
Refinement of Falsified Depth Maps for the 
SwissRanger Time-of-Flight 3D Camera on 

Autonomous Robots  
 

Isaac O. Osunmakinde, MIEEE 
Mobile Intelligent Autonomous Systems, Modelling and Digital Sciences Department,  

Council for Scientific and Industrial Research (CSIR),  
P O Box 395 Pretoria 0001, South Africa 

iosunmakinde@csir.co.za 
 

 
Abstract—Robot navigation depends on accurate scene analysis 
by a camera using its data. This paper investigates a refinement 
of the inherent falsified depth maps generated from a 3D 
SwissRanger camera in the emission of beams of rays through a 
modulated infrared light channel affected by environmental 
noise. The SR4000 time-of-flight camera produces streams of 
depth maps projected as a 2.5D on an x-y plane, which are 
refined using a dynamic convolution filter method coupled with a 
hypergraph-type model. Our findings indicate that the range of 
the camera is experimentally confirmed as being nine metres; 
more extreme values of impulse noise pixels are detected outside 
the range; while the uniform noise of valid pixel values affects 
depth maps of objects formed within the range. A decrease in the 
window size of filtering, to a pixel level, minimizes both the 
falsified depth maps of corrupted frames and the dominant effect 
of the noise pixels, to an acceptable level. The performance of our 
approach in the absence of complementing time-of-flight (ToF) 
with other camera types exhibits reliable depth maps for 
promising field work in terms of visual quality, mean squared 
error (MSE), root mean squared error (RMSE), and peak signal-
to-noise ratio (PSNR). 
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I.  INTRODUCTION  

Safety and security in autonomous navigation constitute some 
of the significant objectives of robotic technology [1]. 
Researchers and practitioners have stressed that autonomous 
robot navigation along rough terrains, such as outdoor 
environments, is an ongoing key challenge [1] [2]. In practice, 
one could say that rough terrains may be defined as possessing 
different percentages of mingled features within the different 
parts (left side, right side and centre) of a scene frame, 
perceived by a robot sensor as a beam of depth scan. To 
complicate the challenge further, robots are now deployed for 
underground mining where 3D data sensing is required. This 
application demands estimation of accurate depths of objects 
and building realistic maps of such rough and dangerous 
mining environments. Existing and alternative 3D sensors, 
such as structured light cameras and laser range finders, are 

complex, expensive, and often require expert knowledge to 
operate [3] [4].  

3D data perception is becoming increasingly essential in 
the scanning market and in application scenarios, such as 
robotics in mining. The SwissRanger SR4000 ToF 3D camera 
shown in Fig. 1(a) is mounted on a robot for sensing 3D 
images in this domain of interest. It offers a variety of 
benefits, such as measuring 3D depth maps at video rates with 
a resolution of 176x144 pixels, and it is an active sensor that 
measures the travel time of infrared light [5]. However, similar 
to other sensors using modulated light, the ToF camera suffers 
from ray-scattering due to inability to distinguish depths that 
are a multiple of wavelength of the modulated signal. Its 
image frames are susceptible to additional noise, which 
produces falsified depth maps. For instance, if an object 
(object A) obstructs the view of another (object B) within the 
camera’s 9-metre range, the depth map of object B is distorted 
with unequal probabilities (see the 3 chairs adjacent to one 
another in Fig. 1(b)).  
 

            
(a) ToF camera    (b) Corrupted frame             
 
Figure 1: Problem establishment of (a) a ToF camera; and (b) a corrupted 
frame with falsified depth maps.  
 
The falsified depth map (noise) perceived on the corrupted 
frame appears to discourage the use of ToF cameras on 
autonomous robots. The noisy nature of the ToF camera in the 
above scenario affects the building of realistic maps, and may 
hinder the ability of robots to estimate the positions of 
obstacles accurately. This is problematic, as robots are 
increasingly being used in industry to improve safety and to 
save lives. The two major types of impulse noise, which arise 



in digital image transmission over noisy channels or faulty 
sensors, are presented in literature as: (i) salt-and-pepper noise 
and (ii) uniform noise [6] [7]. In the former, corrupted pixels 
have extreme values and are easy to detect as they differ 
noticeably from their neighbours. In the latter, noisy pixels 
have valid values, which are more difficult to spot within the 
uncorrupted pixels. We observed that the salt-and-pepper 
noise appeared to be generated predominantly at a far-field 
outside the nine metre ToF range, while the uniform noise 
appears to be generated more within the camera’s range, 
similar to the example in Fig. 1. Since the noise outside the 
ToF range can be ignored in the camera and the depth of an 
obstacle is important to a robot’s navigation, our experimental 
knowledge indicates that improving the depth map estimation 
within the camera’s range is manifestly a sound basis for 
optimising the ToF perception.  

Several references in [8] [9] [10] [11] have presented some 
sophisticated noise correction methods, including camera 
calibration, fusion, and related noise removal methods. In [8], 
a distance calibration approach for Photonic Mixer Device 
(PMD)-based sensoring is presented. The process includes a 
lateral and distance calibration technique where the camera’s 
intrinsic parameters are estimated. In [9], a PMD-stereo fusion 
algorithm is used to combine patchlets from the PMD-stereo 
camera. Least-square method is used to estimate 3D patchlets 
from PMD range images as well as from a pair of stereo 
images. Jiejie Zhu et al. [10] mention that fusion of the ToF 
depth and stereo can be used for obtaining accurate depth 
maps. They introduce a method for combining the results from 
both image capturing methods, to render a result that performs 
better than either method alone. A depth probability 
distribution function from each method is calculated and then 
merged. In contrast, the ToF devices are typically poorly 
calibrated [10].  

Related to this work is also research on restoration from 
noise introduced in the intensity of 2D images using filtering 
methods [11]. Classical mean filter is said to remove the noise, 
but it leaves out a few isolated stars in image as a result of its 
inability to distinguish between original and noisy pixels. 
Hence, unrepresentative pixel values participate in the filtering 
process, which degrades the image. Consequently, the 
application of the filtering approaches to refine ToF noise is 
hardly mentioned, perhaps due to this limitation. The 
motivation of the experiment presented in this paper is to 
emphasise that reliable depth maps, using ToF cameras in the 
absence of other types of cameras, are feasible. This is 
investigated with a dynamic convolution filter based on a 
hypergraph model, which improves the limitation of using the 
classical mean filter alone. The major contributions in this 
paper are as follows: 
 
• The application of the dynamic convolution filter based on 

a hypergraph model, to the ToF noise, which improves a 
limitation of distinguishing pixels in classical mean filters. 

• The refinement of falsified depth maps is evaluated on a 
real-life ToF data stream using only ToF cameras in the 
absence of other camera types. 

  
The rest of the paper is arranged as follows: section II presents 
the theoretical background, which includes operation of the 
ToF cameras and modelling of noise pixels; section III 
presents the depth map refinement which includes the 
convolution filter, hypergraph and pixel neighbourhood, and 
our refinement approach; section IV critically presents visual 
inspection and quantitative experimental evaluations of the 
approach using lightly and heavily corrupted ToF images, and 
five noise levels. Our refinement approach is also 
benchmarked with a popular Lena image. We conclude the 
paper in section V. 

II. THEORETICAL BACKGROUND 

A. Operation of the ToF Camera  

The SwissRanger SR4000 time-of-flight camera [5] is used 
for acquiring 3D range data with a resolution of 176x144 
pixels. The camera emits infrared light which illuminates a 
scene and allows the depth of each pixel to be measured based 
on the arrival time of the modulated light. Unlike a laser 
scanner, which repeatedly scans scene points for a depth map, 
the ToF advantageously scans full frame depth at once. 
However, being a camera that uses phase differences of 
modulated light, it suffers from challenging noise associated 
with rapid movement. More information about the ToF camera 
can be found in [12].   

B. Modelling of Noise Pixels 

Since errors or false depths are introduced in the noisy 
communication channel or imaging sensor, such as the ToF 
camera, there are two main models for describing most noise 
in digital images. These models are [13]: (i) additive Gaussian 
and (ii) impulse noise models. The additive Gaussian noise 
model is formulated as equation (1). 
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ijx  indicates the noisy pixel (i, j), oijx  indicates the original 

pixel and ijn  is the added noise. This type of model describes 

the salt-and-pepper noise. The impulse noise replaces a pixel 
value with a random value and is formulated as equation (2). 
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p is a probability which is equal to noise rate in the image. 
This type of model describes the uniform noise. Since both 
noise types are perceived on the same ToF image frame, the 
variation pattern is less dependent on the type of noise. A 
combined approach is required to mitigate the dominant 
effects of the noise. 



III.  THE PROPOSED DEPTH MAP REFINEMENT 

A. Convolution Filter 

The convolution filter considered herein is the mean filter 
[14] [18], which is characterised as a low-pass box filtering. It 
smoothes images as it is often used to minimise noisy pixels. 
In its process, it convolves a kernel with a noisy image where 
it replaces each pixel value with the mean value of its 
neighbours, including the target pixel. The process is adopted 
from a Sobel operator [15] and is described as shown in 
equation (3) for a noisy image I(x, y) with a filter kernel W(k, 
k). 
 
   I’(x, y) = I(x, y)  ⊗  W(k, k)          (3) 
 
 I’ (x, y) is a filtered image and⊗ is a convolution operator. 
The size of the neighbourhood or kernel used is paramount to 
the performance of the filter [16]. The most commonly-used 
kernel sizes are 3x3, 5x5, 7x7, etc. The filter is characterised 
by the fact that an increase in the kernel size increases the 
smoothing performance, but the image gets blurred. This 
implies that the choice of the convolution kernel size is a 
trade-off between noise reduction and blurring effect. The 
trade-off can be balanced or optimised using the concept of a 
hypergraph model, as explained in subsection B. 

B. Hypergraph and Pixel Neighbourhood 

A hypergraph H [14] is a pair (X,ξ ) consisting of a non-

empty finite set X and a family ξ = IiiE ∈)(  of non-empty 

subsets of X called hyperedges, with equation (4). 
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Considering star of H with centre at x: For x ∈  S, a star of H 
(with centre x) is the set of hyperedges of H which contain x 
and is denoted by H(x). The degree of x is the cardinality of 
the star H(x) denoted d(x) = card(H(x)). Otherwise, the 

neighbourhood of vertex x ∈  X is the set xΓ  formed by all 

vertices adjacent to x. In image analysis, a hypergraph 
associates a pixel x to its neighbourhood and forms a star with 
d(x) = 3, 4, or 8 neighbours of a point. Since the choice of d(x) 
often depends on the image application, this work primarily 
uses the maximum of d(x), which conditionally reduces in size 
subject to alleviating the limitation of classical mean filter. 

Similar to other convolution filters, classical mean filter is 
known to have the limitation of not distinguishing original 
pixels from noise pixel values, which can significantly affect 
the mean value of the neighbouring pixels. This issue is 
mitigated with a dynamic convolution kernel in our approach 
in subsection C. 

C. The Refinement Approach 

This refinement approach begins with the construction of a 
pixel’s neighbourhood. These hypergraph neighbourhoods 

vary dynamically in kernel size. In order to balance between 
noise reduction and blurring effect in the choice of kernel size, 
a hypergraph of eight-neighbours of a point, as in Fig. 2(a), is 
used. This controls the excessive usage of a pixel’s 
neighbourhood. It also ensures direct influences to a centre 
pixel in relation to the 3x3 kernel shown in Fig. 2(b). The 
primary 3x3 size of the kernel changes dynamically as it is 
conditioned on the presence of noise pixels in the 
neighbourhood of a pixel. Before every convolution filtering, 
detected noise pixels are eliminated from the process since 
they can ripple errors through the mean value computed from 
the pixel’s neighbourhood. This addresses a limitation with the 
classical mean filtering using the noise detector scheme in 
[16]. 
 

 
 
(a) Eight-neighbours     (b) Filter kernel W 
 
Figure 2: Transformation of (a) eight-neighbours of a centre pixel x [14], and 
(b) the primary filter kernel adopted from [15] 
 
The scheme states that: (i) if a pixel x has at least one pixel y 
amongst the other eight pixels in the neighbourhood then pixel 
x is considered an original pixel and pixel y is deemed similar 
to pixel x; and (ii) if x does not have at least one similar pixel 
amongst its neighbours, it is considered a noisy and strange 
pixel as shown in equation (5). 
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D1 is adopted as the maximum depth difference between the 
similar x and y pixels and is often assumed to be eight as for 

Fig. 2(a). thN1 is 1 as every pixel is assumed to be similar to at 

least 1 pixel, and K is the number of y pixels that satisfy 
equation (5) while the noisy pixels are eliminated. This 
implies that the value of the kernel size is modified as K 
changes, resulting in the use of the dynamic convolution 
kernel.  

Otherwise, the convolution process in equation (3) is 
expatiated and described in equation (6), given that there is an 
image (I) of size M x N with a filter kernel (W) of size k x k 
subject to changes in k size. A sample computation of an 
output value for pixel I’22 is shown in equation (7). During 
process of the refining the boundary pixel values, the kernel 
values are padded with zeros. A clearer idea of the process 
adopted here can be obtained from the edge detection of Sobel 
operator in [15]. 
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I’ 22 = (I11 * w11) + (I12 * w12) + (I13 * w13) + 
         (I21 * w21) + (I22 * w22) + (I23 * w23) +                  (7) 
         (I31 * w31) + (I32 * w32) + (I33 * w33) 

D. Scoring and Evaluation Scheme  

In this section, the performance of our proposed approach 
is studied through visual inspection as well as quantitatively. 
During visual inspection, one compares the quality of the pixel 
values of corrupted frames with those of refined image frames. 
The following evaluation models were chosen as quantitative 
refinement scoring schemes [17]: (i) the mean squared error 
(MSE), (ii) the root mean squared error (RMSE), and (iii) the 
peak signal-to-noise ratio (PSNR). The schemes are described 
in equations (8), (9), and (10) respectively. 
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iy  and iŷ  denote the pixel values of the refined and the 

original image respectively, and M x N is the ToF image size. 

In this work, iy  and iŷ  are also used to denote the pixel 

values of the corrupted and of the original images. They are 
used as objective evaluation schemes for the refined frames. 
Lower scoring results for both MSE and RMSE, and higher 
scoring results for PSNR based on the rate of noise are 
expected and preferred. 

IV.  EXPERIMENTAL EVALUATIONS  

One of the objectives of this paper is to apply the theory of 
our proposed approach in practice by emphasising applications 
and carrying out practical work on refining the corrupted 
depth maps. The ToF captures daylight scenes and produces a 
stream of noisy image frames projected as a 2.5D on an x-y 
plane. An original noisy frame is shown in Fig. 3(a). An 
obstructing body is set to move towards the SR4000 3D ToF 
camera from a distance, generating increased noise. Again, the 

range of the camera is experimentally confirmed as nine 
metres and, the size of an image frame is 176x144 pixels. 
Extreme values of the impulse noise pixels appear to be 
generated more outside the range, while uniform noise of valid 
pixel values is observed affecting the depth maps of objects 
formed within the range.  

Since the correct depths of obstacles are important to the 
robot’s navigation, the emphasis is on the depths of the three 
chairs placed adjacent to one another within the ToF range as 
shown in Fig. 3(a). The performance of the noise refinement 
approach is compared on lightly and heavily corrupted frames. 
A heavily corrupted frame is when the obstructing body 
appears closest to the ToF’s light emission and is estimated to 
have generated a 90% noise level, as shown in Fig. 4(b). A 
lightly corrupted frame, on the other hand, has a noise level of 
10%, as shown in Fig. 3(b). This work focuses more on the 
refinement of the noise introduced and generated by the 
moving body within the range. This type of noise is more 
difficult to spot within the uncorrupted pixel values. In terms 
of performance measures, the MSE, RMSE, and PSNR are 
computed when evaluating the original depth frames against 
the refined and the corrupted frames as shown in Table 1. 

A. Observations for Lightly Corrupted ToF Images  

The objective here is to access the qualitative performance 
of our refinement approach on lightly corrupted ToF images 
which exhibit noticeable differences when compared to the 
heavily corrupted images in Fig. 4(b). In particular, Fig. 3(b) 
contains a 10% noise level as it captures the state of the 
obstructing moving body being a distance from the ToF.  
 

    
  (a) Original frame               (b) Lightly corrupted frame 

    
(c) Error plot before refinement            (d) Error plot after refinement 
 
Figure 3: A 2.5D depth map frame from an indoor data stream: (a) original 
noisy frame from the ToF; (b) corrupted frame due to a moving body; (c) error 
plot before refinement; and (d) error plot after refinement equivalent to the 
expected result.  
 

Fig. 3(b) indicates that the noise introduced is light, which 
may not be noticeable when compared to Fig. 3(a). Fig. 3(c) 
indicates the error plot reconstructed before refinement. Fig. 
3(d), on the other hand, is the error plot reconstructed after 
refinement, based on our approach. Although, in an ideal 
camera situation, the background of Fig. 3(c) would be dark 



and the foreground (moving body) lighter in colour, one can 
observe that the falsified depths are minimised to an 
acceptable level in Fig. 3(d).  

B. Observations for Heavily Corrupted Images 

Again, the objective here is to access the qualitative 
performance of our approach on heavily corrupted ToF images 
which are noticeably different from the lightly corrupted ones 
in Fig. 3(b). In particular, Fig. 4(b) contains a 90% noise level 
as it captures the state of the obstructing body being right in 
front of the ToF. In Fig. 4(b), it can be seen that the noise 
introduced is heavy and very noticeable, compared to that in 
Fig. 4(a). This results in more white clusters on the error plot 
reconstructed before refinement in Fig. 4(c). On the other 
hand, Fig. 4(d) is the error plot reconstructed after refinement, 
according to our approach. It can also be observed that the 
falsified depths are minimised to an acceptable level in Fig. 
4(d).  
 

      
(a) Original noisy frame                      (b) Heavily corrupted frame 

        
(c) Error plot before refinement                 (d) Error plot after refinement 
 
Figure 4: A 2.5D depth map frame from an indoor data stream: (a) original 
noisy frame from the ToF; (b) corrupted frame due to a moving body; (c) error 
plot before refinement; and (d) error plot after refinement tends towards the 
expected result. 

C. Performance on the ToF Image Refinement  

From the results in Table 1, we specifically access the 
quantitative performance of our approach with respect to noise 
levels ranging between 10% and 90%. 

 
Table 1: Comparing the refined and corrupted images based 
on the noise levels.  
Noise 
Level 
(%)  

Refined 
 
RMSE     MSE        PSNR 

Corrupted 
 
RMSE      MSE        PSNR 

10 
 
30 
 
50 
 
70 
 
90 

45.98 
 
53.22 
 
63.72 
 
81.80 
 
122.6 

8.29 
 
11.19 
 
15.91 
 
26.24 
 
23.31 

63.01 
 
61.74 
 
60.18 
 
58.01 
 
58.52 

49.93 
 
56.20 
 
66.02 
 
85.40 
 
126.20 

9.77 
 
12.39 
 
17.09 
 
28.61 
 
25.88 

62.29 
 
61.26 
 
59.86 
 
57.63 
 
58.06 

Having compared the original and corrupted frames, as 
well as the original and refined frames, the results of the MSE, 
the RMSE, and the PSNR are shown in Figs. 5, 6, and 7 
respectively. In Figs. 5 and 6 one can see that the trend of the 
refinement results minimise the noise significantly compared 
to the trend showing the corrupted pixels. This justifies the 
fact that lower scoring results are better for the MSE and the 
RMSE. On the other hand, the PSNR measures the refinement 
performance with higher scores over the corrupted frames. 
The higher scores confirm a constructive refinement of our 
approach relating to the corrupted frames.  
 

 
Figure 5. The MSE at various noise levels for the refined image is lower than 
that of the corrupted image when compared to the original frames. 

 

 
Figure 6. The RMSE at various noise levels for refined image is lower than 
that of the corrupted image when compared to the original frames. 

 

 
 
Figure 7. The PSNR at various noise levels for the refined image is higher (or 
greater) than that of the corrupted image when compared to the original 
frames. 



It can be seen that the quantitative results here correspond to 
each other and match the noise reduction results in the visual 
quality of subsections A and B. 

D.  Validating Performance with Popular 2D Lena Image 

To validate our refinement performance using the visual 
quality, a popular 2D Lena image from [11] is used as a 
benchmark. The noisy Lena image in Fig. 8(b) is provided for 
refinement and the result in Fig. 8(c) is obtained using our 
approach which is almost equivalent to the noise free image in 
Fig. 8(a). The objective of this paper is focused on refining the 
falsified depth maps on ToF images.      

   
(a) Noise free image          (b) Noisy image                (c) Refined image 
  
Figure 8: Validating our refinement approach with the popular 2D Lena 
image [11], (a) Noise free image, (b) Noisy image, and (c) our refined image 
result. 

E.  Concluding Remarks 

We have proposed and demonstrated the use of a dynamic 
convolution filtering based on a hypergraph model for the 
refinement of ToF noise pixels in the absence of 
complementing the ToF with other camera types. At first, the 
falsified depth map in Fig. 1 seems discouraging, but the 
experimental results on lightly and heavily corrupted frames in 
section 4 show that falsified depth maps from the ToF camera 
could be restored.  

Our findings indicate that the range of the camera is 
experimentally obtained as being nine metres. More extreme 
values of impulse noise pixels are detected outside the range 
while uniform noise of valid pixel values affects the depth 
maps of objects formed within the ToF range. A decrease in 
the window size of filtering to a pixel level minimises both the 
falsified depths of corrupted data frames and the dominant 
effect of the noise pixels, to an acceptable level. In an ideal 
ToF situation, the expected result would be to have the 
background of the visual error maps dark and the foreground 
(moving body) lighter in colour. One can see that most of the 
errors introduced by the moving body in Figs. 3(b) and 4(b), 
are refined when the reconstructed error plot results in Figs. 
3(d) and 4(d) are compared with the error plot before 
refinement in Figs. 3(c) and 4(c). The original errors of the 
ToF in Figs. 3(a) and 4(a) are yet to be addressed properly as 
they seem to appear as white clusters outside the ToF range in 
Figs. 3(d) and 4(d). However, our approach exhibits reliable 
depth maps for promising field work in terms of good 
quantitative performance results, which includes mean squared 
error (MSE), root mean squared error (RMSE), and peak 
signal-to-noise ratio (PSNR) in Figs. 5, 6, and 7 respectively. 

This research has been experimented on a stream of ToF 
data captured in daylight. In future work, the research can be 

explored further in different forms, including the following: (i) 
conduct experiments on a stream of ToF night frames; (ii) 
compare this method with other noise removal methods; (iii) 
improve refinement on the original ToF errors; (iv) carry out a 
field test on robots. 
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