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11 ABSTRACT

Several Middle Stone Age (MSA) site in southerniédrpresent evidence of
environmental changes during Marine Isotope Stég¢S) 4 and 3 between 70ka and
50ka. Of these, Sibudu Cave, KwaZulu-Natal, hakigi a detailed record of how global-
scale climate change events manifest locally. @ukhS 4 (70ka to 60ka) conditions were
similar to those during the Last Glacial Maximunuridg the transition between MIS 4
and MIS 3 at around 60ka the Sibudu environmenmgba from a predominantly forested
community to more open grass/woodland mosaic. QM&A sites from across South
Africa provide complementary palaeoenvironmentakgrdata but imprecise dating
presents a cross-correlation challenge. Archaetdbgites on the western portion of South
Africa appear to have been abandoned earlier arldriger than sites in the East, most
likely as a result of adverse climatic conditioRggional scale climate events in southern
Africa are driven by ocean/atmosphere interactiansg, at this time weakening of the
palaeo-Agulhas Current and an eastward shift oAthdhas Retroflection resulted in
lower sea surface temperatures and a correspoddiurgase in humidity and rainfall.

Key words: Middle Stone Age, palaeoenvironmental proxy detks 4, environmental
change

1.2 INTRODUCTION

The planet is currently warming (Trenbeethal,, 2007) and climate change modelling is
the means by which the impact of this warming iedeined. The high level of complexity
in ecosystems reduces the skill of models to fateitee future impact of these changes. An
alternative approach is to examine past recordgofifal climates where the associated
ecosystem responses are documented. Evidencestoglpbal warming change is derived
from isotope analysis of marine cores and polacares. The most recent of these global-
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scale events took place at the end of the lastagian commencing approximately 20ka
ago and is known as Marine Isotope Stage 2 (MIS12¢. penultimate warming was
between MIS 4 (70ka to 60ka) and early MIS 3 (6@k&0ka), and is the subject of this
analysis. While the warming is known to have tagkate, little evidence has been
presented for the associated terrestrial ecosystsponse to this change.
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Figure 1. Map of southern Africa showing the locations of Blel Stone Age archaeological sites, deep sea cores

and aeolian sediments mentioned in the.text

Through multi-disciplinary analysis of cultural obbgical and geological material
from middle and lower latitude terrestrial sitegsipossible to reconstruct local
environmental conditions through time. Seven Sédtltan Middle Stone Age (MSA)
archaeological sites (Fig. 1) provide environmeatatlence for MIS 4/early MIS 3. These
are Sibudu Cave, Border Cave, Rose Cottage Cawsijds| River Mouth, Boomplaas Cave,
Blombos Cave, Diepkloof Rockshelter and Wonderweake. Between ~75ka-55ka there
was a fundamental change in technological and mlilfaatures compared with earlier and
later MSA assemblages (Mellars, 2006; Mitchell, 20@p.71-106). The stone tool
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industries of this time include the distinctivelldBiay and Howiesons Poort assemblages.
Although the Still Bay has ages of ~75ka-70ka (Baeb al, 2008a, b; Tribolet al, 2005)
and the Howiesons Poort dates to between 65ka{@@kabst al, 2008a, b; Tribolet

al., 2005) depending on the site and dating methbdsStill Bay is the older of the
assemblages and always underlies the Howiesons. Hbere is associated evidence for
modern human behaviour such as the use of comisite tools, sophisticated hunting
techniques and symbolic expressions (Mellars, 2Mitghell, 2002). The appearance of
the Still Bay and Howiesons Poort in various MStesiacross South Africa is thought to
be a response to sharply oscillating climatic cthods during MIS 4 and early MIS 3
(Mellars, 2006, Mitchell, 2002).

The ecosystem responses that took place at theewidyical sites in southern
Africa are proxied in several lines of evidencdudig the macro-faunal, micro-faunal,
botanical and sedimentological evidence that isgmmeed. It is possible that the
environmental proxies themselves may be biasecdhrApbgenic influences (e.g. choice of
firewood), excavation, sampling methods and thiedihtial preservation of material may
complicate the situation (Allott, 2005). Nevertredavhere distinctive environmental shifts
are shown to occur, they should have regional reatafions, and they should be recorded
in the other sites.

In this analysis the local and regional recordscarepared with palaeoclimatic
data from a number of sites around the world taiobd global perspective of climate
change at this time. Lake sediments, speleothesotiaa deposits and archaeological sites
have become a source of palaeoenvironmental praki@socal terrestrial scale. This paper
compares records of climate change for the perd 7o 50ka (MIS 4 and early MIS 3)
from a number of ocean cores as well as archaaabgjeological and other types of
research sites from southern Africa.

1.3 SIBUDU CAVE

Sibudu Cave, located in KwaZulu-Natal, was the mesént of the MSA sites to be
excavated in southern Africa, and has the advaastafjbeing well-dated and the subject of
multi-disciplinary studies. It has an MSA cultusalquence that contains pre-Still Bay, Still
Bay, Howiesons Poort, post-Howiesons Poort, latefaral MSA stone tool assemblages
(Cochrane, 2006; Delagnesal, 2006; Villaet al, 2005; Villa and Lenoir, 2006; Wadley,
2005, 2007, 2008). Optically Stimulated Luminesee(@SL) ages for 14 sediment
samples (Table 1) from the three youngest lithiaggls are available (Jacobs, 2004; Jacobs
et al, 2008a, b; Wadley and Jacobs, 2004, 2006); thege Wweighted mean ages of 57.5 +
1.4ka (post-Howiesons Poort), 47.6 + 1.2ka (lateAyi&nd 35.1 + 1.4ka (final MSA)
(Jacob=t al, 2008a). Ages for the Pre-Still Bay, Still Baydddowiesons Poort layers are
based on seven OSL dates derived from additiomtmeamt samples (Jacobsal, 2008a,

b; Jacobs and Roberts, 2008). Based on thesesighdtHowiesons Poort occupation falls
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Table 1. Optically Stimulated Luminescence dates for ttee$till Bay, Still Bay, Howiesons Poort, post-
Howiesons Poort, late and final Middle Stone Ageels from Sibudu Cave (Jacobs and Roberts, 20@8h3at

al., 2008a, b).
final MSA Location Level Sample Age (ka)
SIB11 East Co Sediment 34.7+1.7
SIB10 East Bu Sediment 35.6+2.0
SIB22 East LBMOD Sediment 48.9+2.8
late MSA
SIB14 North MOD Sedimer 48.3 + 2.(
SIB8 North OMOD Sediment 48.3+1.8
SIB13 North OMOD-BL Sediment 47.0+1.8
SIB7 North RSp Sediment 46.6+1.9
SIB12 East RD Sediment 49.0+2.0
post-HP
SIB6 North BSp Sediment 58.0+2.1
SIB4 North SS Sediment 53.6+2.0
SIB9 North P Sediment 59.1+2.2
SIB3 North Ch2 Sediment 58.6+1.9
SIB2 North Y1 Sediment 58.2+25
SIB1 North B/Gmix Sediment 57.8+2.3
Howiesons Poort
SIB15 GR2 Sediment 61.6+1.5
SIB17 GSZ Sedimer 63.8+2.!
SIB19 PGS Sediment 64.7+1.9
Still Bay
SIB20 RGS Sediment 70.5+2.0
Pre-Siill Bay
SIB21 LBG Sediment 725+2.0
SIB24 LBG2 Sediment 73.2+2.3
SIB23 BS Sediment 77.3+2.2

between 65ka-62ka, the Still Bay dates to 70kathedPre-Still Bay to between 75ka-72ka
(Jacobet al, 2008a, b; Jacobs and Roberts, 2008). The thossllage clusters, ~58ka,
~48ka and ~35ka and the Howiesons Poort are disthgd by differences in lithic
assemblages, environmental characteristics andhi@atgses of 9.8 + 1.3ka and 12.6 +
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2.1ka (Jacobest al., 2008a, b; Wadley and Jacobs 2006). A third Biatecurred after
~35ka occupation, lasting until about 1000 BP.

1.3.1  Sibudu environment during MIS 4

Sedimentological and mineralogical analyses of3tiléBay and Howiesons Poort layers
show relatively high percentages of calcite and suiggests higher humidity (Pickering,
2006; Schiegl and Conard, 2006; Wadley, 2006). M#grsusceptibility data from layers
deposited at the end of MIS 4 (~58ka) imply a cgldcial climate (Herries, 2006). The
cold ~58ka layers contain gypsum growth within ¢gleeiments. However, the magnetic
susceptibility data should be viewed with cautias sedimentological analysis of the
deposits indicate that the majority of the sedinmgminthropogenic in origin and this may
complicate interpretation (Goldbeeg al, 2009; Pickering, 2006).

Tree species richness is well correlated with etrapgpiration across a wide
range of ecosystems. Changes in evapotranspinatibtihus have an influence on trees
species composition and distribution on localisesllsvel, as well as on a broad
community level (Stephenson, 1998). Local levelmofsture availability at a site are
dependent on effective evapotranspiration whigtotsonly affected by precipitation, but a
number of factors including aspect, slope, tempeeathumidity, wind speed and direction,
soil moisture content, depth and type and the psef rivers (McDowelkt al, 2008;
Verstraeteret al. 2008). The carbonised seed assemblage prior @ 58k Sibudu Cave
is predominantly composed of evergreen taxa, imglyhe presence of closed forested
environments (Sievers, 2006; Wadley, 2004). THisrpretation is supported by the
composition of woody taxa identified in the chalcassemblage. Taxa such as
PodocarpusBuxusandCurtisia, evergreen forest species are noted. The preséiicese
species suggests that available moisture was highgithis period, but not necessarily
higher than present (Allot, 2006). Although theemsblage at this time is dominated by
Podocarpusspecies (Allott, 2004, 2005) and the area appeanave been predominantly a
forested one, there is evidence for a woodlandfssr@ommunity in the vicinity (Allott,
2006). Throughout the MSA occupations at Sibuduetlieeevidence that a mosaic
environment existed around the site, partly duthédocation of the site and the continual
presence of the Tongati River (Wadley, 2006). Caidexl Cyperaceae (sedges) are present
throughout the MSA sequence. Sedges grow in moigdiions and the occurrence of
Schoenoplectuspp. seeds indicates open water, demonstratinghitnd ongati River, that
flows in front of the site was perennial duringesitccupations. Carbon isotope analyses of
PodocarpusandCeltis charcoal from Howiesons Poort layers (65ka-62Rdjcate
conditions of elevated levels of water availabibityd humidity (Halkt al,, 2006, 2008).

The extensive faunal assemblage provides furthiderge of environmental
change through time in the Sibudu area. The Howg&woort faunal assemblage is
dominated (91.4%) by small species preferring sepsed or closed habitats, such as blue
duiker, bushbuck, bush pig and vervet monkey (Céatt Plug, 2008). This supports the
botanical evidence for the presence of an everdiaested environment. In addition, a
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small suite of species (8.6%), including buffalad déue wildebeest show the occurrence of
open savanna/woodland near the site (Clark and RR@B), supporting the charcoal data
(Allott, 2006). This provides further evidence Bomosaic of vegetation types in the area.
A large variety of aquatic species including mamsnegptiles, water birds, fish,
amphibians and molluscs have been identified (2004, 2006) and these, together with
the presence @choenoplectuspp. seeds, demonstrate that the Tongati River was
perennial, even in the past.

The micromammal species composition provides furtiveence for a cooler,
humid forested environment. Two key spec@scetomys gambianu&iant rat) and
Rhinolophus clivosugGeoffroy’s horseshoe bat) both require humid dmras. In addition
C. gambianugannot tolerate high overall temperatures (Gle2096).

1.3.2  Sibudu environment during MIS 3

Palaeoenvironmental evidence from the post-Howie&wort layers (58.5 + 1.4ka)
indicates a general trend of oscillating warm/qawhses and drier conditions than seen
during the Howiesons Poort. Magnetic susceptibdiya suggest an initial (~58ka) very
cold environment which became progressively wartimerugh MIS 4, alternating with

brief cool phases (Herries, 2006). Sedimentological mineralogical analyses reveal a
high proportion of gypsum nodules in many of theeta (Pickering, 2006; Schiegl and
Conard, 2006; Wadley, 2006). Such gypsum accunaugitinay be considered an indicator
of arid conditions (Goldberg and MacPhail, 2006).

The vegetation patterns show a reduction of focesteas and an increase in more
open woodland and grassland communities, reflettiagorevious trend of a mosaic
environment around the site. Pollen and phytoldatadalthough limited, reveal the
presence of a grass-dominated community and tisepce of savanna taxa suchAaacia
(Renaut and Bamford, 2006; Schiegl and Conard, ;2606ieglet al, 2004). The seed
assemblage is still dominated by evergreen foeast, tut it also reveals an increase in the
number of deciduous savanna/woodland taxa (Sie2868; Wadley, 2004). The
composition of the charcoal assemblage shows dasitnénd with the presence of dry-
adapted genera suchAsacia CeltisandZiziphusand cooler climate indicators such as
Erica spp. (Allott, 2005, 2006). The presence of riveriarest taxa attest to the continued
presence of a mosaic of vegetation communitiesrartioe site. A substantial change in the
local environment is suggested by the occurren@epidbneer shrub specidésucosidia
sericea(which at present does not occur near the coaoty, 2006).

Micromammal evidence for a significant environméstdft at the same time is
derived from the identification of another hab&agcific pioneer specieslastomys
natalensigNatal multimammate mouse) which does not inhimlbésted areas (Glenny,
2006). Carbon isotope values fréd*ndocarpusandCeltis charcoal from ~58ka layers are
less negative than those from the earlier HowieSwtst layers, suggesting that both
species were responding to more arid conditiond8ka (Hallet al, 2006, 2008).
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The faunal species composition of the ~58ka laf@wst-Howiesons Poort) shows
a dramatic shift in response to the changing enwvirent. At this time the highest
proportion of large grazing species are recorddit@iing an open environment with
increased grass cover (Wadletyal,, 2008). Small bovid species are less frequent and
larger savanna/woodland species such as giraffeazblue wildebeest and red hartebeest
dominate the assemblage (Cain, 2005, 2006; ClatkPdug, 2008; Plug, 2004; Wadley
al., 2008; Wells, 2006). A recent analysis of thenta(Clark and Plug, 2008) shows that
during the youngest post-Howiesons Poort layenethes predominantly open
savanna/woodland with large grazers. Prior to thisie was still a riverine forest
community, along with the savanna/woodlands. Treuwence of a riverine forest faunal
community during the early phase of the post-HowanesPoort suggests that the transition
between forest and grassland during MIS 4 and M\&S8 gradual, rather than abrupt.

1.4 ARCHAEOLOGICAL EVIDENCE OF ENVIRONMENTAL CHANGE
FROM OTHER MSA SITES IN SOUTH AFRICA

Improvements in OSL, electron spin resonance (EB)uranium-series (U-Th) dating
should allow correlations between available envitental proxies from Sibudu and other
MSA sites. However there are complications. Whangaring the chronologies for the
distinctive stone tool technical complexes betwsites, it is clear that there are some
discrepancies. An underlying assumption is thatetstone tool assemblages would be
ubiquitous and autochthonous, and that the timfrtgeir rise and demise should be well
matched. The transition from Still Bay to Howies®wort is not synchronous across MSA
sites, and the assemblage that precedes the Howi€smrt is not always designated Still
Bay. This may be because the Still Bay is of véryrsduration and does not always occur
in all sequences. However, it is likely that thelpgem lies with the precision and accuracy
of the dating techniques. The dating conundrum dimates attempts to fine-tune
palaeoenvironmental evidence across space or thitimg. For consistency in this study,
the most recently published luminescence agessa® (here available), but earlier
published dates based on other methods have béeth (T@ble 2).

A summary of palaeoenvironmental evidence from @ibGave and these sites is
presented in Figure 2 and Table 2. The majoritthese sites are located on or near to the
coast, particularly in the southern Cape. Exceptame Rose Cottage Cave, Border Cave
and Wonderwerk Cave which are located in the SAdtiean interior.
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Figure 2. Summary graph of Marine Isotope Stages 1 to Heawlogical designations and occupation/hiatus
periods for Sibudu Cave and other Middle Stone gitgs from South Africa during the last 120ka.

Table 2. Summary table for Sibudu Cave and other Middlen&tage sites cited. The age range, dating
techniques and dating references is provided foin sie.

Site Age range Dating techniques Dating references
Sibudu Cave Iron Age: ~1000 BP Radiocarb¥e) Wadley and Jacobs, 2004
final MSA: ~35ka osL Jacobs, 2004
late MSA: ~48ka OSL Jacobs and Wadley, 2006
post-HP: ~58ka OSL Jacobs et al., 2008a, b
HP: 65ka-62ka OsL Jacobs and Roberts, 2008
Still Bay: 70.5ka osL
Pre-Still Bay: 77ka-72ka OoSL
Border Cave Iron Age Radiocarbdr"(() Butzer et al., 1978; Beaumont et al., 1978
ELSA: ~38ka AAR Miller et al., 1993
Howiesons Poort: ~55-75ka ESR Griin et al., 1990a
MSAII Griin and Beaumont, 2001
Rose Cottage Cave LSA Radiocarbdicy Wadley & Vogel 1991
ELSA: ~29-40ka OosL Jacobs, 2004; Pienaar et@082
post-HP: 56ka TL

Tribolo et al, 2005; Woodborne & Vogel 1993

Howiesons Poort: 65ka-63ka Jacobs and Roberts, 2008
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Klasies River MSA IlI: ~>45-50ka Radiocarbofi@) Vogel, 2001
Howiesons Poort: 65ka-63ka AAR Bada & Deems, 1975
Pre-HP: 72ka-71ka OIS correlation Deacon & Geleijnse, 1988; Shacklei®82
MSA II: ~75-94ka Palaeoenviro-proxies Butzer, 1938acon, 1989
MSA I: ~90-115ka Uranium series Vogel, 2001
OosL Feathers, 2002; Tribolo et al., 2005
ESR Griin et al., 1990b
Jacobs and Roberts, 2008
Boomplaas Cave LSA RadiocarbdfQ) Fairhall et al., 1976
ELSA: ~21ka Palaeoenviro-proxies Deacon et aB419
post-HP: >40ka U-Th Vogel, 2001
Howiesons Poort: ~55-65ka AAR Brooks et al. 1993; Miller et al, 1999
Blombos Cave LSA: ~2ka Radiocarbdf‘q) d'Errico et al, 2001
3 MSA phases, including osL Henshilwood et alQ20/ogel et al., 1999
Still Bay: 85ka-76ka, 73ka Jacobs, 2004, 2005;
MSA 2: ~99-143ka Jacobs et al. 2003a, 2003b, 2006
ESR Jones, 2001
TL Tribolo et al., 2005, 2006
Diepkloof LSA: ~1800 BP RadiocarboH'C) Parkington & Poggenpoel, 1987;

Howiesons Poort: 63ka-58ka

Radiocarbon (AMS)

Parkington, 1990

Still Bay: 73ka-71ka oSsL Parkington, 1999
TL Parkington et al, 2005
Tribolo, 2003, Tribolo et al., 2005
Jacobs and Roberts, 2008
Wonderwerk Cave MSA (incld Howiesons Poort): U-Th ohdson et al, 1997
~70-220ka AAR Johnson et al, 1997

Beaumont & Vogel, 2006

1.4.1 Palaeoenvironmental evidence from archaeolagil sites during MIS 4

Evidence from Border Cave, northern KwaZulu-Nasalggests fluctuating environmental
conditions between 80ka and 60ka. Proxy data frave sediments (Butzet al, 1978),
microfauna (Avery, 1982, 1992) and macrofauna (Deand Lancaster, 1988; Klein,
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1977) indicate that conditions were cooler and taoithan present. Local vegetation
communities comprised extensiRredocarpusiominated forest and thick bush towards the
end of MIS 4. As with Sibudu Cave there is evidefocea hiatus from about 58ka.
Evidence of spring activity and rock spalling froine Howiesons Poort sediments of Rose
Cottage Cave, eastern Free State Province, sufpgéstonditions in this area were also
colder and moister than present (Deacon and Lagrgd€88). Charcoal and pollen
analyses indicate that there were complex chamgéeivegetation. Prior to the Howiesons
Poort occupation the local vegetation comprisedriine and other well-watered
communities. Vegetation diversity decreased dutfiregHowiesons Poort suggesting a
drying trend (Wadlet al.,, 1992). Wonderwerk Cave, in the Northern CapeiRoe, has
yielded non-archaeological evidence from sedimgr(Beaumont and Vogel, 2006;

Butzer, 1984a, b; Butzet al, 1979) and faunal (Avery, 2006; Beaumont, 199@j)lyses

of the cave deposits. The site was not occupied ffoka until 12.5ka, but sediment layers
were formed by natural processes. These non-arldtaeal data suggest that prior to 30ka
the local environment was drier and colder thaisgmg with grazers present throughout
the sequence. This is thought to be due to veryréomfall conditions in the interior of
South Africa between MIS 4 and MIS 2, when it haerbestimated that rainfall was about
60% lower than present values (Johnebal, 1997).

Klasies River Mouth, a complex of caves and ovegsamm the southern Cape
coast has provided faunal, botanical and geologigalence from the MSA I, Howiesons
Poort and post-Howiesons Poort levels, suggeststgfafrom cooler in MSA Il to more
moderate conditions in the post-Howiesons PoonirBnmental interpretations from this
site are complicated by rising and falling sea llewmder interstadial and stadial
conditions, respectively, and there are some insteries amongst the ages and cultural
designations of the various levels, so interpretegishould be made with care. The MSA 1l
faunal assemblage is dominated by browsers (86&t)dting a bushy/wooded terrestrial
environment. The presence of Antarctic/sub-Antanstarine mammals suggests a colder
marine environment than seen during the Holocema¢bn and Lancaster, 1988). During
the Howiesons Poort there is an increase in gragiegies suggesting the presence of
grasslands (Deacon, 1989, 1995; Deacon and Lanch888; Singer and Wymer, 1982)
and cooler, possibly drier conditions than recorfiedhe MSA 11 levels (Avery, 1992,
Klein, 1976, 1983; Thackeray, 1992, Thackeray amdnf, 1990). Thé'0 values of shell
samples from MSA | through the Howiesons Poort si&A 111 deposits also suggest a
cooling trend (Deacon and Lancaster, 1988) thravifh 4. Palaeoenvironmental
reconstructions from the Howiesons Poort levelBadmplaas Cave, southern Cape, are
based on faunal assemblages (Avery, 1982; Deeicah) 1984) and charcoal and pollen
analyses (Scholtz, 1986). During MIS 4 environmlecwaditions were extremely harsh,
being much colder and drier than present. Theo$iBlombos Cave on the southern Cape
coast has no Howiesons Poort occupation, only ecelef the earlier Still Bay and MSA
Il phases. The site was sealed by dune sands fr@ke~until 2000BP (Jacoles al., 2006).
Proxy data from marine fauna and shellfish assegeisland geological analyses indicate a
transition between warm conditions during MIS 5adtder conditions during MIS 4
(Henshilwoodet al, 2001). Faunal (Parkingtaet al., 2005), charcoal (Cartwright and
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Parkington, 1997) and sedimentological (Butzer,Q®halyses from Diepkloof rock
shelter in the north-western Cape indicate thainduthe Howiesons Poort occupations the
climate was cooler and moister than present. Clahessemblages from this period contain
afromontagne species suchPalocarpusandKiggelaria which require year-round
moisture (Cartwright and Parkington, 1997).

1.4.2 Palaeoenvironmental evidence from archaeolagil sites during early MIS 3

Evidence from sites in the interior of South Afrisgoresented first again, followed by
evidence from the coastal sites. Based on proxy flam Border Cave, the local
vegetation shifted from dense woodland communttesore open woodland savanna with
variations in the amount of grass versus busheabéginning of MIS 3 (Avery, 1982;
Butzeret al, 1978; Klein, 1977). These shifts are in-line whle Sibudu environmental
records. At Rose Cottage Cave the environment appedave become colder than in
MIS4 and there is evidence of more mesic condit{®adleyet al, 1992). There is a
hiatus after the post-Howiesons Poort occupatidicated by a layer of almost culturally
sterile orange sand that lasted from ~48ka-~35kaét, 1997). Although no
archaeological evidence is available from Wondekwave during this time, sedimentary
evidence (Beaumont and Vogel, 2006; Butzer, 198 mdicates that the environment was
generally dry.

At Klasies River Mouth, faunal evidence from posivilesons Poort levels shows
a further increase in grazing species comparedtvégliHowiesons Poort levels. This
indicates a continuation in the shift to more ogeasslands and cooler conditions in early
MIS 3. After 50ka the sites were sealed by dunels@Butzer, 1978; Deacon and
Lancaster, 1988; Singer and Wymer, 1982). Oxygetoje data from shell samples from
this period confirm the cooling trend (Deacon amaht¢aster, 1988). At Boomplaas Cave
charcoal studies indicate that during early MI$3k@-50ka) a cold, very dry harsh climate
prevailed, based on the range of woody speciesatef (Scholtz, 1986). From ~55ka to
40ka conditions began to ameliorate (Deacon andadsier, 1988). In general, evidence
from Boomplaas suggests that MIS 3 was cooler amidtar than the subsequent Last
Glacial Maximum (Deacost al, 1984). A series of occupational hiatuses occuafeer
the Howiesons Poort (Deacon, 1979). No environnenvidence is available from
Blombos Cave because the site was sealed by dade daring this time (Henshilwoaat
al., 2001). Charcoal data from Diepkloof indicatehange in the selection of firewood
species composition at this time suggesting a shifrier conditions (Cartwright and
Parkington, 1997; Parkingtat al., 2005). This shift to drier conditions is supgeorby the
dominance of larger grazing species in the fauss¢imblage (Parkingtaat al, 2005).

During MIS 4 and early MIS 3, climatic condition®rm extremely variable and
resulted in the majority of the sites being abardofor prolonged periods when conditions
were unsuitable for human occupation (Fig. 2). Assg that the landscape was
abandoned by people due to environmental conditibisinteresting that occupation at
sites in the eastern summer-rainfall region of Bdftica (Sibudu Cave, Border Cave and
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Rose Cottage) persisted after the western (inatuttie winter-rainfall zone) sites were
abandoned. Environmental evidence from the varsites suggests that the eastern regions
experienced greater precipitation than the moxk\aestern regions. Towards the end of
MIS 3 and through MIS 2 the environment over muthemtral South Africa was

extremely harsh and sites in this area were unaedupr periods of up to 60 000 years.
During MIS 2 western South Africa appears to hazerbwetter than present conditions
(Chase and Meadows, 200Tlimatic conditions in the eastern regions wepzanm
favourable for longer periods, but during MIS2, tngises show intermittent occupations or
an absence of occupation.

15 OTHER TERRESTRIAL RECORDS OF PALAEO-CLIMATE CHA NGE

In South Africa terrestrial palaeoclimatic recofadsm numerous caves, lacustrine, spring,
fluvial and coastal systems provide proxy data faifferent climate zones across the
country. Butzer (1984a, b) compiled a series okpmecords based on sedimentological
and lithostratigraphic analyses from a number chsites. During MIS 4 and early MIS 3,
the southern Cape region experienced humid to safiehconditions, the south-western
Cape was semi-arid, south-central and eastern 2dtita was initially cold and humid
during MIS 4, becoming warmer and humid during N3I8nd the northern portions of the
country were cold and arid. Palynological and sediitological evidence from Agulhas
Plain lunette dune accretion from two pans in thettsern Cape region (Fig. 1) suggest that
from the end of MIS 4 and early MIS 3 conditions&me slightly drier or similar to
present conditions (Caet al, 2006). Indications of arid and cold conditionghie northern
regions are supported by a range of pollen data fhe sites of Florisbad, Wonderwerk
Cave and Kathu Pan, located in the northern anith+o@ntral parts of South Africa (Fig.
1). The pollen data suggests that between ~75ka-6d& area was extremely arid and cold
(Van Zinderen Bakker, 1995).

The Pretoria Saltpan (Tswaing Crater), a meteorifgact north-east of Tshwane
in the Gauteng Province, provides a rainfall redordhe last 200ka (Partridge, 1999;
Partridgeet al, 1997; 1999). The rainfall data show a decreasedren 70 and 60ka
associated with decreasing insolation (Fig. 3), évav the interpretations should be made
cautiously as relative dating methods were uséldeasite. The data show that the eastern
summer rainfall area of South Africa was becomirigrdat this time. This would have
affected the vegetation communities around SibualveGnd Border Cave. The forested
environments would have been reduced to riverfstn@argins and an expansion of
woodland and grassland savanna communities wowiel becurred.

Oxygen isotope time series from U-Th dated spetrothfrom two sites in South
America, Bahia State (NE Brazil) and Botuvera C&/e Brazil) provide a record of
oscillating temperatures and aridity (Fig. 4). DigriMIS 4, conditions were cool and wet
followed by warmer and drier environments duringye®IS 3 (Cruzet al,, 2005; Wanggt
al., 2004).
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Figure 3. Southern African January insolation, 30° southrtfilge et al, 1997) and Pretoria Saltpan (Tswaing

Crater) tuned rainfall (mm/year) time series (Régeet al, 1997). The shaded area indicates the period of

interest for this study.

g - -
o
e
e EI Morthers Hemb phere
LE 1 Ha He Hi s He Sonthers Hemispien
g -
e
E' -
]
L3 1eddds it deete e il ol Téddd e Sl 18edde 11tddd 1i0dee
Yoar 1 EP

Figure 4. High-resolutiors*®0 time series from northern and southern hemispégeteothems for the last 120ka.

Dansgaard/Oeschger events 20-17 (numbered) anditthe@vents 1-6 (shaded areas) are presented. Top:

Combined oxygen isotope ratios from five speleothé&wm Hulu Cave, China (Wargd al, 2004). Bottom:

Oxygen isotope ratios from speleothems from Botagaive, southeastern Brazil (Cetzal, 2005).

The Botuvera speleothedh’O record shows a notable spike at ~70ka indicating
very wet period and then an abrupt shift to an pedod, suggesting a shift to glacial
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conditions in MIS 4. This is in contrast to resitsm thes'®0 records (Fig. 4) from the
northern hemisphere Hulu Cave speleothems, whiotv shat between 70ka and 55ka
conditions were warm and dry before abruptly becgntool and wet (Wanet al. 2001).
The long term variability of East African climatleas been reconstructed using a
series of drill cores from Lake Malawi and Lake §anyika (Coheret al. 2007, Scholet
al., 2007). Between 135ka-70ka these regions expazitapisodic periods of extremely
arid conditions. After 70ka the climate seems iestable and overall conditions became
more humid and general moisture availability insesh This is thought to be due to
diminished precessional scale variability (Coleéal., 2007). These post 70ka conditions
are similar to those indicated by the Hulu speleott and suggest that the East African
climate was more likely influenced by changes ogogrin the northern hemisphere.

1.6 PALAEOENVIRONMENTAL EVIDENCE FROM SOUTHERN AFRI CAN
DEEP SEA CORES

Deep sea cores along the western, southern aretreastists of southern Africa provide
evidence of the local manifestation of global cliimahanges during MIS 4 and early MIS
3. Cores from the Walvis Ridge and Namibian comtiakslope along the western coast of
southern Africa (Fig. 1) provide a record of clincatariability regulated by shifting

climatic fronts during glacial and interglacial jels (Littleet al.,, 1997; Picheviret al.,

2005; Stuuet al., 2002). Thes*®0 records ofsloborotalia inflata a pelagic foram (Fig.

5A) and the proportion of aeolian dust (Fig. SB)nfrMD962094 indicate intensified
south-east trade winds and enhanced winter raitfialhg MIS 4 and relatively arid
conditions during MIS 3 (Stuwt al, 2002, 2004). Several cores, MD962094, GeoB1706,
1711, and MD962086/87 provide records of variatioopwelling events of the cold
Benguela Current that flows northwards along thetera coast of southern Africa.
Upwelling is controlled by the relative positiontbe Subtropical Convergence Zone
which affects the heat flux into the southern Ati@®cean from rings of warm water
spawned from the Agulhas Current Retroflectiont(&iet al, 1997). Geochemical,
micropalaeontological and isotope records from G&dB and 1711 show that during MIS
4-3 increased upwelling of cold nutrient-rich wabecurred (Littleet al, 1997). Weaker
trade winds during MIS 3 resulted in warmer watent the Agulhas Current to move into
the colder Benguela region (Pichenal, 2005). South-east trade winds show increased
intensity during glacial periods resulting in inased upwelling (Picheviet al., 2005;
Stuutet al, 2002). Dust grain-size (Fig. 5C) data from MDO82 and alkenone-based sea
surface temperatures from MD962086/87 (Fig. 5D)daid a similar pattern. Evidence for
humid conditions during glacial periods and drienditions during interglacials is derived
from OSL dated cores (WC03-1, 2, 5, 10, 11 anddi®n from aeolian dune sands along
the west coast of South Africa (Fig. 1) (Chase @hdmas, 2006, 2007). Changes in the
sediments were related to variations in moistuiadwtrength and sediment supply. There
were periods of increased activity/deposition afl@& sands during MIS 4 associated with
increased humidity (Chase and Thomas, 2006, 2007¢. study area is within the winter
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rainfall zone of South Africa. Rainfall in this @rés influenced by westerly temperate
frontal systems and these are thought to be mgaiis during glacial periods, resulting
in wetter conditions (Barrablet al,, 2002).
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Figure 5. Palaeoenvironmental proxy data sets from deepaes of the western coast of southern Africalfier t
last 120ka. Age models and stratigraphy of thescare mostly created by correlat#i§O records of selected
planktonic and/or benthic foraminifera with the SINEAP record developed by Imbré al in 1984. The shaded
area indicates the period of interest for this gtudl: 320 record forGloborotalia inflatafrom deep sea core

MD962094 (Stuuet al, 2002). B: The proportion of aeolian dust froneplsea core MD962094 (Stettal,
2002). C: Time series of dust grain size (um) fdeep sea core MD962087 (Pichegiral, 2005). D: Alkenone-
based sea surface temperatures (SST) for deepre=aMD962086 and 87 (Pichewhal, 2005).

Cores PS2487-6 from the Agulhas Retroflection a@BBR080 from the Western
Agulhas Bank (Fig. 1) provide records of variatiorthe frequency and intensity of
Agulhas warm water leakages, responses to shifteii$TCZ and global changes (Flores
et al, 1999, Rawet al, 2002).5*°0 ands*C records, foraminifera species assemblages and
sediment composition and texture show that durlagial periods (MIS 2, 3, 4) there was a
northwards displacement of the STCZ and an eastmarément of the Agulhas
Retroflection (Florest al, 1999; Ratet al, 2002). Further evidence for changes in ocean
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current circulation patterns comes from core MDB32on the southern Agulhas Plateau,
where isotopic and grain-size data indicate a maatt shift of the Antarctic Circumpolar
Current (Molynewet al,, 2007) which would have had an impact on the AgsiCurrent.
An eastward shift of the Agulhas Retroflection wbblve an impact on environmental
conditions along the eastern coast of southerrcAfaind may be a factor determining the
environmental changes seen in the local Sibudu@mvient at around 60ka. It has been
demonstrated that the Agulhas Current has a sigmfiinfluence on the summer rainfall
patterns of the eastern coast at a variety of tiales (Coolet al, 2004).

Core RC17-69, off the eastern coast of KwaZulu-Ngdig. 1) was influenced by
the warm Agulhas Current. Foraminifera assembl&ges this core suggest that during
glacials, the Agulhas Current was weakly develdpesimmer months and may have been
replaced by cooler subtropical waters during wimtenths (Hutson, 1980). During the
LGM the current was seasonably variable and haasport from tropical latitudes was
reduced (Prell and Hutson, 1979; Pedlhl., 1980a, b). The cooling or reduction of the
Agulhas Current during MIS 4 (~60ka), coupled vgtacial conditions, would have had a
significant impact on the environment of the eastst of southern Africa (Reason and
Mulenga, 1999). Oxygen isotope records from core WMED25, south of Madagascar, and
RC17-69 do indicate a cooler period during MIS fe(Pand Hutson, 1979; Shackleton,
1977; Tyson, 1991).

1.7 DISCUSSION AND CONCLUSION

Oxygen and deuterium isotope sequences from Gree(iaRIP, N-GRIP, GISP2) and
Antarctic (Vostok, Epica, Byrd) ice cores (Fig.gblow that MIS4 was a period during
which the earth emerged from near glacial conditi(the ice core data for 65ka are almost
analogous to those of 22ka, which is considerduktthe height of the last glacial). The
problem of mid-latitude ecosystem responses is tioaipd by differences between the
northern and southern hemisphere records, pantigutgarding the timing of major
events (e.g. Bluniesgt al, 1998; Blunier and Brook, 2001; Jansgral, 2007; Leuschner
and Sirocko, 2000; Pe#t al, 1999; Schmittneet al, 2003). This makes it difficult to
determine whether ecosystem changes are respatediigrthern or Southern Hemisphere
forcing, or whether low- to mid-latitude forcing oimate change took place. Earlier
studies (e.g. Bluniegt al., 1998; Blunier and Brook, 2001, Leuschner andio, 2000,
Petitet al., 1999) suggested that the timing of large southemisphere climate events
lead the northern hemisphere by 1500-3000 yearse Maent research suggests that the
south leads the north by approximately 400-500sy€achmittneet al., 2003).

Where global climatic changes are synchronouseémtirthern and southern high
latitude records, they should manifest in low lad# regional and local
palaeoenvironmental records. In both Greenlandfartdrctic ice cores, rapid increases in
air temperatures of 5-10°C (Landaisal,, 2007; Rahmstorf, 2002) are followed by a rapid
return to cold (stadial) conditions. Notable colthpes called Dansgaard/Oeschger (DO)
events (Dansgaast al, 1984; Oeschgest al, 1984) occur with 1000, 1450 and 3000 year
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Figure 6. High-resolutions*®0 andsD time series from northern and southern hemispicereores for the last
120ka. Dansgaard/Oeschger events 20-17 (numberddjeinrich events 1-6 (shaded areas) are presehted
Oxygen isotope ratios from GRIP, Greenland (Bluaiadl Brook, 2001). B: Oxygen isotope ratios fronS &2,
Greenland (Blunier and Brook, 2001). C: Oxygenapetratios from the Byrd ice core, Antarctica (Bé&rrand
Brook, 2001). D: Deuterium isotope ratios from Hygica ice core, Antarctica (Jouztlal, 2004). E: Deuterium

isotope ratios from the Vostok ice core, Antarcfieatitet al, 2001).

cyclicities (Leuschner and Sirocko, 2000). TwenttDO events have been identified in
the Greenland ice cores and nine corresponding\2@ts have been identified in the
Antarctic cores (Bendeat al, 1994). Antarctic DO events are characterisedlbyer
warming and cooling than Greenland events (Beetat, 1994). Significant DO events
are followed by massive episodic discharges ofeogb from the Laurentide and
Scandinavian ice-sheets and are called Heinrichte\{@ondet al, 1993; Heinrich, 1988;
Leuschner and Sirocko, 2000; Rahmstorf, 2002). titgirevents always occur during cold
stadials and are followed by an abrupt shift tomear climatic conditions (Boneit al.,
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1993; Rahmstorf, 2002). Between ~70ka and 50ka @&8d 3) Greenland oxygen and
deuterium isotope records (Fig. 6A and B) from@&®IP (Blunier and Brook, 2001,
Grooteset al.,, 1993), GISP2 (Blunier and Brook, 2001) and N-BRlandaist al,, 2007;
Jouzelet al, 2005, 2007) ice cores, and Antarctic recordsftbe Byrd (Blunier and
Brook, 2001), Epica (Jouzet al, 2005) and Vostok (Pett al, 1999) ice cores (Fig. 6C,
D and E) show that DO events 20-17 and H6 are deated in both the Northern
Hemisphere and Southern Hemisphere. The isotogigrsions are not as great in
Antarctica and the changes are not as abrupt aes thaGreenland (Bendet al., 1994).
This can be clearly seen during H6, between DOMEBZO 17 in Antarctica whei@®0
anddD values gradually become less negative indicatistpwer warming trend than that
seen in the Greenland records. The changes shwrefore have an environmental impact
at low latitudes.

Linking the terrestrial ecosystem and environmepitekies to climate change
proxies requires consideration of the Earth System,in particular the role of ocean
currents in heat distribution. The difference ia thte of change in the Northern and
Southern Hemispheres is possibly due to changdeiglobal thermo-haline circulation
(Schmittneret al, 2003). A change in the northward circulatiowairmer water from the
southern oceans (reduction of the warm Agulhaseébteddies) into the Atlantic Ocean
would result in a cooling of the northern latitudesl warming in the southern latitudes
(Blunieret al, 1998; Blunier and Brook, 2001; Rahmstorf, 208@hmittneret al., 2003;
Stocker, 2000, 2002). The Agulhas Current playigmificant role in determining the
weather patterns over southern Africa, and hencesizgdts should be recognisable in the
palaeoenvironmental records of the region. Howévercorrelation may not be as simple
as a teleconnection. Palaeoclimatic data from btiD87-2120, east of New Zealand,
suggests that southern hemisphere mid and lowdaticlimates were more variable than
can be inferred from the Antarctic ice core dat@hfikeet al, 2003; Pahnke and Zahn,
2005). This highlights the need to examine a rafgeoxy data sets derived from both
marine and terrestrial sites to improve understagndi regional and local climatic
variability through time.

Focussing on the Southern Hemisphere, an impastzssgrvation in the Antarctica
data sets is the similarity between the climatieditions during MIS 4 and MIS 2, the Last
Glacial Maximum (LGM). This is not limited to tR&°0 andsD records. The dust, Fe, Ca
and other chemical flux records from the Vostok &pita ice cores (Fig. 7) are proxies for
sea ice extent (sodium (Na) flux); marine biologmeductivity (sulphate (S flux);
aridity of surrounding continents (Iron (Fe), calui (Ca), dust, methane (G} aerosol
fluxes of marine, volcanic, terrestrial, cosmogeand anthropogenic origin and direct
records of changes in atmospheric gasf@0Omposition (Petiet al, 1999; Wolffet al,
2006). The data all suggest that during MIS 4 ciiors were as severe as those during the
cold and dry MIS 2but not as prolongedy gathering more evidence for the
environmental manifestations this may contributa tzetter understanding of why a shift to
interglacial conditions occurred at the end of MI$ut did not occur at the end of MIS 4
despite the apparent similarity in precursive ctods.
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Figure 7. Chemistry data time series from the Epica and &oste cores, Antarctica for the last 120ka. The
shaded areas indicate Heinrich events 1-6. A: (Fa&) flux from Epica (Wolffet al, 2006). B: Non sea salt
calcium (nssCa) flux from Epica (Wokt al, 2006). C: Sea salt sodium (ssNa) flux from Ejiv@lff et al.,
2006). D: Non sea salt sulphate (nsgSx from Epica (Wolffet al, 2006). E: Methane (Cjvariability from
the Vostok ice core (Chappellazal, 1990). F: Dust flux record from the Vostok icee (Petitet al, 1990). G:
Carbon dioxide (Cg) concentrations from the Vostok ice core (Barmatlal, 1987).

The local manifestation of the global-scale climatents has been reviewed in
this paper. Sibudu Cave has yielded the most cdmepséve record for the region. Faunal
and botanical assemblages, cave sediments, magostieptibility of sediments, geology
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and carbon isotope analysis of charcoal show théieaend of MIS 4 the environment
around Sibudu Cave was humid and cooler than presgpporting a substantial evergreen
forest with patches of drier, open woodland/savdiiadle 2). The shifts seen in the plant
and animal communities preserved in the ~58ka tagesvide evidence for oscillating
climatic conditions into MIS 3. Evidence from maeeent layers implies alternating cooler
and warmer conditions with an overall warming trealthough temperatures remained
lower than present (Herries, 2006). The forested #nat existed in the pre-60ka period
may have been reduced by ~58ka, allowing more ampeland and grassland
communities to develop during the cooler and dvlease. During the warmer phases of
MIS 3, grasslands decreased and woodland savaedarpinated. Indirect evidence for a
dramatic climate change between the ~58ka and a4®&upations is suggested by a
hiatus of 9.8 + 1.3ka between these two occupdtjgmases (Jacoket al, 2008a, b; Jacobs
and Roberts, 2008). This hiatus coincides withrégodeof colluviation between 56ka-52 ka,
an indication of arid conditions or transitionahthtes with reduced vegetation cover,
recorded from a series of well-dated stratigragleiguences from erosion gullies in
KwaZulu-Natal (Botha, 1996, Botha and Partridged®®othaet al,, 1992, Clarket al,
2003, Wintleet al, 1995). Environmental conditions were likely uitable for the use of
the shelter as a permanent dwelling during hiatusgds, perhaps because of a particularly
arid phase (Jacolet al, 2008a, b).

The predominant forest type in KwaZulu-Natal isssified as part of the Indian
Ocean coastal belt biome (Mucietal,, 2006) and it requires high moisture levels
(rainfall, humidity). Forested communities are atemstrained by the local substrate and
therefore migration over time to more suitable alisanot a viable option (Eeley al,
1999). During colder and drier periods such asmduearly MIS 3 the forested areas would
have been reduced.

Evidence for glacial conditions in the southern lsgriere during MIS 4 and a
shift to an ameliorating climate in MIS 3 has beetovered from Antarctic ice cores, deep
sea cores and speleothems. These are similar tathk cold conditions seen in the LGM
(MIS 2). The proxy environmental data from deepsm@s and other sites from the eastern
region of South Africa indicate that between 70ke 60ka the prevailing climatic
conditions were colder and wetter than present. éd@w during MIS 3 temperatures began
to slowly rise. Rainfall data from the Tswaing @mihdicate that rainfall began to decrease
during this time, in response to decreasing inswlaOn the western portion, proxy data
from deep sea cores and aeolian dune sand depabiate colder and humid conditions
with increasing wind strengths associated with lo$ea Surface Temperatures (SST) and
increased cold water upwelling along the westeastduring MIS 4 and MIS 3. Prior to
70ka, the south-western proxy data suggests ttadivedy arid conditions persisted.
Records of local and regional climate changes fsonthern Africa show that during the
period 70ka-50ka, conditions were overall coldet drier in the eastern regions and colder
and wetter in the western regions. Western, soeskevn MSA sites abandoned earlier and
for longer than MSA sites on the eastern regioBaith Africa as the local environments
were less suitable for human occupation than iredtst. Studies utilising a range of
palaeoenvironmental proxies (e.g. pollen sequeasdsspeleothems) and modern
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meteorological records combined with various Gldbiatulation Models have indicated
that the eastern portion of South Africa resporiffergntly to climate change from that of
the western regions (Barral#eal., 2002; Coolet al, 2004; Scotet al, 2008) . The
eastern portions are influenced by moisture citauigpatterns from the South West and
tropical Western Indian Ocean affected by the pwsivf the ITCZ and sea surface
temperatures of the Agulhas Current (Ceolal, 2004). The western regions are affected
by the degree of upwelling of the Benguela Cur(B®&ason and Mulenga, 1999) and the
northward movement of anticyclonic high-pressurgemys which bring in moisture-rich
westerly winds (Barrablet al, 2002).

Such a profound change was possibly due to a charibe strength or
temperature of the Agulhas Current or an eastwhiftiaf the Agulhas Retroflection.
Summer rainfall along the south eastern coast cdi&vu-Natal is influenced by the
proximity and temperature of the Agulhas Curredongshore variations in the rainfall
gradient are related to the distance between tast @nd the current at the continental shelf
edge and this influence extends up to 50km inldndygt al, 1993), and includes the
Sibudu region. A weaker/cooler Agulhas Current anckastward shift of the Agulhas
Retroflection would lower SST’s along the eastavast, resulting in a decrease in summer
rainfall and also lower humidity levels (Jugyal, 1993; Reason, 2002; Reason and
Mulenga, 1999; Tyson, 1999). If SST's are coolhie tvestern southern Indian Ocean
(along the southeast coast of South Africa) andneaiin the eastern areas, the air over
south-eastern Africa is drier and rainfall decrsg$®eason, 2002; Reason and Mulenga,
1999). Proxy evidence from core RC17-69 suggestsalweakening of the Agulhas
Current occurred towards the end of MIS 4 andtiheite was a corresponding decrease in
rainfall as indicated by the Tswaing record.

This study highlights the necessity to examine iplgltstrands of
palaeoenvironmental evidence and the connectiameeka global climate change events
and the impact of these changes on local envirotsrerd human populations during this
time. It also indicates the need to ensure thabhgatf sites is secure before these strands of
palaeoenvironmental evidence can be convincingkel.
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