SJ Oosthuizen

TITANIUM: THE INNOVATORS METAL. HISTORICAL CASE STUDIES TRACING TITANIUM PROCESS AND PRODUCT INNOVATION.

SJ OOSTHUIZEN

CSIR: Materials Science & Manufacturing, Metals & Metals Processes

ABSTRACT

This paper examines innovation in relation to the availability of a new material, specifically the metal titanium. The paper aims to highlight the need for the inclusion of entrepreneurial innovation as a necessary focus area in the development of a titanium metal value chain. Both the Department of Science and Technology (DST) and the Department of Mineral Resources (DMR) have identified the creation of titanium metals production capabilities as a key growth area for South Africa. Using historical literature as a source of data; the activities of selected innovators who used titanium metal as a central component in their success were investigated. The origin of the process innovation behind the titanium metals industry, and two titanium product innovations: namely, medical implants and sporting goods were detailed as case studies. It was found that individual innovators were responsible for the creation and rapid growth of the titanium industry and responsible for the development of titanium product applications. There is then identified a need to link the current research and development into the titanium metal value chain with individuals and organisations that actively commercialise innovative processes and products.

1. INTRODUCTION

South Africa has several marketable natural resources, and is notably a major exporter of titanium bearing minerals, and a minor producer of processed titanium dioxide – used as pigment. When it comes to high-end titanium products, South Africa has no titanium metals industry and only limited capacity in titanium fabrication^{1,2}.

Titanium is a modern metal, commercially available only since the 1950s. Titanium has the strength of the best steels at only half the weight, is widely resistant against corrosion, and is biocompatible. Titanium is elastic and tough, hardly expands with increasing temperatures and can withstand cold without becoming brittle. And important for processing: it can be rolled, forged and welded. Today titanium can be associated with several technological advances in for example, medicine, and aerospace and chemicals industries^{2,3}.

The establishment of a South African titanium metal industry is a science and technology priority area, with sustained efforts by government to support titanium related research and development. The Department of Mineral Resources launched the Draft Beneficiation Strategy⁴ for The Minerals Industry in South Africa on 31 March 2009, viewing the development of the titanium value chain (i.e. production of titanium pigment, metal and downstream fabrication) as a potential key growth area for South Africa. Key points of the strategy aim at the development of a proprietary low cost titanium metal production process, and the continued development and commercialisation of technologies to compete cost effectively in international titanium markets⁴.

Considering that the national strategy for titanium is to markedly change existing technology, and to bring about an industrial revolution in low cost titanium metal and products at both national and international scale, it is deemed important to adequately understand the factors involved in the success of such innovations.

An aim of this paper is to introduce and highlight the function of individual innovators, who may be required to fully exploit new opportunities associated with the introduction of a new material, and to ultimately trigger significant positive socio-economic developments. The aforementioned aim is to be achieved through the identification and study of the innovators who, having made use of titanium, established associated markets and rapidly grew new ventures.

The present article aims to address the following Research Questions:

- a) Does history indicate a relationship between the availability of a new material and technological advancement?
- b) Is there evidence to suggest that individual innovators were of primary importance in the establishment of markets for titanium?
- c) Can it be reasoned that South African strategy for titanium beneficiation should include efforts to develop and support innovation and entrepreneurship in this field?

Findings are presented in the form of distinct historical case studies, individually broadly outlining the emergence of the titanium metals industry and specific markets. This research is conducted to build a framework for the understanding of process and product innovation

in the establishment of a titanium value chain. Such a framework may serve to assist decision makers, researchers and innovators in the identification and exploitation of opportunities for South African produced titanium and titanium products.

This paper has four parts. Firstly it presents the method used in data gathering and building of case studies. Then a background section sets out to a) establish the relationship between the availability of a new material and technological progress, b) provide a brief overview of the metal titanium and the efforts towards the development of a titanium industry in South Africa, and c) infer the need for innovation and entrepreneurship in the creation of a new industry and markets for titanium. Thirdly case studies are presented to establish the relationship between innovators and the development of the titanium industry/markets. Finally conclusions are made and directions for future research suggested.

2. METHOD

For data on the relationship between titanium, innovation and entrepreneurship, a literature search was conducted within peer reviewed journal articles using combinations of the keywords *Entrep**, *Innova** and *Titanium*. Fewer than 20 relevant articles were found. A study was then made of publications covering the history of the titanium industry, industry standard market reports, as well as academic publications covering innovation. Case studies were compiled from publicly available secondary data.

As the present paper aims at investigating the efforts of individuals and extra-ordinary innovation leading to the creation of new markets for titanium, some of the major markets for the metal were not included as case studies. Despite Aerospace being the single largest market for titanium, the introduction of titanium to this industry was deemed to be obvious, occurring initially because the savings in weight made up for the relative cost of using titanium, and almost simultaneously implemented by the major aircraft companies and engine manufacturers active in the US in the early 1950s. For this reason the introduction of titanium in the aerospace industry was not included as an individual case study in the present article. Similarly the corrosion resistant properties of titanium made it an obvious choice in what is presently the second largest market for titanium – classified as the Industrial market; in this market titanium is mainly used as a material of construction in e.g. chemical/petrochemical and maritime applications. Again no pioneering effort by an individual, or organisation was identified in the creation of this market.

From the initial literature search the origin of the titanium industry and two well documented and generally accessible titanium markets, namely that of medical implants and sporting goods, were selected for further analysis. In each of the two selected markets details of the most prominent innovators and their respective application of titanium were compiled as case studies. No distinction was made between the unique requirements for process innovation, as per the first case study, and product innovations as discussed in the final two case studies. Literature searches were conducted in a reverse time wise manner, starting with the most modern publications and tracing the history of titanium-based innovation to inception.

3. BACKGROUND

Danish archaeologist and museum curator Christian Thomsen in 1816 defined the Stone, Bronze, and Iron Ages in an attempt to organise his museum's artefacts. So doing he classified the stages of human development by the level of complexity of the materials employed. The fact that this method of classification has stood the test of time, hints at an intimate connection between a society's level of advancement and the mastery of materials at its disposal. Thomsen's "Three Age" system can be said to describe prehistoric variations of periods of technological revolution⁵.

Austrian-born Professor of Economics at Harvard University, Joseph Schumpeter (1883-1950) identified cycles of technological advancement within modern history (Table 1). These economic cycles were named after the Russian Economist Kondratieff, who first proposed such cyclical activity. As with Thomsen's "Three Age" system, each Kondratieff cycle can generally be associated with materials playing distinctive roles in shaping the respective technological revolution⁶. Similarly the discovery and utilisation of titanium can be seen to contribute to the characteristics of the modern technological age.

Cycle	Description	Material(s)
First Kondratieff (1780s–1840s)	Industrial Revolution: factory production for textiles	Cotton
Second Kondratieff (1840s–1890s)	Age of steam power and railways	Iron / Coal
Third Kondratieff (1890s–1940s)	Age of electricity, chemicals and steel	Steel
Fourth Kondratieff (1940s–1990s)	Age of mass production of automobiles, petrochemicals and synthetic materials, Aerospace	Oil, Synthetics, Light Metals
Fifth Kondratieff (late 1990s)	Age of information, communication and computer networks.	Semiconductors / Silicon Chips, Composites and "Space Age" Materials

Table I.	Schumpeter's Kondratieff cycles ⁶
----------	--

3.1 Titanium

As the fourth most abundant metal in the earths crust, titanium ore is plentiful and widely dispersed over the planet. South Africa is presently the second largest producer of titanium-bearing minerals in the world, contributing 22% of the roughly 6 million tonnes per annum global output 1 .

Titanium has distinct physical and chemical properties which allow several industrial sectors to benefit from its application. Titanium's high strength to weight ratio is attractive to the aerospace and transport industries, its excellent corrosion resistance makes it an obvious choice in the chemicals, petrochemicals and maritime industries and biocompatibility allows for numerous medical applications^{2,3,7}.

Presently 95% of the titanium bearing minerals mined annually is used in the manufacturing of paints (TiO₂ pigment), paper and plastics¹, and only 5% is converted to titanium metal². The relatively small size of the titanium metals industry is primarily due to the difficulty and cost of commercial extraction and processing of the metal². Illustrating this struggle to isolate the metal is the fact that, even though titanium was discovered in its mineral form in 1791 by English Clergyman William Gregor, it was not until 1910 that the first small amounts of pure titanium metal were produced. Only as late as 1948 was a process finally commercialized, allowing limited scale batch-wise production of the metal⁸.

Even after six decades since commercial introduction, Titanium is still not being utilised in the full range of potential applications, mostly due its high cost relative to aluminium and steel. Much of titanium's cost is due to the expensive and sometimes inefficient processes used in its production. Should production of low cost titanium become possible, there is significant opportunity for it to compete with e.g. the stainless steel mass market in many applications^{2,3,7}. This potential is also acknowledged in South African efforts to develop cost reduction technologies for titanium processing⁴.

Date	Event
1790	Rev Gregor discovers titanium in mineral form
1887	First preparation of impure titanium (Ti) metal
1910	Small amounts of Ti metal produced for General Electric.
1940s	Kroll develops process to commercially produce Ti metal
1950s	Ti used mostly in military aircraft / defence applications
1970s	Increase in orders for commercial aircraft & Ti market expansion
1980s	Ti increasingly used in medical implants
1990s	Ti increasingly used in sports and consumer goods applications
Present	Ti increasingly used in architecture, automotive, chemicals, etc.

Table II.	Titanium	Time	Line ⁷
-----------	----------	------	-------------------

3. 2 Titanium in South Africa

There have been several instances where government / public enterprise acted as the driver of innovation, usually in cases of capital intensive developments. Notably, initial efforts towards the commercialization of titanium were made by the US government⁹. Even at present several research projects in the pursuit of low cost titanium production are supported/funded by the US military, with the goal to produce e.g. light, corrosion resistant ships and armoured vehicles.

Similarly in South African, the Advanced Manufacturing Technology Strategy (AMTS) of the Department of Science and Technology (DST) pursues the possibility and potential of establishing a South African titanium industry. Further to the AMTS, the DST established the Advanced Metals Initiative (AMI) and the Light Metals Development Network (LMDN). A significant portion of LMDN funding is being invested in a coordinated program to research and develop various titanium technologies i.e. primary titanium production, investment casting, powder metallurgy, laser sintering, machining, etc.

There are also increasing interest in the establishment of a traditional titanium industry, and the Industrial Development Corporation (IDC) and industry partners have invested R40 million in a pre-feasibility study for the establishment of an integrated metals plant aiming to utilise locally mined minerals to produce Magnesium, Silicon, Titanium and Zirconium via industry standard processes.

For various reasons, the desirability and possibility of a competitive titanium industry in South Africa have also been identified by a number of international companies, including some of the leading commercial aerospace companies. These companies are however not directly active in titanium production and mainly look to support the establishment of a local titanium industry in order to broaden the supplier base of the metal.

The establishment of South Africa as a leader in the field of titanium will receive maximum impetus should a novel technology be developed which is capable of producing primary titanium, ideally titanium powder, at a cost lower than that offered by present industrial processes. There is then mentionable research and development being conducted in South Africa towards the establishment of innovative low cost titanium production processes, i.e. the industry sponsored South African Titanium/Peruke process and the Council for Scientific and Industrial Research's CSIR-Ti process. Present strategic focus is on process innovation; however the delivery of low cost titanium is also expected to unlock the potential for numerous product innovations and applications in e.g. the architectural and automotive industries.

The titanium industry strategy and supporting technologies have now been developed to the point where commercialisation is becoming increasingly important. Whilst acknowledging the vital role and importance of government led innovation, this falls outside of the scope of the present article which highlights the contributions of individual innovators to the commercialization of titanium and novel titanium products.

3.3 The Entrepreneur / Innovator

A key process in economic change, growth and development is the process of innovation. Innovation can be defined as the exploiting of inventions to enable their trade in a marketplace⁶. Schumpeter¹⁰ is credited with being the first to posit that cycles of economic growth and development did not simply occur, but required an entrepreneur as the prime mover, whose function is to innovate, or to carry out new combinations. Venkaraman⁹ proceeds to quote Schumpeter at length, who stated that: "...the function of entrepreneurs is to reform or revolutionize the pattern of production by exploiting an invention or, more generally, an untried technological possibility for producing a new commodity or producing an old one in a new way, by opening up a new source of supply of materials or a new outlet for products, by reorganizing an industry and so on… This kind of activity is primarily responsible for the recurrent 'prosperities' that revolutionize the economic organism and the recurrent 'recessions' that are due to the disequilibrating impact of new products or methods".

Schumpeter was not alone in identifying entrepreneurs as a central driving force in innovation; Herbig, Golden and Dunphy¹⁰ stated that "Entrepreneurs and innovation go together like the proverbial horse and carriage. Entrepreneurs seek opportunities and innovations often provide the instrument for them to succeed." The entrepreneur "leveraging business and scientific knowledge... is therefore the linchpin of innovation, and if a society or locale wishes to generate innovation (either low or high technology), it is in a society's best interests to create an environment conducive to the entry and maintenance of entrepreneurs and the associated small new ventures that they produce."

4. CASE STUDIES

4.1 The initial attempt at titanium innovation

In 1910 the General Electric Company (GE) was searching for a material to replace the short lived graphite filaments used in the incandescent light bulbs of the day. The importance of filament materials in GE's overall success cannot be adequately measured, but according to Friedel and Israel¹¹ there were up to 22 other inventors active in the field of electric lighting at the time when GE's founder and classical entrepreneur, Thomas Edison achieved a significant competitive advantage.

Edison made the discovery that a bamboo filament which had been carbonized could last up to 1200 hours, and could therefore be commercialized. As the original filament was patented in the 1880's, by 1910 GE realized to maintain competitive advantage, they needed to lead, or keep up with, research into metallic filaments^{8,11}.

Of primary importance to metallic filament construction was the metal's melting point, and as titanium had not been extracted in commercially viable metallic form, it had unknown properties. GE was hoping that titanium metal would withstand the operating conditions required in a long life filament. Titanium was found to melt at 1668°C by metallurgist Matthew Albert Hunter who extracted the first samples. The process used by Hunter, using sodium metal to reduce titanium tetrachloride to titanium metal^{7,8,} still bears his name.

Rather than joining the Third Kondratieff as a critical part of Thomas Edison's light bulb, titanium was abandoned for the metal tungsten, which has much higher melting point (3422°C). It took almost a further three decades before titanium found its primary innovator. GE can however be mentioned as a prominent part of the Third Kondratieff, that of electricity chemicals and steel, and has grown to be the 10th largest company in the world (in terms of market capitalisation) with a published net income in 2007 of 22.2 Billion US dollars¹².

4.2 William Kroll, Titanium Process Innovator

In her book, Black Sand: The History of Titanium, Kathleen Housley⁸ provides numerous facts from history of the development of titanium metal. The book dedicates a number of chapters to discuss the work of William Kroll (1889-1973), a Luxembourg metallurgist who is today known as the father of the metallurgical processes for the production of zirconium and titanium. Kroll was already a seasoned metallurgist when he set up his

private laboratory in 1923 in the city of Luxembourg at the age of 34. His own research noted his first production of titanium via the Hunter process in September 1930. In 1932 he travelled to America where he attempted to interest the likes of GE and Bell Telephone in the metal, without success. Steel was widely used, since it was in sufficient supply and produced commercially at costs that did not warrant interest in the new metal, titanium.

Kroll returned to his laboratory and started work on developing a new production method to replace the Hunter process, which was deemed explosive and not entirely suitable for commercialisation. In 1938 Kroll manufactured titanium via a process using magnesium to reduce titanium tetrachloride¹³; the patented process still bears his name. In the same year Kroll made another visit to the US in an attempt to interest companies in the metal, but again failed in attracting support from industry to commercialise his process⁸.

In 1940, in order to escape the invasion of Luxembourg by the advancing German army, Kroll fled to America. Aged 50 and armed with only patents to his name and his personal belongings, Kroll started over in the US. Due to World War II, US congress tasked the US Bureau of Mines to secure and stockpile strategic and critical materials. Among these materials were titanium and zirconium, both of which could be produced via Kroll's patented process. Kroll was approached and offered employment by the Bureau of Mines, which he took up in January 1945. Within two years the bureau had produced two tons of titanium via the Kroll process⁸. The Kroll process is widely known to be costly and inefficient; however, to date no other process has been able to supplant it, and nearly all international production of titanium metal still occurs via the Kroll process^{2,3}.

Since becoming commercially available, the largest industrial application for titanium alloy remains the aerospace sector^{2,3}. To survive in these harsh environments, the materials from which aerospace components are made must be high-strength, and capable of surviving high temperatures in an oxidizing environment with severe acoustic loads. However, the materials should have low density and, for most applications, must be reusable¹⁴. Titanium is therefore ideally suited for aerospace applications. It can be argued that, were it not for Dr. Kroll's push to develop and commercialise a viable process for titanium production, the aerospace age might have lacked a component critical to its rapid development.

4.3 Per-Ingvar Brånemark, Titanium Product Innovator.

Titanium is well documented as being biologically inert, primarily due to its resistance to corrosion, however factors such as being non-allergenic and non-toxic also enable the "fit & forget" attitude to titanium implants^{15,16}. Being non-magnetic, titanium also interferes less with a form of medical scanning called Magnetic Resonance Imaging (MRI), where even the low ferromagnetic properties of surgical steel could lead to distorted images¹⁷.

The most important aspect of titanium's application in medicine was however discovered by chance. Working at Lund University in the 1950's, Dr. Per-Ingvar Brånemark used an ocular piece inserted into a rabbit's ear to visually study bone healing. It was found that after completion of the study that the costly instrument, constructed out of titanium, could not be extracted. Titanium was found to integrate and be structurally accepted by bone, leading Dr Brånemark to call the discovery "Osseointegration". This property is virtually unique to titanium¹⁸.

The use of titanium at the time of the discovery was coincidental, in Dr. Brånemark's own words: "By coincidence, an orthopaedic surgeon, Hans Emneus, in Lund, was studying different metals used for hip joint prostheses. At that time I happened to meet him and he indicated a new metal, titanium, from Russia used in nuclear industry, that might be optimal. I managed to get a sample from Russia via Avesta Jernverk, Director Gauffin, and from there on it has been pure titanium. Initially we tried tantalum, which was too soft."¹⁹

Dr Brånemark sought to take his discovery to market and approached relevant technology companies to assist in the commercialising of titanium implants. In 1978 Swedish Chemicals and Defence Company Bofors agreed to partner with Dr Brånemark to develop his implants. Bofors Nobelpharma (later Nobel Biocare) was founded in 1981. In 2008 Nobel Biocare achieved turnover of 619 million EUR and gross profit of 374 million EUR²⁰.

Considering that NobelBiocare was officially started in 1981, but the innovation that the company is built on had been under development since the early 1960's¹⁶, it took around 20 years for Dr Brånemark to commercialise his discovery. Dr Brånemark's mentioned that a primary reason for this was that osseointegration was looked upon with mistrust, which prevented penetration of the idea¹⁶. Without Dr Brånemark's persistence the market for medical titanium implants might still have been dominated by less efficient materials.

Dr Brånemark's innovation led to the establishment of vibrant new markets, Sweden is today known as having one of the leading clusters of biomaterials companies in the world, where Rickne²¹ reported establishment of 25 new companies in the field in the period 1978–1993.

Titanium is also utilised by some of the leading US biomaterials companies, such as world leading spinal implants company AcroMed of Ohio, which was founded in 1983 by spine surgeon A. Steffee, and businessman E. Wagner. AcroMed's time from invention to innovation took around two years, however it can be argued that osseointegration was already well researched at that stage¹⁶. Competing with the Swedish cluster, in the period 1978–1998 the US state of Massachusetts saw the founding of 30 biomaterials companies, followed by Ohio with 18 companies in the same period¹⁶.

4.4 Ely Callaway, Titanium Product Innovator.

Titanium is 40% less dense (weight per volume area) than steel, yet it possesses a higher strength to modulus ratio than steel. The combination of titanium's weight advantage and its improved impact resistance and spring-back following loading has brought forth innovations such as titanium bedsprings, tennis racquets and fishing rods²². One of the largest and fastest growing consumer markets for the metal, however, came from its use in golf clubs.

Ely Callaway, retired president of multinational textiles firm Burlington, founded Callaway Vineyard and Winery in Southern California, which he sold in 1981 for \$14 million. Aged 60, Callaway went on to establish The Callaway Golf Company in 1983²³. In 1994, Callaway Golf went to market with a golf club incorporating titanium in its construction. With the Great Big Bertha titanium driver, Ely Callaway promised "a driver that is not only easier to hit for distance without swinging harder, but significantly more forgiving of off-center shots"²³.

Optimal golf club head design requires the use of a metal/alloy having the best combination of high modulus of elasticity and high strength to density ratio; Dahl, Novotny and Martin²⁴ asserted that such attributes allows for a larger "sweet spot" (center of percussion) without adding unacceptable weight. The combination of an enlarged center of percussion and increased energy transfer enables the golfer to drive the ball a greater distance and straighter, without swinging harder.

The use of lighter weight titanium is also said to have opened up the market for female golfers, who were reported to have problems with the heavier stainless steel $clubs^{23}$. Froes²⁵ noted that by 1999, in the driver and woods segment of the market 40% of the clubs produced were made of titanium, 59% of stainless steel, and 1% other materials; and amongst producers in this segment, Callaway had achieved market leadership (42%) followed by Taylor Made (35%).

Year	Clubs Sold (Millions)	
1994	~500 clubs	
1995	0.19	
1996	1.16	
1997	1.72	

 Table III. U.S. Titanium-Metal Woods Sales²⁵

The reason for titanium drivers not completely dominating the market was price; titanium drivers were sold for prices upward of \$500 in the US and in the range of \$600-\$1800 in Japan, which was comparable to an entire set of standard golf clubs²⁵. The popularity and cost of the drivers were such that in 1998 an organized gang of robbers started to target golf stores, specifically stealing Callaway Great Big Berthas and Biggest Big Bertha drivers. In two months the gang had broken into 25 golf stores and stolen an estimated 1,500 Callaway drivers and other woods²⁶.

In 2000, the US Golf Association (USGA) which oversees golfing competition in the United States banned one of the Callaway club designs, the ERC club, based on their evaluation that its titanium head provided unfair advantage²⁷.

In an interview with Englade²³, Ely Callaway said: "We went from the smallest golf company in the country in 1983 to the largest in 1995... It all was done on product. We make products that are the most rewarding in the world, products that are demonstrably superior to and pleasingly different from our competitors". In 1997, Ely Callaway was inducted into Babson College's Academy of Distinguished Entrepreneurs²⁸. Callaway Golf declared a \$1.117 billion turnover and a gross profit of \$486.8 million in 2008²⁹.

In what has been dubbed the Starbucks Effect³⁰, it has been observed that a trendy product can benefit the greater market segment. The 1990s subsequently saw rapid growth in the overall use of titanium in the field of sport and recreation. Beech, Cook and Mravic³¹ reported on the trend favouring titanium sporting equipment, observing that:

- The Mongoose Pro RX 10.7 bicycle's titanium frame weighed only three pounds, the high resilience imparted by the titanium frame was said to absorb shock better than other materials in use at the time.
- Merlin VI SL titanium skis from K2 were both light weight and claimed to produce less "chatter" at speed than standard fiberglass and wooden skis, due to resiliency and durability of titanium.
- Wilson's titanium line of golf balls reportedly increased ball sales by 50%. Wilson claimed that the titanium core offered a larger sweet spot, decreasing hooks and slices by three to four yards.
- In October 1997 sporting company Head brought to market the titanium/graphite Ti.S2, which became the top-selling tennis racket worldwide.

5. CONCLUSIONS

The article investigated individual innovators and their use of a new material, specifically titanium, to establish new industries and markets.

History points to a relationship between availability of a new material, and increased potential for technological and economic development. This relationship also proves to be accurate for the history of the development and commercialisation of titanium metal and subsequent technological advances. Theory of innovation makes note of the entrepreneur, seen to be a driving force behind innovation. Entrepreneurs can be observed to e.g. innovatively use new materials, thereby causing technological change and economic growth.

It was found that individual innovators were responsible for the creation and rapid growth of the titanium industry, and to have been responsible for the development of new markets for titanium. It can be argued that without these individuals the requisite process and product innovations may not have occurred, and that the aerospace, medical implant and sporting goods markets may not have undergone the revitalisation and rapid growth set off by the introduction of titanium. As can be seen in the case studies there is a time lag in the development of new processes and products, and their commercialisation. As titanium is now widely accepted in many applications this cycle from development to market can be seen to have accelerated.

The basic capability to produce titanium and titanium products did not automatically lead biomedical and sports applications and markets for titanium. As in these instances, it is expected that innovative and entrepreneurial effort would be required for the successful commercialisation of technologies and products developed in the drive to beneficiate titanium resources and the creation of a titanium metal value chain in South Africa. It is then concluded that the local strategy for the creation of a titanium value chain should also include efforts to develop and support innovation and entrepreneurship in this field. A suggested area of focus would be the preparation and development of the relatively small number of local experts, technicians and companies capable of capitalising on the introduction of locally produced titanium metal.

The study is limited by the inclusion of only three successful and popularly published instances of innovation in titanium, and therefore cannot be considered conclusive. An investigation into the workings and potential integration of structures and systems for the development and support of entrepreneurship and innovation in advanced metals within South Africa is perceived to be a valuable direction for further research.

7. ACKNOWLEDGEMENTS:

The author would like to acknowledge the Department of Science and Technology for their continued support in the establishment of titanium metal competencies in South Africa.

8. **REFERENCES:**

1. South Africa. Department: Minerals and Energy. 2008. An Overview of South Africa's Titanium Mineral Concentrate Industry. [Online] Available from: http://www.dme.gov.za/pdfs/minerals/R71-2008.pdf [Downloaded: 2009-05-10].

2. Roskill Information Services. 2007. *Economics of Titanium Metal*, 4th Ed. Roskill Information Services

3. Lütjering, G. & Williams, J.C. 2007. *Titanium*. 2nd Ed. Berlin: Springer-Verlag.

4. South Africa. Department: Minerals and Energy. 2009. A Beneficiation strategy for the South African Minerals Industry. [Online] Available from: <u>http://www.dme.gov.za/pdfs/minerals/min_whitepaper.stm</u> [Downloaded: 2009-05-10].

5. Heizer R.F. 1962. The Background of Thomsen's Three-Age System. *Technology and Culture*, Vol 3, Pp. 259-266.

6. Smith, D. 2006. Exploring Innovation. Maidenhead, Berkshire: McGraw Hill.

7. Turner, P.C., Hartman A., Hansen J.S. & Germann S.J. 2001. Low Cost Titanium – Myth or Reality. *Proceeding of the TMS Annual Meeting*, New Orleans, 11-15 Feb 2001

8. Housley, K.L. 2006. *Black Sand: The History of Titanium*. Hartford, CT: Metal Management Aerospace, Inc.

9. Venkaraman, S. 2004. Regional transformation through technological entrepreneurship. *Journal of Business venturing*, Vol 19, Pp. 153.

10. Herbig, P., Golden, J.E. & Dunphy, S., 1994. The Relationship of Structure to Entrepreneurial and Innovative Success. *Journal of Marketing Intelligence & Planning*, Vol 12, Pp. 37-48

11. Friedel, R. & Israel, P. 1987. *Edison's electric light: biography of an invention*. New Brunswick, New Jersey: Rutgers University Press.

12.GeneralElectric.2009.[Online]Availablefrom:http://www.ge.com/en/company/companyinfo/index.htm[Accessed: 2009-03-23]

13. Kroll, W. J. 1940. The production of ductile titanium. *Trans. Am. Electrochem. Soc.*, Vol 78, Pp. 35–47.

14. Boyer, R.R. 1995. Titanium for aerospace: Rationale and applications. *Advanced Performance Materials*, Vol 2(4) Pp. 349-368.

15. Balazic, M., Kopac, J., Jackson, M.J. & Ahmed, W. 2007. Review: titanium and titanium alloy applications in medicine. *Int. J. Nano and Biomaterials*, Vol 1, Pp 11

16. Fridh, A. 2001. Titanium implants—a comparison of a Swedish and an Ohio firm. In: Carlsson, B. (Ed.), *New Technological Systems in the Bio Industries: An International Study*, Dordrecht: Kluwer Academic Publishers.

17. Holton, A., Walsh, E. & Anayiotos, A. 2002. Comparative MRI compatibility of 316 L stainless steel alloy and nickel-titanium alloy stents. *J Cardiovasc Magn Reson.*, Vol 4, Pp. 423–430.

18. Branemark, P. 1983. Osseointegration and its experimental background. *The Journal of Prosthetic Dentistry*, Vol 50. Pp 399-410.

19. Brånemark Osseointegration Center. 2009. [Online] Available from: <u>http://www.branemark.com/</u> [Accessed: 15-03-2009]

20. Nobel Biocare. 2009. [Online] Available from: http://corporate.nobelbiocare.com/en/default.aspx [Accessed: 13-04-2009]

21. Rickne, A. 1999. New Technology-Based Firms in the Evolution of a Technological Field - The Case of Biomaterials. *Frontiers of Entrepreneurship Research: Proceedings of the 19th Annual Entrepreneurship Research Conference,* Babson College.

22. Skrysak, J. Effektive Engineering. 2009. [Online] Available from: <u>http://www.skrysak.com/jeff/titanium/</u> [Accessed: 20-04-2009]

23. Englade, K. 1996. This year's magic. Across the Board, Vol 33, Pp. 36.

24. Dahl, J.M., Novotny, P.M. & Martin, J.W., 1999. Golf club face plate alloys. *Advanced Materials & Processes*, Vol 155, Pp. 89.

25. Froes, F.H. 1999. Will The Titanium Golf Club Be Tomorrow's Mashy Niblick?. *JOM*, Vol 51, Pp. 18-20

26. Chambers, M., 1998. The Golf Report: Theft of the Big Berthas Is a Growing Problem. *New York Times*, 16 April, Pp 5.

27. Hyman, M. 2000. Psst! Wanna buy an illegal club? Despite USGA ban, players lust for Callaway's new driver. *Business Week*, Vol 3692, Pp. 125.

28. Babson College. 2009. [Online] Available from: http://www3.babson.edu/ESHIP/outreach-events/Ely-R-Callaway.cfm [Accessed: 12-04-2009]

29. Callaway Golf Company. 2009. [Online] Available from: http://www.callawaygolf.com/Global/en-US.html [Accessed: 12-04-2009]

30. Vishwanath, V. & Harding, D. 2000. The Starbucks Effect. *Harvard business review*, Vol 18, Pp. 17-18.

31. Beech, M., Cook, K., & Mravic, M. 1999. Titanium Mania. *Sports Illustrated*, Vol 90, Pp.38.