
A Model for Teaching Distributed Computing in a

Distance-based Educational Environment

Petra le Roux
1
, Alta van der Merwe

12
, Aurona Gerber

12

1School of Computing, University of South Africa, Pretoria
2Meraka Institute, CSIR, Pretoria

lrouxp@unisa.ac.za, alta@meraka.org.za, agerber@csir.co.za

Abstract - Due to the prolific growth in connectivity, the

development and implementation of distributed systems

receives a lot of attention. Several technologies and languages
exist for the development and implementation of such

distributed systems; however, teaching students in these new

technologies remains a challenge. Even though several

models for teaching computer programming and teaching

programming in a distance-based educational environment
(DEE) exist, limited literature is available on models for

teaching distributed computing in a DEE. Here our research

we examine how distributed computing should be taught in a

DEE in order to ensure effective and quality learning for

students, specifically by investigating both the specific

characteristics of distributed systems technologies and the

models used for teaching programming in DEE. The required
effectiveness and quality should be comparable to those for

students exposed to laboratories, as commonly found in

residential universities. This led to the identification of the

factors that contribute to the success of teaching distributed

computing and determine how these factors can be integrated

into a proposed distributed systems distance-based teaching

model we call the Independent Distributed Learning Model

(IDLM).

I. INTRODUCTION

 The design and implementation of software is a difficult

and expensive process [1]. This process is also complex, even
in a homogeneous environment, that is, an environment

consisting of a single, stable platform, using a single

operating system and a single programming language, usually

from a single vendor. The complexity increases immensely if

software is developed in a heterogeneous environment in

which the vendors of the hardware and system software may

differ. Such an environment adds a number of additional

complexities to new software development [2, 3, 1, 4]. The

new software must run on a network of hosts, and these hosts
may run different operating systems. Furthermore,

components of the new software will probably have to be

integrated into legacy systems. Adding to the complexity is
the probable use of different programming languages for

different components of the new software system. All these

complexities generally cause an increase in the cost of

developing and maintaining software.

To address some of these complexities, [1] proposes that

new software needs to be designed and developed as a set of

integrating components that can communicate across the
boundaries of a network, different operating systems and

different programming languages. Furthermore, legacy code

has to be wrapped so as to resemble components to ensure

that they can be integrated into new systems. These

components also have to be transferable to new environments
to ensure that they can be integrated into various applications.

Distributed computing focuses on the hardware, software

and middleware that allows for a collection of autonomous

hosts connected through a computer network to coordinate

their activities in such a way that users perceive the system as

a single, integrated computing facility. Distributed
programming and distributed computing frameworks assist in

and simplify the design and development of systems that

communicate across the boundaries of a network, running on

different operating systems and which were written in

different programming languages. These frameworks

(commonly referred to as middleware) offer flexibility and

new ways of integrating existing and new technology, as well

as new ways of facilitating communication between systems.

Distributed computing frameworks have raised expectations

that these highly functional systems can solve the majority of

computing problems. Experience, however, has shown that it

is challenging to build such distributed applications [5]. Apart
from the difficulties and challenges involved, distributed

computing is increasingly being used as a basis for the World

Wide Web and distributed network-related software

developments.

Furthermore, the use of distributed computing frameworks

is complex because the use of distributed computing

components (plug and play) presents various challenges.

Besides the embedded complexities of this subject, the

teaching thereof poses various problems to both student and

teacher. In a residential institution, students can be exposed to

the various elements of a distributed computing environment
under laboratory conditions. This might simplify some of the

complexity associated with the learning of distributed

computing. In a DEE, however, a different approach is

needed to ensure that students receive the same quality of

teaching and are able to experience the same degree of

learning as under laboratory conditions. Teaching distributed

computing without laboratory sessions is more challenging

and might fail completely if a set of clear guidelines is not

available to direct the teaching and learning process.

We are concerned with the question of how distributed

computing should be taught in a DEE to ensure effective

 !!

learning for students. The required effectiveness should be

comparable to those for students exposed to laboratory

conditions such as commonly found at residential universities.

Therefore, this paper focuses on determining the factors that

contribute to the success of teaching distributed computing

and subsequently how these factors can be integrated into a

proposed model for the teaching and learning of distributed

computing in a DEE. We call this model the Independent

Distributed Learning Model (IDLM). Section II provides the

background by motivating reasons for teaching an

undergraduate course of this nature, as well as discussing
existing systems and why there is a need for the proposed

IDLM. Section III addresses the approach and method

followed to define the IDLM. Sections IV and V discuss the

architecture, components, functionality and characteristics of

the IDLM. Section VI discusses a case study to validate the

proposed Independent Distributed Learning Model. A

discussion of experiences gained followed in section VII and

a conclusion in section VIII.

II. TEACHING DISTRIBUTED COMPUTING

The rationale for teaching distributed computing as a

university elective course is highlighted in the final report of
the Computing Curricula 2005 project1

 [6] and are twofold:

changes in the computing field and the need for advanced

programming courses.

Technical changes in computer science are both

evolutionary (exponential increase in available computing

power) and revolutionary (the rapid growth of networking

after the appearance of the World Wide Web). This rapid

evolution of the computer science discipline has had a

profound effect on computer science education, affecting both

content and pedagogy. Computing education is also affected

by changes in the cultural and sociological context in which it
occurs. The following changes, for example, have all had an

influence on the nature of the educational process: changes in

pedagogy enabled by new technologies, the dramatic growth

of computing throughout the world, the growing economic

influence of computing technology, greater acceptance of

computer science as an academic discipline and broadening of

the discipline.

Advanced courses in undergraduate studies serve three

purposes: to expose students to advanced material beyond the

core, to demonstrate applications of fundamental concepts

presented in the core courses, and to provide students with a

depth of knowledge in at least one subarea of computer
science. One of the advanced programming courses included

in the CC2005 is distributed computing.

To determine the components of a model that would

contribute to the success of teaching and learning distributed

computing in a DEE, we explored the state of affairs when

teaching and learning programming languages, programming

in DEE and distributed computing.

1 CC2005 is a joint undertaking of the Computer Society of the Institute for

Electrical and Electronic Engineers (IEEE-CS) and the Association for

Computing Machinery (ACM) to develop curricular guidelines for

undergraduate programmes in computing.

A. Teaching and Learning of programming languages

The available models for the teaching and learning of

programming languages are mainly aimed at contact or

laboratory sessions, as is the practice in residential
universities [7,8]. Typical problems and solutions are

identified. All research efforts and development of models

which aid in the teaching and learning of programming,

especially at introductory level, have one purpose: to ease the

learning of the programming language by eliminating all

complexities that do not directly contribute to the

achievement of the learning objectives [6,7]. For this we

developed a generic model consisting of two components: a

teaching module and a student module (see Figure 1). The

teaching module consists of an expertise module, which

presents the domain knowledge that the teacher intends to be
mastered by the student. The text that represents the

command of the computer programming languages to be

taught is maintained in the tutoring text, whereas the semantic
rules contain the structure of commands to be taught. The

student module comprises a GUI, the tutoring text, and the

student profile.

B. Teaching and Learning programming in Distance-based Educational

 Environments

Systems used in the teaching of programming in a DEE are
classified as intelligent tutoring systems (ITS) [9,10]. An ITS

for effective teaching and learning in a DEE is built on the

client-server model. In its basic form, the client side consists

of a teaching agent or agents and student agents. The server

provides the content and infrastructure needed to present a

course. A tutoring agent and the Internet are added to the

generic model. The tutoring agent represents the knowledge

to be taught; it encompasses modelling of the knowledge, and

management and coordination of the learning activities. The

Internet serves as a vehicle for communication.

Figure 1. Generic Model for Teaching Programming Languages

 !"

Figure 2. Generic Model for Teaching in a DEE

The student and teacher communicate with the tutoring
agent through the Internet, or WWW. Thus, the teaching

module is contained in a teaching agent, whereas the student

module is contained in a student agent. The student agent

retrieves the tutoring dialog that a student wants to learn

through the Internet. The teaching agent communicates with

the tutoring agent to maintain the knowledge to be taught.

Figure 2 depicts the updated generic model.

C. Teaching and Learning Distributed Computing

Since distributed algorithms are difficult to grasp and also

to implement and debug, models that aid in the demonstration
of complex relationships and dynamic processes are identified

that have the potential to support teachers and learners [11].

Also, when the Internet is used, use of XML, Java applets,

etc. help to ease the complexities, since explicit installation is

not needed on the student side; only a Java-enabled browser

(available on most computers) is needed. The model consists

of two components, a teaching module and a student module,

but the content is presented in a distinctive way. This model is

depicted in Figure 3.

D. A Consolidated Approach

When the teaching and learning of distributed systems in a

DEE takes place, a number of additional requirements

become apparent: (i) a need for a system that is not

dependable on a laboratory environment, (ii) a system that

addresses the asynchronous and geographically dispersed

nature of DEE, and (iii) a system that addresses the economic
realities of students. Synchronous communication, broadband

and commercially available software may be out of reach for

an average student.

The focus is therefore on a model that has the

characteristics for effective and quality teaching and learning

to take place as well as addressing the above-mentioned

challenges and economic realities.

Figure 3. Generic Model for Teaching Distributed Computing

III. METHOD

A three phase approach was used for identification of the

proposed distributed computing model. Phase 1 focused on
the identification of the elements of distributed computing in

order to compile a body of knowledge needed to be present in

a model for effective teaching and learning of distributed

computing to take place. Phase 2 included an investigation of

available models for the teaching of computer programming,

programming in a DEE and distributed computing in order to

identify success factors for teaching distributed computing in

a DEE. Lastly, Phase 3 was used to establish and verify a

model for the effective teaching and learning of distributed

computing in a DEE.

The research approach used was a qualitative research
method, which was developed in the social sciences to enable
researchers to study social and cultural phenomena; situations

in which people and different processes are involved. The

research approach employed was design research, where the

purpose was the creation of an artefact.

The artefact developed was in the form of the independent

distributed learning model (IDLM). For data collection and

verification of the IDLM, a case study approach was

followed. The selected case-study environment was a single-

case design. A survey was also used to gather perceptions on

the approach suggested and followed by the researchers.

IV. INDEPENDENT DISTRIBUTED LEARNING MODEL (IDLM)

In order for effective teaching and learning of distributed

computing to take place in a DEE, learners need a way to

create their own space, where distributed computing concepts
can be simulated and studied asynchronously as economic

realities do not always allow for synchronous

communications. Learners must also be able to work at their

own pace and time, with the ability to take full advantage of

the synchronous functionalities available in a DEE. These

requirements are depicted in Figure 4.

 !

Figure 4. Schematic representation how teaching and learning have to take

place in a DEE

Thus, the suggested IDLM consists of different spaces, the

resource space, broker space and the learning space (Figure

5). Firstly, the resource space (RS) acts as a server and

facilitates an environment in which all the resources and

functionality needed to accommodate the learning experience

reside. These resources are available to the learning space, in
which the student and the teacher reside, through the broker

space. The broker space (BS) acts as a middleman, which

pairs requests from the learning space with the resource

space. The learning space makes its functionality and needs

known to the broker space. The main responsibility of the

broker space is to identify and match these requests to the

resource space. Thus, the broker space is responsible for

communication between the resource space and the learning

space. The learning space (LS) facilitates an environment in

which the teacher and student can execute their respective

tasks.
Any learning environment requires support infrastructure;

so much more an e-learning environment. The infrastructure

needed to support e-learning includes inter alia, remote

servers, databases and software systems to create the learning

space in which teaching and learning can take place. This

environment might be synchronous, necessitating continuous

remote resource support, whereby the learner and teacher

interact in the same time frame with their respective learning

or teaching environments and with each other. The

environment might also be an asynchronous learning

environment in which remote resources are responsible for

initial set-up of the learning environment without continuous
monitoring and support of this environment. In an

asynchronous environment, students work offline for most of

their learning session, but might at any time choose to

reconnect to the resource space to interact with the resources

for tasks such as queries, assignment submission, etc.

Figure 5. The Independent Distributed Model

A. The Resource Space

The significance of the resource space is that it combines

the different resources into an area in which technical support

is maintained. Although the infrastructure and the systems

within this space might be heterogeneous and distributed as

regards specific location, this space consists of the different

resource components. Preservation and, consequently,

maintenance of a well-defined and specialised space is less

complex than when these resources are conceptually scattered

throughout every space. The components of the resource

space are tutoring resources, assignment management and

communication, which includes the course webpage,
newsgroups, email and a discussion forum as depicted in

Figure 6.

B. The Broker Space

The broker space acts as a middleman, which pairs requests

from the learning space with the resource space. The learning

space makes its functionality and needs known to the broker

space. The main responsibility of the broker space is to

identify and match these requests to the resource space. Thus,

the broker space is responsible for communication between
the resource space and the learning space.

Resource Space (RS)

Figure 6. Resource Space

X

SERVER

Internet

X

X

Email

Newsgroups

Module webpage

Tutoring resources

Assignment management
X

Student

Student

Student

Teacher

Discussion forum

Resource Space (RS)

Broker Space (BS)

Broker Space (BS)

Learning Space (LS)

Internet

Tutoring

Resources

Assignment

Management

Communication

Newsgroups

Discussion forum

Module webpage

Email

 !#

Figure 7. Learning Space

C. Learning Space

The learning space consists of both the student resource
and workspace and the teacher resource and workspace and

can be viewed as a facility that allows the student and teacher

to fulfil their tasks. The significance of the learning space is

that it localises the workspace and resources of both the

teacher and the student. The student resource and workspace

facilitates an environment in which the student can

communicate with the resource space, via a user interface,

through the Internet. The components of the student resource

and workspace are a user interface, tutoring material and a
student file-management system. The teacher resource and

workspace facilitates an environment in which the teacher can

communicate with the resource space through the Internet.

The components of the teacher resource and workspace

include an expertise space, semantic rule base, tutoring text

and assignment management. See Figure 7.

V. IDLM DETAIL LEVEL

For each of the spaces on the IDLM, more detail is

available in [12]. In the specification of the IDLM, UML
diagrams were used, more specifically use-case diagrams,
which model the users and their interactions with the system

at a very high level of abstraction, and activity diagrams,
which are used to describe the workflow behaviour of a

system. One example of a use-case diagram of the resource

space is depicted in Figure 8.

VI. CASE STUDY: UNIVERSITY OF SOUTH AFRICA

The IDLM was used in a distance educational environment

and as guideline in presenting the module to third-year

students at the University of South Africa (Unisa). The
module is offered by Unisa as part of the undergraduate

studies towards a Bachelor in Computer Science or

Information Systems. It is an advanced computer science

elective module called Advanced Programming.
Essentially the software used in the course consisted of a

C++ compiler and a CORBA environment. There were a

number of permutations of compilers, CORBA ORBs and

operating systems which could be used to achieve the

objectives of the practical part of the course. However, a

balance was struck between allowing students to work in their

preferred environment, providing a set of freely distributable

tools and providing detailed guidance and support for students

and their environments. The prescribed tools were the Mico
ORB, the Dev C++ editor, the minGW compiler and the make
facility. Communication with students took place in the form

of tutorial letters, the module webpage, the discussion forum
and the module email.

The student numbers varied from 125 to 200
2, and two

lecturers were responsible for the module. The data were

collected via questionnaires and were delivered to the

students via email, a facility offered by the University’s

Administrative Department. The number of students
registered for the module in question was 247. Seventy-eight

(78) students cancelled their studies during the year, leaving a

total of 169 students. The number of students who received

the questionnaire via email was 151. Thirty (30) of the emails

were returned as undelivered mail, possibly because students

did not update their personal information via the existing

administration channels. Therefore the sample size that

received the questionnaire was 121. The number returned was

33, resulting in a response rate of 27%.

After the 1 year period, a survey was conducted on the

experiences of the implementation. Questions covered the
effectiveness of the teaching methods used, experiences on

the usefulness of the tools employed, the effectiveness of the

means of communication, suggestions for enhancements and

to what extend distributed computing was applicable in the

working environment of the student.

Feedback from the students indicated that the methods

described in the IDML were found to be helpful by 61%,

opposed to 18% of students who found the methods not to be

helpful. The number of students who did not have strong

feelings about whether the methods contributed to successful

learning was 21%.
 The data gave strong evidence that the majority of the

students made use of the software provided, but found the

editor to be least helpful and made use of their own editor.

After an initial installation process, which some students

found to be cumbersome and difficult, the majority again

found the software easy to use.

The results indicated that the discussion forum was found to

be most helpful by 91% of students, whereas the module

email was found to be least helpful and was used by 24% of

students. Tutorial letters, as opposed to the module website,

remained the preferred means of communication.

The survey further indicated that the practical component of
the module needed more attention, both in respect of tutoring

text (additional exercises, more detailed discussions, etc.) and

software tools and most of the students did not work in an

environment in which the development of distributed systems

was applicable.

2
 Enrolment figures from 1997 to 2005.

 !$

Figure 8. Use-case Diagram – Resource Space

VII. DISCUSSION

This research contributed to the field of teaching a complex

subject, namely, distributed computing in a DEE by

determining the factors that contribute to the success of

teaching distributed computing and subsequently integrating

these factors into a model. The Independent Distributed

Learning Model (IDLM) is used for the teaching and learning

of distributed computing in a DEE. The complexity lies in

the fact that presenting this subject matter requires a
specialised developing environment to develop specialised
software considering certain economic realities.

The IDLM was found to be valuable because it addressed

all the challenges experienced. During the case-study in a

one-year experiment, the most pertinent challenges included

the creation of a specialised development environment. This

environment, which was given to the students upon

registration, had to be affordable, understandable and easy to

use.

The second challenge was to provide supportive material on

a regular basis. These supportive materials were presented in

various formats, such as tutorial letters, module webpage
announcements and forum discussions. The supportive

material contributed to the continuity of the module.

The third challenge was to create the student’s initial

environment and to get the student to write his/her first

application. This challenge was due to the various platforms

that exist. Since the forum proved to be the single most useful

communication medium between students and teacher and

students and students, it was used to effectively and

efficiently address this challenge. It had to be monitored on a

regular basis, especially when assignments or the project was

due, which placed a strain on the available resources.
However, without the discussion forum, the students felt that

the successful completion of distributed computing in a DEE

would not have been possible.

VIII. CONCLUSION

The IDLM presented enables teachers within the field of

distributed computing and specifically in distanced-based

education to present complex subject matter in such a way

that students can work asynchronously in their own space, at

their own time and pace. Therefore, use of IDLM in

presenting courses of this nature in this way enabled students

to master the complexity.

During use of the suggested model in a one-year

experiment, the challenges were the creation of a specialised

developing environment, provision of supportive material on
a regular basis, initial creation of the student’s working

environment and the significant value of the forum. All of the

above were addressed by the IDLM. Therefore, the use of the

proposed model in presenting distributed computing in a

distance-based educational environment contributed to the

mastering of a advanced and complex course in distributed

computing.

References

[1] Condi, S. ”Distributed Computing, tomorrow’s panacea - An

 introduction to current technology” BT Technol Journal , pp. 13 – 23,

 April 1999.

[2] Baker, S. CORBA Distributed Objects Using Orbix. Addison Wesley

 Longman, Inc. 1997.

[3] Balen, H. Distributed Object Architectures with CORBA. Cambridge

 University Press. 2001.

[4] Rock-Evans, R. “Component Architectures.” Enterprise Middleware,

 7 – 20, 1999.

[5] Benns, S. B. “What’s in the middle?” BT Technol Journal , 17 (2),

 pp. 32 – 52, 1999.

[6] IEEE-CS, A. A. Computing Curricula 2005The Overview Report.

 www.acm.org/education/curric_vols/CC2005-March06Final.pdf

 2005.

[7] Xinoglos, S. “An Integrated Programming Environment for Teaching

 the Object-Oriented Programming Paradigm.” EurAsia-ICT, LNCS

 2510 EurAsia-ICT, LNCS 2510, pp. 544- 551, 2002.

 [8] Kelleher, C. (2005, 37(2)). Lowering the Barriers to Programming: A

 Taxonomy of Programming Environments and Languages for Novice

 Programmers. ACM Computing Surveys , pp. 83-137.

[9] El-Khouly, M. F. Expert tutoring system for teaching computer

 programming languages. Expert Systems with Applications (18), pp.

 27-32. 2002

[10] Hartley, J. S. “Towards More Intelligent Teaching Systems.”

 International Journal of Man-Machine Studies , 5 (2), pp. 215- 236,

 1973.

[11] Schreiner, W. A. “ Java Toolkit for teaching Distributed Algorithms.

 ItiCSE'02, 2002.

[12] Le Roux, P. Towards a model for teaching distributed computing in a

 distance-based educational environment. MSc UNISA, 2009.

 !%

