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ABSTRACT
This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to
numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm
optimization and limited memory Broyden-Fletcher-Goldfard-Sharon bound optimization method. We used each of the above
mentioned methods in estimating the abundances of spectrally similar iron-bearing oxide/hydroxide/sulfate minerals in complex
synthetic mixtures simulated from hyperspectral data. In evaluating the various methods, spectral mixtures were generated with
varying linear proportions of individual spectra from the United States Geological Survey (USGS) spectral library. We conclude
that ridge regression, simulated annealing and particle swarm optimization outperforms ordinary least squares method and the
stochastic method for global optimization algorithms in estimating the partial abundance of each endmember. This result was
independent of the error from either a uniform or gaussian distribution. For large remote sensing scenes, typically with millions
of pixels and with many endmembers, we recommend using ridge regression.

1. BACKGROUND AND OBJECTIVE

Remote sensors often record scenes in which the spectral signatures of various materials on the ground contribute to the spec-
trum measured from a single pixel. This can occur due to two reasons, (i) the spatial resolution of the image is low and adjacent
objects can jointly occupy a single pixel and the resulting spectrum will be a composite of the individual objects, and (ii) dis-
tinct materials on the ground are combined into complex mixtures, for example, mixtures of minerals in the ground, which can
occur regardless of the spatial resolution of the sensor (Keshava, 2003). Given such mixed pixels, the objective of unmixing
(or sometimes known as “abundance estimation” or “fractional estimation”) is to identify the individual constituent materials
present in the mixture, as well as the proportions in which they appear. Spectral unmixing is the procedure by which the mea-
sured spectrum of a mixed pixel is decomposed into a collection of constituent spectra, or more commonly known in the field
of remote sensing as endmembers, and a set of corresponding fractions, or abundances, that indicate the proportion of each
endmember present in the pixel.

Spectral unmixing of hyperspectral remote sensing images is useful in determining abundances of different minerals. Most
spectral unmixing techniques are variants of algorithms involving matrix inversion (Van der Meer & De Jong, 2000; Peddle &
Smith, 2005; Miao et al., 2006; Settle, 2006). A major problem in spectral unmixing is the non-orthogonality of endmembers.
The ability to estimate abundances in complex mixtures through spectral unmixing techniques is further complicated when
considering very similar spectral signatures (Debba et al., 2006). It is known that iron-bearing oxide/hydroxide/sulfate minerals
have similar spectral signatures and it is therefore difficult to estimate these abundances.

Over the last two decades, several different unmixing models have been implemented, including least squares methods
(Quarmby et al., 1992; Settle & Drake, 1993; Adams et al., 1995), neural networks (Atkinson et al., 1997; Liu et al., 2004),
fuzzy classifiers (Foody, 1996), regression and decision trees (DeFries et al., 1999), support vector regression (Walton, 2008),
gaussian mixture discriminant analysis (Ju et al., 2003) and maximum likelihood classifiers (Foody et al., 1992; Schowengerdt,
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1996). More recently, focus is on feature selection or feature extraction and using derivatives prior to spectral unmixing (Debba
et al., 2006; Somers et al., 2009).

This paper reports on the results from several statistical and optimization methods in estimating the abundances of spectrally
similar iron-bearing oxide/hydroxide/sulfate minerals in complex synthetic mixtures using hyperspectral data.

In using the various methods, spectral mixtures were generated with varying linear proportions of individual spectra of a
set of iron-bearing oxide/hydroxide/sulfate minerals. The set of endmembers is commonly associated with sulphide-bearing
mine wastes. Prior to unmixing, the mixed spectrum was first subjected to error from a uniform and gaussian distribution with
signal-to-noise ratio of 500:1, which is typical for sensors like HyMap. Discussions on linear and non-linear mixtures and a
literature survey on unmixing can be found in Keshava & Mustard (2002) and Keshava (2003).

2. METHODS OF SPECTRAL UNMIXING

Spectral unmixing is a deconvolution process for estimating the contribution of individual endmembers. If we have K spectral
bands, and we denote the ith endmember spectrum as si (K × 1) and the abundance of the ith endmember as ai, the observed
spectrum x (K × 1) for any pixel in the scene can be expressed as

x = a1s1 + a2s2 + · · ·+ aMsM + w

=
M∑
i=1

aisi + w = Sa + w (1)

whereM is the number of endmembers, S (K×M) is the matrix of endmembers, and w (K×1) is an error term accounting for
additive noise (including sensor noise, endmember variability, and other model inadequacies). This model for pixel synthesis
is the linear mixing model (LMM). In the past, the abundances have been commonly calculated using (i) an unconstrained
linear spectral unmixing (LSU) algorithm, where the abundances are unconstrained and can assume any numeric value, (ii) a
constrained LSU, where the sum of abundances equals one, and (iii) a fully constrained LSU, where the sum of abundances
equals one and the abundance values cannot be less than zero. To be physically realizable, in this paper we consider the latter,
namely, the abundance coefficients should be nonnegative and should sum to one.

Hence a solution to estimating a (M × 1) in Equation 1 is to minimize some function of the error term, for example,
minimizing the sum of the squared errors i.e. wT w. A solution using ordinary least squares (OLS) will be â = (ST S)−1ST x.
Under model assumptions, the OLS is the best linear unbiased estimator. Lagrange multipliers can be used to accommodate
multiple constraints. This has been explained in detail by Settle & Drake (1993). However, it is well known that in case of near
multicollinearity, where the matrix ST S is nearly singular (ill-conditioned), the OLS may perform poorly. Ridge Regression
(RR), which was introduced by Hoerl & Kennard (1970) is one method that has been developed to deal with this problem. In
RR, a real number δ ≥ 0 is added to the elements on the diagonal of the matrix to be inverted, yielding a modified estimator for
a as â = (ST S+ δI)−1ST x for δ ≥ 0. Again, in a similar way to the above, Lagrange multipliers can be used to accommodate
multiple constraints.

Global optimization methods can be classified as deterministic, stochastic and hybrid strategies. For each optimization
method, we minimized the sum of the squared errors, namely, we minimized

f = wT w (2)

so that we can also compare the results with OLS and RR solutions.
Stochastic Method for Global Optimization (SMGO), introduced by Boender et al. (1982), is a hybrid optimization strategy

that combines global and local optimization methods. SMGO successfully applies local search to different starting points,
resulting in a pool of local minima that may, potentially, include the global optimum. What distinguishes SMGO from a pure
multisearch strategy is that it involves a combination of sampling, clustering and local search to increase the likelihood that the
pool of local minima will include the global optimum.

For the spectral unmixing problem SMGO works as follows. The objective value of each possible solution, referred to as
a point in the SMGO framework, is calculated through f . Let X∗ be the set containing all the local minima points that were
found so far, and let X1 be the set of points that after the application of local search resulted in local minimum that have already
been found in a previous iteration. Initially both sets are empty. SMGO then goes through the following five steps.

Step 1: Generate N points with uniform distribution U , and add the points to the cumulative sample C, which is initially
empty.



Step 2: Transform the sample to T by taking the τ percentage of points with the lowest objective values, calculated with f , and
improving each point through the Broydena-Fletchera-Goldfarba-Shanno (BFGS) local search algorithm (Csendes et al.,
2008).

Step 3: Apply the single linkage clustering algorithm (Everitt, 1974) to T using first the elements of X∗, followed by elements
of X1. If all the elements of T can be assigned to a cluster then go to Step 5.

Step 4: Starting with the best solution not yet clustered, x1, apply the BFGS local search algorithm and let x∗ be the result. If
x∗ ∈ X∗, add x∗ to X∗ and choose x∗ as the next seed point. Otherwise add x1 to X1 and choose x1 as the seed point.
Note that x1 may not be a local optimum. After choosing a new seed point apply the clustering procedure. Repeat Step
4 until all points have been assigned to a cluster. If a new local minimum has been found, i.e., a point has been added to
X∗, then go to Step 1. Otherwise go to Step 5.

Step 5: Return the best solution found, i.e. the point in X∗ with the best objective value, and stop.

For a detailed description of SMGO we refer the reader to Boender et al. (1982) and Csendes et al. (2008).
Simulated Annealling (SA) is a general optimization method that has been widely applied to find the global optimum

of an objective function called the fitness function f(ω) (defined in Equation 2 for this research) (Kirkpatrick et al., 1983;
Bohachevsky et al., 1986; Aarts & Korst, 1989). The fitness function depends on the configuration of the estimates ai, corre-
sponding to ω that is to be minimized. As such, SA is a computer intensive search technique to find the optimum value of a
function of the absolute difference between an image (mixed) spectra and a linearly combined reference spectrum, by contin-
ually updating this function at successive steps (Aarts & Korst, 1989). The problem of non-orthogonality in matrix inversion
is thus avoided and reduced to solving a finite state space combinatorial problem. Unmixing of image spectra by means of op-
timization was previously addressed by applying simulated annealing (Penn, 2002; Debba et al., 2006) and by using a genetic
optimization algorithm (Linforda & Platzman, 2004).

Starting with a random configuration of ai, f(ω0) is calculated. Let ωi and ωi+1 represent two solutions with fitness f(ωi)
and f(ωi+1), respectively. Configuration ωi+1 is derived from ωi by randomly replacing one point aold

j of ωi by a new point
in anew

j in
[
0, aold

j + aold
k

]
, where aold

k is another randomly chosen point, but anew
k = aold

j − anew
j + aold

k so that
∑
ai = 1.

A probabilistic acceptance criterion decides whether ωi+1 is accepted or not. This probability Pc(ωi → ωi+1) of ωi+1 being
accepted is defined as

Pc(ωi → ωi+1) =


1, if f(ωi+1) ≤ f(ωi)

exp
(
f(ωi)− f(ωi+1)

c

)
, if f(ωi+1) > f(ωi)

(3)

where c denotes a parameter. This parameter is reduced by a factor of 0.95 after several transitions are made, thereby decreasing
the probability of accepting inferior moves. Reduction stops when the process stabilizes. A transition takes place if ωi+1 is
accepted. Next, a solution ωi+2 is derived from ωi+1, and the probability Pc(ωi+1 → ωi+2) is calculated with a similar
acceptance criterion as Equation 3.

For computational feasibility the SA algorithm was implemented with the following parameters. The initial temperature
was set to c = 10, and decreased by a factor of 0.95, i.e., c ← 0.95c, after every 50 transitions, and the algorithm terminates
after 1000 transitions have passed.

Particle Swarm Optimization (PSO) is a stochastic population-based metaheuristic inspired from swarm intelligence. The
metaheuristic mimics the social behavior of natural swarms, such as bird flocking and fish schooling. PSO has been applied to
a range of optimization problems (Kennedy & Ebenhart, 2001), including spectral unmixing (Omran et al., 2006).

The PSO algorithm developed for the spectral unmixing problem is a basic gBest PSO (Global Best Particle Swarm Op-
timization) derived from the framework proposed by Talbi (2009). The algorithm starts by randomly generating N particles.
For each particle the initial abundance for each member, atemp

i , was randomly taken from (0, 1). Since
∑M

i=1 ai = 1, the
abundance was subsequently normalized by letting ai = atemp

i /
∑M

k=1 a
temp
k for each endmember. Each particle’s member

abundance was further assigned a velocity vi which was randomly taken from [−Vmax, Vmax]. Lastly, each particle is assigned
a local best solution, p, which represents the best solution found by a particle. The global best solution, that is the best solution
found by the entire swarm during the search, is given by g.

In each iteration, t, each particle first updates its velocity to

vi(t) = w × vi(t− 1) + τ1 × (pi − ai(t− 1)) + τ2 × (gi − ai(t− 1)),



where τ1 and τ2 are two random variables in the range [0, 1], and w is the inertia weight that controls the impact of the previous
velocity on the current one. To prevent the PSO system from exploding the velocity vi is reset to Vmax if it exceeds this value.
Similarly, vi is reset to −Vmax if it falls below this value.

Next, each particle updates its position to

atemp
i = max(0, ai(t) + vi(t)).

The particle is then normalized by letting ai(t) = atemp
i /sumM

k=1a
temp
k . For particles with

∑M
i=1 a

temp = 0 prior to normal-
ization, the particles are first randomly re-initialized and then normalized. Each particle then updates its best local solution p to
a(t) if f(a(t)) < f(p), and the best global solution of the swarm g is updated to a(t) if f(a(t)) < f(g) where f represents the
objective value function. Each particle then again updates its velocity and position, and the local and global best solutions are
updated. This updating process is iteratively applied until Tmax iterations have passed, at which point g is returned as the best
solution found during the search.

The gBest PSO was implemented with the following parameter values. The swarm size, N , was set to 30 particles; Vmax

was set to 0.5; and the algorithm was executed for Tmax = 1000 iterations. The inertia weight, w, was set to 0.9 and reduced
per iteration by ∆w, calculated as ∆w = (0.9− 0.4)/Tmax; thus, w = 0.4 when the algorithm terminated.

Limited Memory Broyden-Fletcher-Goldfard-Sharon Bound (LM-BFGS-B) algorithm is a popular quasi-Newton optimiza-
tion technique used for solving large nonlinear optimization problems, subject to simple bounds on the variables (Zhu et al.,
1997). The technique was developed by Lu et al. (1994) and uses a limited memory variation of the BFGS update to approxi-
mate the inverse Hessian matrix, making it ideal for solving large-scale optimization problems or for solving problems whose
Hessian matrix is not practical to calculate.

Similar to the implementation of Zhu et al. (1997), LM-BFGS-B was implemented as follows to solve the spectral unmixing
problem. At each iteration a limited memory BFGS approximation to the Hessian is updated, which is then used to define a
quadratic model of f . A search direction is then computed by, firstly, identifying a set of active variables, which will be held
at their bounds, through a gradient projection method. The quadratic model is approximately minimized in terms of the free
variables, and a search direction is then defined as the vector leading from the current state to the approximate minimized
quadratic model. Lastly, lines search is performed along the search direction.

The above mentioned statistical (OLS and RR) and optimization methods (SMGO, SA, PSO and LM-BFGS-B) were com-
pared for estimating the abundances of the endmembers.

3. ENDMEMBER SPECTRA AND SYNTHETIC MIXTURES

Synthetic spectral mixtures were created to test the various methods for spectral unmixing. Four secondary iron-bearing ox-
ide/hydroxide/sulfate minerals that could form pyrite-rich mine wastes were selected to compose a set of endmembers, namely:
ferrihydrite; copiapite; jarosite and goethite. Although each secondary iron-bearing oxide/hydroxide/sulfate mineral within
a weathering sulfide-bearing mine waste shows distinctive spectral features in the 0.4–2.5 µm regions of the electromag-
netic spectrum, this study was limited to the spectral range 0.5–1.1 µm, because this is where most of the iron-bearing ox-
ide/hydroxide/sulfate minerals of interest have many and strong spectral features.

The individual spectrum of each of the four endmembers was selected from the USGS spectral library (Clark et al., 1993) and
then linearly mixed with each other according to some proportions of each endmember. Since it has been observed previously
that high spectral resolution results in high unmixing accuracy, the mixed spectrum was then degraded (commonly known
as resampling) to an approximate 15 nm spectral resolution, to match typical sensors. Error from the uniform and gaussian
distribution was then added to the mixed spectra. The resampling was performed (a) to simulate data with lower spectral
resolution hyperspectral sensors (e.g., HyMap, DAIS, etc.) as compared to the spectral resolution of the original endmembers
in the library, (b) to reduce dimensionality of the data, and (c) because it is a practical technique found effective for prediction
of different soil properties (Ben-Dor & Banin, 1994).

Experiments were made on 100 different simple mixtures of selected endmembers, which could plausibly occur in real
situations, namely, mixed spectrum = a1 × goethite + a2 × jarosite + a3 × copiapite + a4 × ferrihydrite, where 0 ≤ ai ≤
1, i = 1, . . . , 4 and

∑4
i=1 ai = 1. For each mixture, error from the U(−0.002, 0.002) or N(0, 0.00018) was added, with

corresponding SNR of 500:1, respectively, in the visible to near infrared regions. Graphs of the endmember spectra and the
mixed spectra can be seen in Figure 1.



(a) Endmember spectra (b) Mix spectra

Fig. 1. Endmember spectra and three mixed spectra with error from a uniform distribution.

4. ABUNDANCE ESTIMATION FROM SPECTRA

We simulated a total of 100 mixed spectra using the four endmembers each with both error from the uniform and gaussian
distribution. For each of the methods used to unmix the spectra, namely OLS, RR, SMGO, SA, PSO and LM-BFGS-B, we
ranked the results according to the absolute difference of the estimated abundance from the actual abundance. The ranks were
then summed for the various methods to reflect the combined results of the various methods. Table 1 contains the results of
using OLS, RR, SMGO, SA, PSO and LM-BFGS-B in estimating the abundances for each of the endmembers for the highest,
the middle and the lowest rank with error from either a uniform or gaussian distribution. Table 1 also contains the summary
results using the 100 mixed spectra.

In Table 1, for mixtures 1, 2 and 3, we defined the error for each of the methods as the total absolute deviation of the
estimated abundance from the actual abundance, namely,

Err =
4∑

i=1

|âi − ai| . (4)

In Table 1, for the 100 simulations, the average deviations for each a1, . . . , a4 is defined as

AVGDi
=

1
100

100∑
j=1

|âij − aij |, i = 1, . . . , 4 (5)

the minimum deviation for each a1, . . . , a4 is defined as

MINDi
= min |âij − aij |, i = 1, . . . , 4 (6)

and the maximum deviation for each a1, . . . , a4 is defined as

MAXDi
= max |âij − aij |, i = 1, . . . , 4 (7)

Hence, AVGD, MIND and MAXD are the averages of those defined in Equations 5, 6 and 7 respectively.
For mixture 1, using errors from the uniform distribution, OLS and SMGO performed best while RR1 and RR2 performed

worst. For mixture 2, using errors from the uniform distribution, RR2 performed best while all other methods performed almost
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equally poorly. For mixture 3, using errors from the uniform distribution, LM-BFGS-B and SMO performed worst while all
other methods performed almost equally well. For mixture 1, using errors from the gaussian distribution, SA performed best
while OLS and SMGO performed worst. For mixture 2, using errors from the gaussian distribution, RR2 and SA performed
best while all other methods performed almost equally poorly. For mixture 3, using errors from the gaussian distribution, SA
performed best while RR2 performed worst. Based on all 100 simulations and using errors from the uniform distribution, RR2
performed best and this was closely followed by SA and PSO. OLS, SMGO and RR1 performed worst in this case. Based on all
100 simulations and using errors from the gaussian distribution, PSO performed best and this was closely followed by RR2 and
SA. OLS and SMGO performed worst in this case. Hence it has been generally observed that RR2, SA and PSO outperforms
OLS and SMGO.

5. CONCLUSIONS

We conclude that RR, SA and PSO outperforms OLS and SMGO in estimating the partial abundance of each endmember and
this was independent of the error from either a uniform or gaussian distribution. The disadvantage of PSO and SA is that the
implementations take longer to converge compared to RR, OLS, SMGO and LM-BFGS-B. On the test instances the average
execution times of PSO and SA were 18 and 11 seconds, respectively, whereas the average execution times of SMGO and
LM-BFGS-B were 0.025 and 0.00016 seconds, respectively, and for RR and OLS convergence was under 10−8 seconds. Hence
for large remote sensing scenes, typically with millions of pixels and with many endmembers, we recommend using RR2.
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