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Abstract—We investigate several approaches aimed at a more
detailed understanding of co-articulation in spoken utterances.
We find that the Euclidean difference between instantaneous
frame-based feature values and the mean values of these features
are most useful for these purposes, and that low-order polynomi-
als are able to model the between-phone transitions accurately.
Examples of typical transitions are presented, and shown to give
useful insights on the measurable effects of co-articulation.

I. I NTRODUCTION

With current technology, it is generally agreed that large
amounts of training data are required to achieve high ac-
curacies in speech-recognition systems: state-of-the-art large-
vocabulary systems are trained with hundreds to thousands of
hours of data. However, it is not clear just why so much data
is required: is it because of inherent variability in speakers,
channel conditions, speaking styles, etc., or because of the
complexity in representing cross-phone co-articulation accu-
rately, or for some other reason? This issue is theoretically
important, and also crucial for the development of systems in
resource-constrained environments.

An interesting hint on this matter is provided by the perfor-
mance of typical Hidden Markov Model (HMM) systems on
different sub-corpora of the TIMIT corpus [1]. In particular,
we have repeatedly found that performance is substantially
better on the so-called speaker-independent sentences (the sa

subset, where the same prompts are recorded by all training
and testing speakers) compared with the speaker-dependent
sentences (thesi subset, where different prompts are recorded
for different speakers, and each of the sentences is thus only
recorded once). In Table I we list phone recognition accuracies
obtained for subsections of the testing data containing the
indicated sentences. All accuracies are obtained using the
same HMMs, constructed from the training set. (Table I also
contains the results for thesx sentences, which were read by
small subsets of the speakers – these clearly behave similarly
to the speaker-dependent sentences.)

Since these sub-corpora are subjected to the same intra-
and inter-speaker sources of variability, the large accuracy
difference between thesa sentences and the other two sen-

tence types suggests that context modelling (and thus co-
articulation) plays a significant role in the accuracy of speech-
recognition systems – thus, also in their need for large training
corpora. It is clearly not enough to see a sufficient number
of phone samples: it is necessary to see enough samples in
contexts sufficiently similar to what is observed in the testing
data.

Subset Gender % Accuracy

sa male 88.78

sa female 87.47

si male 61.24

sx male 61.13

sx female 57.46

si female 56.20

Total - 65.28

TABLE I
Typical accuracies of different sentences in TIMIT test data set

We would like to gain a more detailed understanding of
these contextual effects. Towards this goal, we have developed
a number of tools that allow us to assess how phonemic context
influences the production of speech sounds, when expressed
in terms of the standard features used for speech recognition.
In this paper we introduce these techniques, and demonstrate
their usefulness in analysing co-articulation effects.

The paper is structured as follows: We first discuss some
related research in section II. In section III we describe the
specific techniques we use to analyse contextual effects. We
then describe the experimental set-up that we use to test the
validity of these techniques and to perform initial experiments
in section IV. Our results are presented in section V, followed
by a summary of our main observations and a preview of
future work, in section VI.

II. BACKGROUND

While the importance of modelling contextual effects for
large vocabulary speech recognition has long been under-
stood [2], these effects are typically modelled implicitlywithin
a more general statistical framework. Attempts to model



contextual effects explicitly as phone transition trajectories
have been met with mixed success [3]. Most of these ap-
proaches attempt to overcome the limitations of standard
HMM approaches (especially the state-based independence
assumption) either by incorporating explicit trajectories within
an HMM framework [4] or by explicitly defining longer term
variable length segmental models [5]. Related research tries
to uncover the underlying articulatory trajectories producing
speech, in an attempt to better model acoustic change with
fewer parameters [6].

All the above approaches aim to develop better acoustic
models of speech. Much less work is available related to an
analysis of co-articulation effects as a tool towards a better
understanding of speech resource requirements, the focus of
the current paper.

III. T ECHNIQUE

In this section we describe our analysis technique in general,
list some of the parameters that can be varied, and discuss the
design choices made.

The essence of the analysis technique is to identify reference
values per phone, and then track the trajectory with which
the audio signal diverges from these reference values over
time. We expect these reference values to act as if they are
‘targets’, with some form of transition occurring from one
target to the other over time. We are interested in determining
whether different types of transitions occur, and whether
similar transitions are observed over similar phone classes
across multiple speakers.

A. Reference values

Typical ASR systems utilize frame-based feature vectors
such as Mel-Frequency Cepstral Coefficients (MFCCs) or
Linear Predictive Coding (LPC) coefficients to represent the
speech signal effectively. In this work we utilise MFCCs
normalised to have zero mean and unit variance as our input
features. (For each feature vector, normalisation is performed
by subtracting the mean and dividing by the standard deviation
of the unprocessed feature values.) All MFCC vectors are
generated using the same parameters as the system described
in section IV-B.

As reference values, we calculate the mean of the nor-
malised feature vectors over all monophones in the training
corpus. ASR alignments are always used to associate the
feature vectors with corresponding phone labels, leading to a
selection of feature sections that would normally be selected
during the ASR training process. Different means can be
calculated by either summing over all speakers or only over
monophones of the specific speaker. In addition, all frames in a
monophone can be used, or only the central frames (associated
with the centre states of the HMM alignments, assumed to be
more stable as target values, and less subject to co-articulatory
effects).

B. Difference measures

Various analytical functions may be used to calculate the ex-
tent in which each frame diverges from the respective reference

values. We experiment with the Pearson correlation coefficient,
the Euclidean distance, and the dot product between two
vectors.

These measures are defined as follows. For any two random
variablesX andY the Pearson correlation coefficient is given
by:

ρXY =
Cov(X,Y )

σXσY

(1)

whereCov(X,Y ) = E[(X − µX)(Y − µY )]

and µ. and σ. indicate the mean and standard deviation of
each of the variables. The Euclidean distance is given by:

dXY =

√

√

√

√

n
∑

i=1

(xi − yi)2 (2)

where xi and yi are the separate dimensions of then-
dimensional random variablesX andY , and the dot product
by:

X · Y =

n
∑

i=1

xiyi (3)

C. Tracking trajectories

Each of the above measurements are used to obtain two
discrete values per frame (measuring the difference from the
two reference values on either side of the transition boundary).
In order to create a trajectory from the frame-based values,we
fit a polynomial function using least-squares estimation. This
approach effectively minimizes the squared errorE, given by:

E =
n

∑

i=1

|p(xi) − yi|
2 (4)

where|p(xi) − yi|
2 are the squared residuals.

The order of the polynomial is an important factor to
consider, with higher order polynomials quickly leading to
overfitting. We describe the trajectories formed near transition
boundaries in terms of a 3rd order polynomial function and
only fit the frame sequence closest to the phone boundary.
This is done in order to prevent interference from additional
co-articulation to the left and right of the phone transition
being analysed. (Only the closest 50% of monophone frames
are used in our experiments, effectively describing a diphone, a
heuristic measure meant to obtain a balance between including
only the relevant part of the trajectory and still retaining
sufficient frames for analysis.)

In order to model a phone transition, two trajectories – one
using each reference variable as target – are constructed.

D. Measuring co-articulation effects

In order to analyse co-articulation effects, we measure:
• the goodness of fit per trajectory,
• the difference between monophone reference values, and
• the trajectory slope at the transition boundary.

We analyse these measurements over all test data, and for spe-
cific phone classes. We also report on the standard deviation
of these measures as an indication of intra-class variability.



IV. EXPERIMENTAL SET-UP

A. Overview

Frame-based values can be calculated using any of the
difference measures and reference mean variables described
above. In order to ensure that we are constructing meaningful
representations of the modelled acoustics, assessment of the
difference measures are required. In essence, given specific
reference mean variables (corresponding to the phone labels
of a transition) tracked trajectories must yield the best possible
separability of the frame-based features to the left and right
of a transition boundary. (Some transition classes have such
strong co-articulation effects that separation is acoustically
constrained. This will typically be the case for very similar
sounding phones.) In our first set of experiments, reported
on in section V-A, we use class separability and boundary
tracking to evaluate the overall accuracy of our technique.

Extraction of meaningful trajectories from the frame-based
values is achieved using polynomial functions. The different
ways in which these trajectories categorise different types of
acoustic change is investigated in our next set of experiments,
reported on in section V-B.

Co-articulation effects manifest differently for different
phone contexts. To understand how co-articulation phenomena
can be analysed based on the constructed trajectories, we con-
duct experiments considering broad phone transition classes,
as reported on in the final part of the results section (section
V-C).

B. Speech data and alignments

We use the TIMIT speech corpus [1] for all of the exper-
iments discussed below. The corpus consists of630 speakers
from eight major dialect regions in the United States. For every
speaker there are10 utterances resulting in a total number
of 6300 utterances. The corpus is divided into a standard
training and testing set. For the training data there are326
male and136 female speakers giving a total of462 training
speakers. The types of sentences that were read is divided into
three parts:sx, si andsa. MIT designed the450 phonetically
balancedsx sentences, while thesi sentences form1890
phonetically diverse sentences designed at SRI. Finally the
test set consist of168 speakers, selected so that no speaker
appears in both the training and test set.

In order to generate accurate phone transition boundaries,
we obtain automatic alignments using a standard HMM-based
ASR system trained using the training set of the TIMIT
corpus. For this purpose we build a context-dependent cross-
word phone recogniser using tied triphone models.39 MFCC
features are used, which include13 MFCCs and their first and
second order derivatives. MFCC parameters include a window
size of25ms and a frame rate of10ms respectively. Cepstral
Mean Normalisation (CMN) is applied. With regard to the
modelling structure, each triphone model has3 emitting states
with 7 Gaussian mixtures per state and a diagonal covariance
matrix. The system is used in forced alignment mode to output
state-level phone alignments. These alignments provide the

HMM-based phone transition boundaries used in the next
section.

V. RESULTS

A. Overall accuracy of measures

In order to evaluate the effectiveness of the trajectory
tracking technique, the frame-based values are analysed with
regard to: (1) their ability to separate classes to the left and
right of the known phone transition boundary, and (2) the
proximity of the trajectory-based transition boundary to the
HMM-based transition boundary.

1) Class separability:It is possible to measure the average
difference from each reference value (the average of the frame-
based values) to the left and right of the (known) transition
boundary, and perform phone classification based on the differ-
ence between these two values. Table II indicates the number
of phone transitions for which both of the phones are correctly
classified using the various difference measures described
in section III-B. It is found that, while all three difference
measures provide fair class separability, the Euclidean distance
outperforms both correlation and the dot product.

Switching to the state level boundaries (indicated asASR
centre in the table) results in an even further improvement
for the Euclidean distance, but not for the other measures.
This shows the presence of two opposing effects: (1) station-
ary components at phone centres and (2) encoding of co-
articulation in the reference variables. At the phone centres
less co-articulation yields more separable trajectories,while
longer trajectories are likely to reveal more information with
regard to the particular phone.

The observed classification accuracy (averaged over all
phone classes) of81.3% when using the Euclidean distance as
difference measure is surprisingly high, given the simplicity of
the classification technique. For the remainder of our analysis,
we mainly report on results obtained using the Euclidean dis-
tance. Similarly, we focus on the use of speaker-independent
monophone means as reference values. Calculating a complete
set of classification results, given the different options of
reference values, yield only slightly better classification for
speaker-specific means or means based only on central frames.
We find the speaker-independent monophone means more
robust because of the large amount of data available in the
training corpus.

Difference # Correct % Accuracy
measure classifications

Euclidean 40 558 77.1
Correlation 39 190 74.5
Dot product 36 644 69.7

Euclidean (ASR centre) 42 747 81.3
Correlation (ASR centre) 37 585 71.5
Dot product (ASR centre) 31 074 59.1

TABLE II
Number of correct classifications using mean frame-based values and known

ASR boundaries



2) Boundary tracking:The evaluation technique described
above relies on a known transition boundary. How close is the
transition boundary identified by the tracked trajectoriesfrom
the version obtained from the HMM-based ASR system? We
evaluate this for different orders of polynomial functions, using
the crossing points of the two trajectories to identify transition
boundaries.

Not all phone transitions produce pairs of trajectories that
cross each other: Table III lists the number of phone transitions
that can be identified using polynomial function crossing
points. For the usable boundaries, the distance (in frames)
between the identified and known phone transition boundaries
is calculated. This provides a clear indication of the boundary
tracking capability of these functions. (Note that the ASR-
based boundaries are also estimates rather than an indication
of a ground truth.)

In Table III we also report on the goodness-of-fit (E) for
the different polynomial functions, calculated by taking the
average of the mean square error values that describe the
fit of the two individual polynomial functions. As higher
order functions are used to estimate trajectories, a closerfit
is obtained and the mean square error decreases. As this may
lead to overfitting, we select a 3rd order polynomial for the
remainder of our analysis: the shape of a 3rd order polynomial
lends itself well to describe the behaviour of a trajectory near
and crossing a phone boundary, and allows us to focus on the
co-articulation due to a single phone transition.

Measure # Usable % Usable E Diff
(order) boundaries boundaries (# frames)

Euclidean (1) 42 552 80.9 6.345 1.828
Euclidean (2) 47 909 91.1 4.318 2.100
Euclidean (3) 48 737 92.7 2.990 1.897
Euclidean (4) 49 312 93.8 2.311 1.846
Correlation (1) 41 502 78.9 0.964 1.839
Correlation (2) 46 430 88.3 0.569 2.103
Correlation (3) 47 534 90.4 0.339 1.933
Correlation (4) 48 101 91.5 0.240 1.871
Dot product (1) 39 526 75.2 44.471 1.959
Dot product (2) 46 079 87.6 25.051 2.314
Dot product (3) 46 688 88.8 13.976 2.039
Dot product (4) 47 272 89.9 9.580 1.971

TABLE III
Boundary tracking of phone transitions using different orders of polynomial

functions

B. Trajectory models

From the results in Section V-A it can be seen that the
underlying speech features (MFCCs) are co-articulated in two
main ways: 1) Dynamics of change characteristics 2) acoustic
contextual influence. These two effects may also interact with
each other.

To show the prominent types of co-articulations observed,
we present four example figures. The plots show the stacked13
MFCC coefficients for all frames of the monophone transition,
the Euclidean frame-based difference values, as well as the
final diphone trajectories consisting of the two polynomial
functions. Blue dots indicate frame-based values for the first

Fig. 1. Gradual trajectories revealing strong co-articulation for the vowel-
vowel phone transition.

Fig. 2. Steep trajectory slopes revealing the definite transition of the vowel-
fricative class

phone, similarly red crosses correspond to frame-based values
for the second phone label and the phone transition boundary
as identified by the HMM-based ASR system is indicated as
a vertical line.

Figure 1 represents an example of the phone transition /oy/-
/er/ within the vowel-vowel class, spoken by a male. Strong
acoustic co-articulation over a relatively long period of time
is clearly visible for frames11 - 27. This results in a gradual
change and small slope values at the ASR boundary. From
the frame-based values, one can see that classification with
regard to the mean value is still possible, assisted by the long
duration of the speech segment.

An example of a female /iy/-/s/ transition belonging to the
vowel-fricative class, is given in Figure 2. The MFCCs and



Fig. 3. Abruptly changing trajectories of the vowel-stop phone transition
class

frame-based difference values clearly show a definite transition
around frame numbers9-10, indicating a large difference in
acoustic quality between the two phones. It is interesting
to note that even for large acoustic change, co-articulated
features flowing well into both phones are present. Diphone
polynomial trajectories have steep slopes at the ASR boundary
and classification with regard to the average of the frame-based
values is accurate.

There are also abrupt transitions, with very little co-
articulation visible. A clear example comes from the vowel-
stop class (/aa/-/b/). Both MFCCs and frame-based difference
values show very fast change within a small time period. Co-
articulation effects with regard to this transition is seento
affect only 4 frames18-22 and the frame-based values have
high separability (see Figure 3).

During all of the analyses (also see below) the nasal-nasal
transition class tends to be problematic. From the MFCC
values shown in Figure 4, the straight lines indicate very
similar acoustic quality for most of the frames and only grad-
ual changes. The frame-based difference values support this
finding, showing only gradual transition and bad separation.
Co-articulation is seen to be present for all of the frames,
although this may be influenced by the similarity of the two
targets being tracked. The slopes of the polynomials have the
same sign and are very similar.

In this section we demonstrated the use of trajectory models
to analyse co-articulation by presenting four very specific
examples that are prototypical of the types of co-articulation
observed in the larger corpus. In the next section we analyse
some of these effects by averaging over broad phonetic classes.

C. The effect of broad phonetic classes

Different classes of phone transitions reveal interesting
trajectory effects. Specifically, we evaluate5 parameters to
categorise the trajectories formed for different classes:

Fig. 4. Low separability and strong co-articulation effects yield similar
trajectories for the nasal-nasal class

1) The slope of the polynomial function trajectory of the
first phone reference variable,

2) the slope of the polynomial function trajectory for the
second phone reference variable,

3) the Euclidean distance of the monophone means (the
difference between the two reference values),

4) the standard deviationσ1 of the first slope, and
5) the standard deviationσ2 of the second slope.

Table V shows the above values for different phone tran-
sition classes constructed according to the CMU dictionary
phone groupings [7].

Ordering with regard to the steepness of the slopes, we
see that phone transitions with steep slopes also yield good
separation for the mean difference between the reference
values. Indeed we calculate the average of the frame-based
values for the vowel-fricative, vowel-affricate, nasal-fricative,
nasal-affricates, to yield correct classification percentages of
91.6, 95.8, 84.4 and 92.1 respectively (Table IV). Similarly,
the nasal-nasal class has a low separation of the average
frame-based values (0.194 - see Table V) for the few phone
transitions (29.1%) that do yield correct classification. There
are exceptions to the rule. The nasal-liquid class has good
separability and steep slopes but classification of the average
frame-based values is at60.0%. In general, similar classes
(such as nasal-nasal or fricative-fricative) have the weakest
separability, as could be expected.

We observe that the standard deviations of the slopes,σ1

andσ2 to be similar in magnitude for particular phone classes,
indicating a similar variability with respect to the intra-class
diphone transitions. Interestingly, the magnitude of the two
slopes are typically not equal, with the divergence from the
first mean occurring more quickly than the approach towards
the second mean. This co-articulation effect warrants further
investigation.



Transition group # Correct % Accuracy
classifications

vowel-affricate 640 95.8
vowel-fricative 8 268 91.6

vowel-semivowel 2 096 83.1
vowel-stop 9 142 79.8
vowel-nasal 5 005 76.5
vowel-vowel 1 143 70.2

vowel-aspirate 693 65.4
vowel-liquid 4 790 62.9

nasal-affricate 93 92.1
nasal-fricative 862 84.4

nasal-semivowel 125 79.6
nasal-aspirate 38 64.4

nasal-stop 1 040 63.1
nasal-liquid 183 60.0
nasal-nasal 23 29.1

liquid-affricate 53 100.0
liquid-fricative 709 94.8

liquid-stop 1 969 83.9
liquid-semivowel 230 79.6

liquid-liquid 44 73.3
liquid-aspirate 30 65.2

fricative-semivowel 353 94.9
fricative-aspirate 70 75.3

fricative-stop 1 864 69.5
fricative-fricative 270 59.3
fricative-affricate 34 57.6
stop-semivowel 408 72.6
stop-affricate 77 63.6
stop-aspirate 52 45.6

stop-stop 227 35.0
semivowel-affricate 9 81.8
semivowel-aspirate 15 68.2
affricate-aspirate 3 100.0

total 40 558 77.1

TABLE IV
Number of correct classifications using mean frame-based values and known

ASR boundaries for specific transitions.

VI. CONCLUSION

It is clear that polynomial models of the Euclidean differ-
ence between the mean and instantaneous MFCC vectors are
highly informative on the nature of the transitions between
different phone classes. These transitions, in turn, capture the
essence of the co-articulation effects which – according tothe
argument in Section I – are likely to be an important factor
in the substantial data requirements for high-accuracy speech
recognition systems.

In light of the variability seen in the different types of phone
transitions, it is not surprising that current context models
do not generalize well to unseen (or rarely seen) context-
dependent phones. This suggests that models tailored to the
different types of transitions seen here may lead to systemsthat
are more parsimonious in their data needs; the development
of such models is therefore the major focus of our ongoing
research.

Transition group Slope 1 Slope 2 Diff reference σ1 σ2

values
vowel-fricative 0.426 −0.236 3.064 0.510 0.516

vowel-stop 0.427 −0.203 2.925 0.603 0.592

vowel-affricate 0.353 −0.205 2.964 0.432 0.398

vowel-nasal 0.376 −0.164 2.493 0.639 0.635

vowel-semivowel 0.230 −0.180 2.413 0.490 0.515

vowel-vowel 0.168 −0.182 2.561 0.292 0.289

vowel-liquid 0.164 −0.175 2.551 0.349 0.388

vowel-aspirate 0.123 −0.063 2.122 0.440 0.466

nasal-liquid 0.347 −0.290 2.782 0.495 0.441

nasal-fricative 0.295 −0.317 2.819 0.531 0.485

nasal-affricate 0.311 −0.289 2.486 0.303 0.313

nasal-semivowel 0.566 0.001 2.108 1.311 0.924

nasal-stop 0.254 −0.266 1.958 1.030 0.943

nasal-aspirate 0.230 0.008 1.792 0.690 0.896

nasal-nasal −0.226 −0.394 0.983 1.553 1.746

liquid-fricative 0.499 −0.315 3.084 0.528 0.503

liquid-affricate 0.358 −0.341 3.308 0.642 0.482

liquid-stop 0.371 −0.240 2.898 0.715 0.665

liquid-liquid 0.231 −0.207 2.944 0.269 0.298

liquid-aspirate 0.102 −0.126 2.440 0.436 0.415

liquid-semivowel 0.074 −0.084 3.030 0.241 0.262

fricative-semivowel 0.259 −0.323 3.140 0.429 0.457

fricative-stop 0.142 −0.154 1.760 0.427 0.444

fricative-aspirate 0.253 0.073 2.037 0.424 0.596

fricative-fricative 0.057 −0.068 1.450 0.539 0.490

fricative-affricate 0.088 −0.028 1.510 0.195 0.211

stop-semivowel 0.006 −0.493 2.573 1.403 1.215

stop-affricate 0.185 −0.107 1.630 0.332 0.308

stop-aspirate 0.059 0.260 1.583 1.080 1.300

stop-stop 0.119 −0.051 1.063 0.700 0.573

semivowel-affricate −0.063 −0.510 2.951 0.556 0.320

semivowel-aspirate 0.321 0.0156 2.119 0.507 0.466

affricate-aspirate 0.503 0.096 1.635 0.301 0.362

TABLE V
Slopes of 3rd order polynomial functions at ASR diphone transition

boundary
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