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Abstract—We investigate the classification of eight prominent
savanna tree species, based on hyperspectral reflectance data.
Although two principal components account for 95% of the
variance of the data, up to 20 components are found to be useful
for classification. Scaling of these components so that all features
have equal variance is found to be useful, and our best perfor-
mance (88.9% accurate classification) is achieved with 15 scaled
features and a support vector machine as classifier. A graphical
analysis suggests that several exemplars (“endmembers™) are
required for each class, and this observation is confirmed by the
large number of support vectors employed by the best classifier.

1. MOTIVATION

The availability of high spatial and spectral resolution
imaging spectrometers, i.e., sensors that provide contiguous
spectral data in narrow bands, has produced an embarrassment
of riches within the field of remote sensing. Images obtained
from such spectrometers provide a wealth of information on
matters such as land use, biodiversity assessment and resource
analysis; however, the optimal utilization of these images
introduces novel computational and algorithmic challenges
that have not been fully solved to date. In particular, we require
classifiers that can achieve high classification accuracy at a
limited computational cost (since classification results may
be required for every pixel in a large set of two-dimensional
images). This accuracy must be achieved from a small number
of representative samples, since the cost of gathering “ground
truth” samples is significant, and it is important to understand
the minimal spectral requirements placed on the spectrometers,
to avoid unnecessary costs associated with sensor procurement
and maintenance.

In the current contribution, we investigate the ecologically
important issue of the classification of tree species in hyper-
spectral images. As pointed out, for instance, by Cho et al. [1],
the ability to map vegetation at the species level is of broad
interest in ecology, and the particular task of tree classification
can be used to compile resource inventories and to develop
models of practically important variables such as fire-hazard
status.

Within this task domain, we focus on two aspects, namely
the number of training prototypes (also known as “endmem-
bers™) required for classification, and the overall accuracy
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that can be achieved with an optimized algorithm. Section
IT describes this task in more detail, and also summarizes the
methods of data gathering and analysis that were employed.
In Sections III and IV we provide, respectively, the qualitative
and quantitative results obtained in this investigation. Finally,
Section V places these results in perspective, and discusses a
number of additional matters that are worthy of exploration,

II. METHODS
A. Data set

Airborne hyperspectral data for the study site, the Kruger
National Park (31°20/32.41" F/, 24°50'47.75"” ), South Africa
were acquired in May 2008 with the Carnegie Airborne
Observatory (CAQ) system [2]. The CAQO combines three
major instrument sub-systems into a single airborne package:
(i) High-fidelity Imaging Spectrometer (HiFIS); (ii) Waveform
Light Detection and Ranging (LiDAR) scanner; and (iii)
Global Positioning System-Inertial Measurement Unit (GPS-
IMU). The CAO-Alpha configuration, which was used in
this study, employs a pushbroom imaging array with 1500
cross-track pixels, and sampled the scenes in the visible-
near infrared (VNIR) spectral region between 384.8-1054.3
nm (72 bands) at 9.23 nm spectral resolution (full-width-
half-maximum) and a spatial resolution of 1.12 m. Apparent
surface reflectance was derived from the radiance data using an
automated atmospheric correction model, ACORN 5LiBatch
(Imspec LLC, Palmdale, CA).

The Universal Transverse Mercator (UTM) coordinates of
tree crowns were extracted from the image and downloaded
into a handheld Leica differential global positioning system
(GPS; < 1 m horizontal accuracy). With the help of the GPS
and printed true colour composite maps of the study site, the
various trees were located and identified in the field. Only the
dominant trees have been used in this study; Combretum apic-
ulatum, Sclerocarya birrea, Terminalia sericea, Spirostachys
africana, Pterocarpus rotundifolius, Dichrostachys cinerea,
Acacia gerrardii and Acacia nigrescens. The region of inter-
est tool in Environment for Visualising Images (ENVI 4.7)
software (ITT Visual Information Solution, 2009) was used to
manually collect the image spectra of the various trees. The
spectra of each tree crown were then averaged to a single



spectrum, We therefore have a single 72-dimensional vector
representing the spectrum of each individual tree; there are
a total of 334 trees in our set from the eight classes listed
above. The class representations are not exactly uniform, with
the number of samples in a class ranging between 24 and 79.

B. Analytic approach

Figure 1 shows typical spectra for each of the tree species
studied in the current investigation. Clearly, these spectra
are relatively smooth, which implies that the reflectances in
the 72 spectral bands are not independent of one another.
Our qualitative investigation therefore begins with Principal
Component Analysis (PCA) of the spectra, which allows us
to determine the number of linear components that contribute
significantly to the variance across samples. Since PCA is not
a scale-independent process (differential scaling of the input
dimensions leads to changes in the directions and weightings
(eigenvalues) of the principal components), we normalize the
input features so that each individual dimension (i.e. the data
in each wave-band) has zero mean and unit variance.

Fig. 1. Sample tree spectra for 8 classes of trees. Wavelengths in nm are
shown on the horizontal axis, and the vertical axis shows reflectances (in units
of 100 times percentage reflectance).

To investigate the relationship between the number of end-
members per class and the achievable classification accuracy,
we graph the projections of all data points onto pairs of
principal components (eigenvectors). Since these projections
consider only two dimensions at a time, they may be somewhat
misleading regarding the separability of the various classes —
they do, however, allow us to gain a basic intuitive understand-
ing of the various class distributions in feature space.

This understanding is enhanced by a number of classifi-
cation experiments. We compare the accuracies achievable
with a number of state-of-the-art classifiers, such as multilayer
perceptrons (MLPs), nearest-neighbour (NN) classifiers and
support vector machines (SVMs). In this process, we investi-
gate two matters related to the features used for classification:

o The preferred scaling of the different principal com-

ponents is not obvious: on the one hand, normalizing
each component to have the same variance seems like
a sensible way to prevent the largest components from
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dominating the overall process. On the other hand, the
smallest components are likely to be noise-dominated,
implying that a boost to their variance may be harmful
to classification accuracy.

The optimal number of principal components to retain is
also subject to experimental determination.

The overall sequence of steps involved in feature extraction
are summarized in Fig. 2.
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Fig. 2. Processing steps for feature extraction.

Our classifiers are trained with standard open-source tools
such as Weka [3] and libsvm [4]; for the particular case of
SVMs, we employ a radial kernel and a grid search to obtain
the optimal hyperparameters. For our initial investigations into
the feature-selection issues listed above, a nearest-neighbour
classifier is used in a leave-one-out configuration (that is, each
sample is classified based on its distances to all the remaining
samples). The final classification results are obtained with 10-
fold cross validation.

III. QUALITATIVE RESULTS

The magnitudes of the eigenvalues obtained with PCA
are shown in Fig. 3; we see that there are two very strong
components, which together account for 95.6% of the variance
of the data set. The remaining components rapidly diminish
in importance; by the eighth component, the weighting is less
than 0.1% of that of the dominant component. The spectra
corresponding to the two dominant components are shown in
Fig. 4. These clearly correspond to short- and long-wavelength
variations, the long-wavelength band (bottom panel in Fig. 4)
being indicative of the red-edge transition between red and
near infrared wavelength and the short-wavelength band (cen-
tral panel in Fig. 4) corresponding mostly to pigment absorp-
tion in the blue and red spectral ranges.

Fig. 5 contains the projections of all data points onto several
pairs of principal components. A number of observations can
be made:

o« We see that none of the features is able to achieve
effective separation of all eight classes.

As is often the case, the components with largest variance
(s1 and s3) are also the most useful for discriminating
between the different classes.

The components with smaller eigenvalues are neverthe-
less not negligible from the perspective of classification
— even the least significant component shown here (s7)
seems to add some discriminatory power to the feature
set.
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Fig. 3.
principal components account for more than 95% of the variance in the data.

o

Fig. 4. Mean spectrum across all samples (top panel) as well as spectra
corresponding to the two dominant principal components. The vertical axes
are in arbitrary units, whereas the horizontal axes are wavelengths in nm.

s The classes appear to be rather diffuse and non-Gaussian
in feature space, suggesting that a small number of
endmembers per class will not be able to represent the
full variability observed.

These observations are investigated quantitatively below.

IV. QUANTITATIVE RESULTS

We compared the accuracies achievable with different num-
bers of principal components, as well as the two approaches
to feature scaling mentioned in Sec. II-B, using leave-one-out
nearest-neighbour classifiers. (We always keep the largest n
principal components, rather than searching for the n com-
ponents that give best classification accuracy.) The resulting
classification accuracies are shown in Fig. 6. The importance
of lower-ranking components is confirmed: despite the large
magnitude of the two dominant components, as many as 15 or
20 components contribute to classification accuracy. Interest-
ingly, it seems quite useful to scale the feature dimensions
so that they have equal variance: for the largest 40 or so
components, this improves accuracy over that achieved with

Eigenvalues of the normalized covariance matrix — the largest two
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unscaled features. Thereafter, the noise in smaller components
erases the gains achieved; however, those components should
in any case not be used for classification.

Fig. 6 also shows the accuracy achieved if each class is
represented by a single endmember, located at its centroid.
Classification accuracy is seen to be degraded, both with and
without scaling, as would be expected from Fig. 5.

Fig. 6. Accuracy of nearest-neighbour classifiers and centroid-based classifier
as a function of the number of principal components used for classification.

Finally, Table 1 contains the classification accuracies
achieved with 10-fold cross validation and various combi-
nations of classifiers and features. We see that the best
performance (approximately 89% accuracy) is achieved with
an SVM, using the top 15 scaled principal components. (There
are unfortunately not other published results on this same data
set; however, in [1] 57% accuracy was achieved for ten-class
classification on a related data set.) Normalizing the various
feature vectors so that classification is based on the angles
between the vectors (as is done in the Spectral Angle Mapper
(SAM) [5]) is somewhat harmful in this case. As with the NN
classifier, a reduced feature set is seen to be useful, though the
flexibility of the SVM enables it to narrow the gap between
the reduced and complete feature sets.

Classifier Feature Scaling | SAM | Number of | Accuracy
features
Naive Bayes | No No 72 55.7%
MLP No No 72 83.8%
NN No No 72 69.4%
SVM No Yes 72 84.4%
SVM No No 72 87.1%
SVM Yes Yes 15 84.7%
SYM Yes No 15 88.9%
TABLE 1

Ten-fold cross-validation accuracies for various classifiers and feature sets.

The confusion matrix corresponding to the most successful
classifier is shown in Table II, with the rows corresponding
to the true classes and the columns to classes selected by the
classifier.

The number of support vectors retained by the SVM is
an approximate measure of the number of endmembers that
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TABLE 11

Confusion matrix of the most accurate classifier. Class labels as follows: 0:
C.apiculatum, I: S.birrea, 2: Tsericea, 3: S.africana, 4: Protundifolius, 5:
D.cinerea, 6: A.gerrardii, 7: A.nigrescens

are useful for classification. Our best classifier employed
an average of 202.0 support vectors for classification (thus,
approximately 25 per class; average taken over the 10 folds),

+ C.apiculatum
O Snimea
% 0 #*  Tsericea
X S.africana
O Prowndifollus
20 0 s 0 5 Dinerea
s4 V  Agerrardit
[>  Anigrescens
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Projections of all data on selected pairs of principal components.

and the SVM trained on all 72 features required an average of
131.6 support vectors. These values can certainly be reduced
without a large sacrifice in accuracy, but do suggest that a
sizeable number of endmembers are required to give high
accuracy (in agreement with the result of Cho er al. [1]). It
is interesting to note that the larger feature vector required
somewhat fewer support vectors — whether this difference will
also be found in more general circumstances is a matter for



further exploration.

V. CONCLUSION AND OUTLOOK

We have investigated the properties of spectra of several sa-
vanna species extracted from hyperspectral images, and shown
that these targets have complex signatures in feature space. It
is therefore unlikely that a small number of endmembers can
represent these species adequately — a conclusion that was
confirmed by our classification experiments. From a technical
perspective, we have found the scaling of the largest prin-
cipal components to be beneficial for classification accuracy,
whereas Spectral Angle Mapping was not beneficial. A SVM
was the most successful classifier on this task, producing the
best results yet achieved on this data set.

Several interesting avenues for exploration are suggested
by this work. Our results demonstrate that a relatively small
number of features can produce accurate classification results;
however, these features are currently derived by linear trans-
formation from the entire spectrum, and it would be useful
to investigate whether a smaller set of wavelength bands can
produce comparable accuracy.

Our data was derived from measurements taken in one area
within a small temporal window; for practical purposes, it is
important to understand how these results can be generalized
to deal with greater variability in location and time. Given
the high cost of establishing ground truth compared to the
relatively modest cost of obtaining complete images, it is likely
that semi-supervised techniques will play a large role in such
extensions.
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