0 0 0								0	
test	0.386	0.409	0.341	0.409	0.318	0.386	0.296	0.455	0.341	0.455	0.380

5-Nearest Neighbour:

Sets		10-experiments								mean	
train	0.250	0 0.279 0.308 0.298 0.327 0.356 0.289 0.231 0.289 0.327								0.300	
test	0.477	0.431	0.568	0.432	0.477	0.341	0.568	0.636	0.477	0.523	0.493

Neural Network (2 hidden layers, resilient backpropagation):

Sets											mean
train	0.058	0.058	0.048	0.077	0.058	0.077	0.077	0.058	0.077	0.077	0.067
test	0.318	0.273	0.273	0.250	0.205	0.273	0.250	0.205	0.273	0.341	0.266

Results:

- Neural Network superior
- For nearest neighbour: Increasing neighbour numbers does not lead to better classification results (small data set!)
- Seven-class prediction is NOT POSSIBLE!

9. Binary Classifiers

- Binary classification classification with only two classes.
- A multiclass problem is decomposed into a set of binary classification problems by forming metaclasses C^+ and C^- .
- The binary classifiers are combined to obtain a multiclass predictor.
- Use Error Correcting Output Codes (ECOC) for combination.

10. Results of some binary classifiers

• 8 binary classifiers.

	f1	f 2	f3	f4	f5	f6	f 7	f8
<i>C</i> +	1	1,7	1,6	1,6,7	1,5	1,5,7	1,5,6	1,5,6,7
<i>C</i> -	2,3,4,5,6,7	2,3,4,5,6	2,3,4,5,7	2,3,4,5	2,3,4,6,7	2,3,4,6	2,3,4,7	2,3,4

• 10 experiments:

1-Nearest Neighbour results

	f1	f2	f3	f4	f5	f6	f 7	f8
Min	0.046	0.046	0.136	0.114	0.136	0.114	0.136	0.136
Mean	0.132	0.125	0.175	0.168	0.182	0.175	0.189	0.189
max	0.182	0.182	0.205	0.250	0.250	0.250	0.227	0.300

Neural Network results (1 hidden layer with 10 hidden neurons)

	f1	f2	f3	f4	f5	f6	f7	f8
Min	0	0.023	0.046	0.091	0.046	0.046	0.023	0.068
Mean	0.067	0.059	0.155	0.159	0.159	0.148	0.116	0.134
max	0.114	0.136	0.205	0.227	0.205	0.250	0.205	0.205

Results:

- Neural network classifiers are better than Nearest neighbour classifiers.
- Misclassification rates between 6% and 19% on average.

11. Error Correcting Output Codes (I)

- Code classes: metaclass C^+ by 1; metaclass C^- by 0.
 - \Rightarrow each classifier is represented by binary (column) vector of a code matrix M.

Example: (0,1,1,0,1,1,1)' represents $C^+=\{2,3,5,6,7\}$ vs. $C^-=\{1,4\}$

- Exhaustive code: $2^{(7-1)}$ 1 = 63 different binary classifiers.
- Each row of *M* represents a class and each column represents a binary classifier.

Example: 4 classes and 7 classifiers

 \Rightarrow code matrix :

11. Error correcting Output Codes II

- Evaluate all binary classifiers for sample *x*:
 - \Rightarrow binary vector $\lambda = [f_1(x), f_2(x), ..., f_7(x)]$
- Ideally: for sample of class k, $f_i(x)=1$ if class k is in metaclass C_i^+ , else $f_i(x)=0$.
 - \Rightarrow compare λ with rows M_i of M.
- determine Hamming distances $d_H(\lambda, M_i)$, row M_i with smallest d_H wins.

Example:

4 classes

7 binary classifiers

λ	1	0	1	1	0	0	1	$d_{\scriptscriptstyle H}$
class 1	1	1	1	1	1	1	1	3
class 2	0	O	O	O	1	1	1	5
class 3	0	O	1	1	O	O	1	1
class 4	0	1	O	1	O	1	O	5
	f_1	f_2	f_3	f_4	f_5	f_6	f_7	

decision: class 3

• d_m = minimum Hamming distance between pair of rows of M, \Rightarrow ECOC can correct up to $\left|\frac{d_m-1}{2}\right|$ single bit errors.

12. Results of Error Correcting Output Codes (I)

ECOC: 1-Nearest Neighbour binary classifiers

Sets		10-experiments								mean	
train	0	0 0 0 0 0 0 0 0								0	
test	0.386	0.409	0.341	0.409	0.318	0.386	0.296	0.455	0.341	0.455	0.380

7-class 0.380

ECOC: 5-Nearest Neighbour binary classifiers

Sets		10-experiments								mean	
train	0.269	0.289	0.307	0.307	0.337	0.365	0.289	0.240	0.269	0.365	0.304
test	0.500	0.432	0.568	0.432	0.523	0.386	0.546	0.636	0.523	0.545	0.509

7-class 0.493

ECOC: Neural Network binary classifiers

Sets		10-experiments								mean	
train	0	0 0.001 0 0.001 0.001 0.001 0 0 0								0.001	
test	0.136	0.114	0.227	0.227	0.250	0.136	0.159	0.136	0.159	0.159	0.170

7-class 0.266

Results:

- approx. 10% improvement for Neural Network classifiers
- no improvement for Nearest Neighbour classifiers

13. ECOC and 1-Nearest neighbour binary classifiers

- $M_{ik} = 1$ if and only if class i is in metaclass C_k^+ of binary classifier f_k .
- if class i "wins" the nearest neighbour competition, then each binary classifier f_k that has class i in metaclass C_k returns a 1 else it returns a 0.
- Hence λ and the *i*-th row of code matrix M are identical.

Example:

	f_1 f_2 f_3 f_4
class1	$\lceil 1 \ 1 \ 1 \ 1 \rceil$
class 2	0011
class 3	0001
class 4	$oxed{O100}$


```
f_1: C_1^+ = \{1\}, C_1^- = \{2,3,4\}, \quad classification: 0

f_2: C_2^+ = \{1,4\}, C_2^- = \{2,3\}, \quad classification: 0

f_3: C_3^+ = \{1,2\}, C_3^- = \{3,4\}, \quad classification: 1

f_4: C_4^+ = \{1,2,3\}, C_4^- = \{4\}, \quad classification: 1
```

Result: No improvement for 1-NN with ECOC!

14. Results of Error Correcting Output Codes (II) (non-exhaustive: without "bad" binary classifiers)

• Idea: Delete "bad" binary classifiers (P(error)≥15%)

Non-exh. ECOC with 1-Nearest Neighbour binary classifiers

Sets	10-experiments n										mean	exh. ECOC
test	0.386	0.409	0.341	0.409	0.318	0.386	0.296	0.455	0.341	0.455	0.380	0.380

Non-exh. ECOC with 5-Nearest Neighbour binary classifiers

Sets	10-experiments									mean	exh. ECOC	
test	0.409	0.409	0.477	0.341	0.546	0.341	0.659	0.614	0.409	0.523	0.473	0.509

Non-exh. ECOC with Neural Network binary classifiers

Sets	10-experiments									mean	exh. ECOC	
test	0.091	0.136	0.182	0.205	0.114	0.136	0.068	0.068	0.091	0.068	0.116	0.17

Result:

- Further improvement (5%) when we use ECOC without "bad" classifiers!
- Note: we used the same test set to remove "bad" binary classifiers and also to test the classifier ⇒ error probability estimate may be overly optimistic.

15. Discussion

- Classification of data is difficult because within class variability is large compared to the between class variability. This implies that classes overlap.
- 7-class classifiers (Neural Network and Nearest Neighbour) perform poorly.
- Way out :
 - use binary classifiers
 - combine the binary classifiers
- Error Correcting Output Codes (ECOC) improves classification when using Neural Networks but not for Nearest Neighbour.
- There may be improvement when using "good" binary classifiers for ECOC

15.References

- [1] Michie D, Spiegelhater D.J and Taylor C.C. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood Limited
- [2] Bishop C.M. (1995) . Neural Networks for Pattern Recognition. Oxford University Press
- [3] Gordon A.D. (1995) . Classification. Chapman and Hall Limited
- [4] Mitchell T.M. (1997). Machine Learning. The McGraw-Hill Companies
- [5] Riedmiller M and Braun H. (1993). A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. IEEE. pg 587
- [6] Lorena A.C, de Carvalho A,C.P.L and Gama.J.M.P. (2009). A review on the combination of binary classifiers in multiclass problems. Springer science and Business Media B.V
- [7] Dietterich T.G and Bakiri G.(1995). Solving Multiclass Learning Problem via Error-Correcting Output Codes. Al Access Foundation and Margan kaufmann