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Abstract—Robot navigation depends on accurate scene analysis complex, expensive, and often require expert kndgéeto

by a camera using its data. This paper investigates refinement
of the inherent falsified depth maps generated froma 3D
SwissRanger camera in the emission of beams of ragfwough a
modulated infrared light channel affected by envirmmental
noise. The SR4000 time-of-flight camera produces sams of
depth maps projected as a 2.5D on an x-y plane, vdfi are
refined using a dynamic convolution filter method oupled with a
hypergraph-type model. Our findings indicate that te range of
the camera is experimentally confirmed as being n& metres;
more extreme values of impulse noise pixels are @eted outside
the range; while the uniform noise of valid pixel alues affects
depth maps of objects formed within the range. A daease in the
window size of filtering, to a pixel level, minimizs both the
falsified depth maps of corrupted frames and the dminant effect
of the noise pixels, to an acceptable level. The permance of our
approach in the absence of complementing time-ofifht (ToF)
with other camera types exhibits reliable depth map for
promising field work in terms of visual quality, mean squared
error (MSE), root mean squared error (RMSE), and ped& signal-
to-noise ratio (PSNR).
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I INTRODUCTION

Safety and security in autonomous navigation ctristisome
of the significant objectives of robotic technolody].
Researchers and practitioners have stressed thaicsmoous
robot navigation along rough terrains, such as autd
environments, is an ongoing key challenge [1] [@]practice,
one could say that rough terrains may be defingubasessing
different percentages of mingled features withia thfferent
parts (left side, right side and centre) of a scémene,
perceived by a robot sensor as a beam of depth Jaan
complicate the challenge further, robots are noplaied for
underground mining where 3D data sensing is reduifdis
application demands estimation of accurate depthsbjects
and building realistic maps of such rough and demge
mining environments. Existing and alternative 3Dhsz@s,
such as structured light cameras and laser ramgier, are

operate [3] [4].

3D data perception is becoming increasingly esskirti
the scanning market and in application scenariaosh sas
robotics in mining. The SwissRanger SR4000 ToF abera
shown in Fig. 1(a) is mounted on a robot for semsab
images in this domain of interest. It offers a &gri of
benefits, such as measuring 3D depth maps at vates with
a resolution of 176x144 pixels, and it is an acteasor that
measures the travel time of infrared light [5]. Hewer, similar
to other sensors using modulated light, the ToFetarsuffers
from ray-scattering due to inability to distinguidipths that
are a multiple of wavelength of the modulated sigris
image frames are susceptible to additional noishjctw
produces falsified depth maps. For instance, if daject
(objectA) obstructs the view of another (objdjt within the
camera’s 9-metre range, the depth map of oldéstdistorted
with unequal probabilities (see the 3 chairs adjate one
another in Fig. 1(b)).

(a) ToF

camera (b) Corrupted frame

Figure 1: Problem establishment of (a) a ToF camera; (B)ich corrupted
frame with falsified depth maps.

The falsified depth map (noise) perceived on therupded
frame appears to discourage the use of ToF camemas
autonomous robots. The noisy nature of the ToF cainethe
above scenario affects the building of realistiqgomaand may
hinder the ability of robots to estimate the posi§ of
obstacles accurately. This is problematic, as mobate
increasingly being used in industry to improve safend to
save lives. The two major types of impulse noiskictv arise



in digital image transmission over noisy channelsfaulty
sensors, are presented in literature as: (i) saltpepper noise
and (ii) uniform noise [6] [7]. In the former, copted pixels
have extreme values and are easy to detect as diffey
noticeably from their neighbours. In the latterisyopixels
have valid values, which are more difficult to spadthin the
uncorrupted pixels. We observed that the salt-aapbpr
noise appeared to be generated predominantly at-befd
outside the nine metre ToF range, while the uniforoise
appears to be generated more within the cameraigera
similar to the example in Fig. 1. Since the noisgsiole the
ToF range can be ignored in the camera and theéh dgpan
obstacle is important to a robot’s navigation, experimental
knowledge indicates that improving the depth mapredion
within the camera’s range is manifestly a soundisbésr
optimising the ToF perception.

Several references in [8] [9] [10] [11] have prdsensome
sophisticated noise correction methods, includirgnera
calibration, fusion, and related noise removal é#h In [8],
a distance calibration approach for Photonic Mikvice
(PMD)-based sensoring is presented. The proce$sdes a
lateral and distance calibration technique wheeedhmera’s
intrinsic parameters are estimated. In [9], a PM&eD fusion
algorithm is used to combine patchlets from the P#i&eo
camera. Least-square method is used to estimajga8iblets
from PMD range images as well as from a pair ofeste
images. Jiejie Zhu et al. [10] mention that fus@fnthe ToF
depth and stereo can be used for obtaining accuteg¢h
maps. They introduce a method for combining theltedrom
both image capturing methods, to render a resattghrforms
better than either method alone. A depth probabilit
distribution function from each method is calcuthtend then
merged. In contrast, the ToF devices are typicalborly
calibrated [10].

Related to this work is also research on restarafiom
noise introduced in the intensity of 2D images gdiitering
methods [11]. Classical mean filter is said to reenthe noise,
but it leaves out a few isolated stars in image assult of its
inability to distinguish between original and noigyxels.
Hence, unrepresentative pixel values participatberfiltering

process, which degrades the image. Consequently, t

application of the filtering approaches to refineFTnoise is
hardly mentioned, perhaps due to this limitationheT
motivation of the experiment presented in this paiseto

emphasise that reliable depth maps, using ToF @amerthe
absence of other types of cameras, are feasiblés iBh
investigated with a dynamic convolution filter bdsen a

hypergraph model, which improves the limitationusfng the

classical mean filter alone. The major contribwian this

paper are as follows:

» The application of the dynamic convolution filteaded on
a hypergraph model, to the ToF noise, which impsoae
limitation of distinguishing pixels in classical anefilters.

» The refinement of falsified depth maps is evaluateda
real-life ToF data stream using only ToF camerashia
absence of other camera types.

The rest of the paper is arranged as follows: @adtipresents
the theoretical background, which includes openatid the
ToF cameras and modelling of noise pixels; sectitin
presents the depth map refinement which includes th
convolution filter, hypergraph and pixel neighboamd, and
our refinement approach; section IV critically prets visual
inspection and quantitative experimental evaluatiaf the
approach using lightly and heavily corrupted ToRg®as, and
five noise levels. Our refinement approach is also
benchmarked with a popular Lena image. We conchhee
paper in section V.

II.  THEORETICALBACKGROUND

A. Operation of the ToF Camera

The SwissRanger SR4000 time-of-flight camera [%ised
for acquiring 3D range data with a resolution of64744
pixels. The camera emits infrared light which ilimates a
scene and allows the depth of each pixel to be meds$ased
on the arrival time of the modulated light. Unlilke laser
scanner, which repeatedly scans scene points depth map,
the ToF advantageously scans full frame depth ate.on
However, being a camera that uses phase differen€es
modulated light, it suffers from challenging noissociated
with rapid movement. More information about the Taafnmera
can be found in [12].

B. Modelling of Noise Pixels

Since errors or false depths are introduced in rbisy
communication channel or imaging sensor, such asTtF
camera, there are two main models for describingtmoise
in digital images. These models are [13]: (i) aisditGaussian
and (ii) impulse noise models. The additive Gaussiaise
model is formulated as equation (1).

Xp =X +n, (1)

X; indicates the noisy pixel (i, j)X; indicates the original

rE)ixel and n; is the added noise. This type of model describes

the salt-and-pepper noise. The impulse noise replacpixel
value with a random value and is formulated as &qu#2).

W = n;
ij T o
X

p is a probability which is equal to noise rate lie image.
This type of model describes the uniform noise.c8iboth
noise types are perceived on the same ToF imageefréhe
variation pattern is less dependent on the typaaie. A
combined approach is required to mitigate the damtin
effects of the noise.

P

a-p) ?



lll.  THE PROPOSEMEPTH MAP REFINEMENT

A. Convolution Filter

The convolution filter considered herein is the mé#er
[14] [18], which is characterised as a low-pass filtering. It
smoothes images as it is often used to minimissynpixels.
In its process, it convolves a kernel with a naisgage where
it replaces each pixel value with the mean valueitsf
neighbours, including the target pixel. The prodsssdopted
from a Sobel operator [15] and is described as shaw
equation (3) for a noisy imadéx, y) with a filter kernelW(k,
K).

Fx, Y =1,y 0O Wk, K 3)
I'(x, y) is a filtered image anld is a convolution operator.
The size of the neighbourhood or kernel used iampaunt to
the performance of the filter [16]. The most comigeused
kernel sizes are 3x%x5, 7x7, etc. The filter is characterised
by the fact that an increase in the kernel sizeeames the
smoothing performance, but the image gets blurfEds
implies that the choice of the convolution kernéesis a
trade-off between noise reduction and blurring @fferhe
trade-off can be balanced or optimised using thecept of a
hypergraph model, as explained in subsection B.

B. Hypergraph and Pixel Neighbourhood

A hypergraphH [14] is a pair X, &) consisting of a non-
empty finite setX and a familyé = (E;),;, of non-empty
subsets oK called hyperedges, with equation (4).

UE =X,1={123..0, nON @

ial

Considering star off with centre ak: Forx L] S, a star ofH
(with centrex) is the set of hyperedges df which containx
and is denoted bii(x). The degree ox is the cardinality of
the star H(x) denoted d(x) card(H(x)). Otherwise, the

neighbourhood of vertex UJ X is the setl’, formed by all

vertices adjacent tax. In image analysis, a hypergraph

vary dynamically in kernel size. In order to balarmetween
noise reduction and blurring effect in the choit&earnel size,

a hypergraph of eight-neighbours of a point, aBigqn 2(a), is
used. This controls the excessive usage of a pixel
neighbourhood. It also ensures direct influences toentre
pixel in relation to the 3x3 kernel shown in FigbPR The
primary 3x3 size of the kernel changes dynamicablyit is
conditioned on the presence of noise pixels in the
neighbourhood of a pixel. Before every convolutfdtering,
detected noise pixels are eliminated from the @E®cEnce
they can ripple errors through the mean value cdetbfrom
the pixel's neighbourhood. This addresses a limitatvith the
classical mean filtering using the noise detecireme in
[16].

XIR[XIR[XI=
xR [ XIRL[XI=
xR [ XIRL[XI=

(a) Eight-neighbours (b) Filter kernal

Figure 2: Transformation of (a) eight-neighbours of atoepixelx [14], and
(b) the primary filter kernel adopted from [15]

The scheme states that: (i) if a pixehas at least one pixgl
amongst the other eight pixels in the neighbourhibed pixel

x is considered an original pixel and piyels deemed similar
to pixelx; and (i) if x does not have at least one similar pixel
amongst its neighbours, it is considered a noigy strange
pixel as shown in equation (5).

= xiE K{| x-ylD;} =N, -
i else

D, is adopted as the maximum depth difference betvtleen
similar x andy pixels and is often assumed to be eight as for

Fig. 2(a). Nlth is 1 as every pixel is assumed to be similar to at

associates a pixe&lto its neighbourhood and forms a star withleast 1 pixel, and is the number ofy pixels that satisfy

d(x) = 3, 4, or 8 neighbours of a point. Since the chafd(x)
often depends on the image application, this waikarily
uses the maximum af(x), which conditionally reduces in size
subject to alleviating the limitation of classicakan filter.

Similar to other convolution filters, classical mefilter is
known to have the limitation of not distinguishimgiginal
pixels from noise pixel values, which can signifittg affect
the mean value of the neighbouring pixels. Thisugsss
mitigated with a dynamic convolution kernel in approach
in subsection C.

C. The Refinement Approach

This refinement approach begins with the constonctif a
pixel's neighbourhood. These hypergraph neighboooko

equation (5) while the noisy pixels are eliminatethis
implies that the value of the kernel size is matifiasK
changes, resulting in the use of the dynamic carimi
kernel.

Otherwise, the convolution process in equation i)
expatiated and described in equation (6), givenhttiexe is an
image (l) of size M x N with a filter kernel (W) aize k x k
subject to changes in k size. A sample computatibran
output value for pixel b, is shown in equation (7). During
process of the refining the boundary pixel valués, kernel
values are padded with zeros. A clearer idea ofpiloeess
adopted here can be obtained from the edge detestiSobel
operator in [15].
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P22 = (11 * Wi) + (I12* Wap) + (I13* Wig) +
(b * Wap) + (I22* Wao) + (l23* Wag) +
(b1 * Wap) + (I32* Wao) + (I33* W)

D. Scoring and Evaluation Scheme

In this section, the performance of our proposegr@gch
is studied through visual inspection as well asntjtetively.
During visual inspection, one compares the qualitihe pixel
values of corrupted frames with those of refinedge frames.
The following evaluation models were chosen as titive
refinement scoring schemes [17]: (i) the mean seplarror
(MSE), (ii) the root mean squared error (RMSE), &iigthe
peak signal-to-noise ratio (PSNR). The schemesleseribed
in equations (8), (9), and (10) respectively.

()

1 MN N
MSE:_Z(Yi =Y

8
MN 2 (8)
1 MN )
RMSE= |— = 9
\/MN g(y. v) )
PSNR=10log 255 (10)
1 MSE

original image respectively, arM x Nis the ToF image size.

In this work, ¥, and V. are also used to denote the pixel

values of the corrupted and of the original imagdwy are
used as objective evaluation schemes for the ffreemes.
Lower scoring results for both MSE and RMSE, anghbr
scoring results for PSNR based on the rate of naise
expected and preferred.

V.

One of the objectives of this paper is to applyttieory of
our proposed approach in practice by emphasisiplicaions
and carrying out practical work on refining the rempted
depth maps. The ToF captures daylight scenes attlipes a
stream of noisy image frames projected as a 2.5Rrox-y
plane. An original noisy frame is shown in Fig. 3(an
obstructing body is set to move towards the SR48D0ToF
camera from a distance, generating increased niiggn, the

EXPERIMENTAL EVALUATIONS

range of the camera is experimentally confirmed nas
metres and, the size of an image frame is 176xIddls
Extreme values of the impulse noise pixels appeabe
generated more outside the range, while uniforrsenof valid
pixel values is observed affecting the depth mapsbects
formed within the range.

Since the correct depths of obstacles are impottatite
robot’s navigation, the emphasis is on the depfithe three
chairs placed adjacent to one another within thE famge as
shown in Fig. 3(a). The performance of the noifmement
approach is compared on lightly and heavily coeddtames.
A heavily corrupted frame is when the obstructingdy
appears closest to the ToF's light emission aresisnated to
have generated a 90% noise level, as shown in&m. A
lightly corrupted frame, on the other hand, hasiaalevel of
10%, as shown in Fig. 3(b). This work focuses mmmethe
refinement of the noise introduced and generatedthsy
moving body within the range. This type of noiseni®re
difficult to spot within the uncorrupted pixel vas. In terms

of performance measures, the MSE, RMSE, and PSNKR ar

computed when evaluating the original depth framgainst
the refined and the corrupted frames as shown laeTh

A. Observations for Lightly Corrupted ToF Images

The objective here is to access the qualitativéopmance
of our refinement approach on lightly corrupted Tiokages
which exhibit noticeable differences when compatedhe
heavily corrupted images in Fig. 4(b). In particulgig. 3(b)
contains a 10% noise level as it captures the sihtthe
obstructing moving body being a distance from tb&.T

('c) Error ploi before refinement

(d) d@rplot after refinement

Figure 3: A 2.5D depth map frame from an indoor data stre@hnoriginal
noisy frame from the ToF; (b) corrupted frame dwuea moving body; (c) error
plot before refinement; and (d) error plot aftefimement equivalent to the
expected result.

Fig. 3(b) indicates that the noise introducedgsti which
may not be noticeable when compared to Fig. 3(ia). ¥c)
indicates the error plot reconstructed before esfiant. Fig.
3(d), on the other hand, is the error plot recanséd after
refinement, based on our approach. Although, inideal
camera situation, the background of Fig. 3(c) wdowtddark



and the foreground (moving body) lighter in coloane can
observe that the falsified depths are minimised aio
acceptable level in Fig. 3(d).

B. Observations for Heavily Corrupted Images

Again, the objective here is to access the quaidat
performance of our approach on heavily corrupteH ifeages
which are noticeably different from the lightly copted ones
in Fig. 3(b). In particular, Fig. 4(b) contains @98 noise level
as it captures the state of the obstructing bodygogght in
front of the ToF. In Fig. 4(b), it can be seen tha noise
introduced is heavy and very noticeable, compaoethat in
Fig. 4(a). This results in more white clusters ba érror plot
reconstructed before refinement in Fig. 4(c). Oa tther
hand, Fig. 4(d) is the error plot reconstructe@rafefinement,
according to our approach. It can also be obsethatl the
falsified depths are minimised to an acceptablellév Fig.
4(d).

rame

-

bg&tily corrupted f
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(c) Error plot before refinement ) Efror plot after refinement

Figure 4: A 2.5D depth map frame from an indoor data stre@noriginal
noisy frame from the ToF; (b) corrupted frame duea moving body; (c) error
plot before refinement; and (d) error plot aftefimement tends towards the
expected result.

C. Performance on the ToF Image Refinement

From the results in Table 1, we specifically accéiss
guantitative performance of our approach with resgenoise
levels ranging between 10% and 90%.

Table 1: Comparing the refined and corrupted imagesdase
on the noise levels.

Noise Refined Corrupted
Level

(%) RMSE MSE PSNR | RMSE MSE PSNR
10 4598 | 8.29 63.01 | 4993 [ 977 62.29
30 53.22 | 11.19 | 61.74 | 56.20 | 12.39 | 61.26
50 63.72 | 1591 | 60.18 | 66.02 | 17.09 | 59.86
70 81.80 | 26.24 | 58.01 | 8540 | 28.61 | 57.63
90 122.6 | 23.31 | 58,52 | 126.20 | 25.88 | 58.06

Having compared the original and corrupted franas,
well as the original and refined frames, the resaftthe MSE,
the RMSE, and the PSNR are shown in Figs. 5, 6, and
respectively. In Figs. 5 and 6 one can see thatrémel of the
refinement results minimise the noise significardgmpared
to the trend showing the corrupted pixels. Thidifies the
fact that lower scoring results are better for KH8E and the
RMSE. On the other hand, the PSNR measures theeneéint
performance with higher scores over the corrupteanés.
The higher scores confirm a constructive refinemanbur
approach relating to the corrupted frames.
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Figure 5. The MSE at various noise levels for the refirmage is lower than
that of the corrupted image when compared to thgnai frames.
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Figure 6. The RMSE at various noise levels for refined iméglower than
that of the corrupted image when compared to thgnai frames.
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Figure 7. The PSNR at various noise levels for the refiimeage is higher (or
greater) than that of the corrupted image when eweth to the original
frames.



It can be seen that the quantitative results hereespond to
each other and match the noise reduction resultiseirvisual
quality of subsections A and B.

D. Validating Performance with Popular 2D Lena Image

To validate our refinement performance using theuai
quality, a popular 2D Lena image from [11] is usasl a
benchmark. The noisy Lena image in Fig. 8(b) is/jated for
refinement and the result in Fig. 8(c) is obtaineing our
approach which is almost equivalent to the noise fmage in
Fig. 8(a). The objective of this paper is focusadefining the
falsified depth maps on ToF images.

(c) Refined' image

‘(b) Noisy i?ﬁage

(a) Noise ree image

Figure 8: Validating our refinement approach with the plap 2D Lena
image [11], (a) Noise free image, (b) Noisy imaged (c) our refined image
result.

E. Concluding Remarks

We have proposed and demonstrated the use of anityna

convolution filtering based on a hypergraph modai the
refinement of ToF noise pixels in
complementing the ToF with other camera types.it,fthe
falsified depth map in Fig. 1 seems discouragingt the
experimental results on lightly and heavily coragframes in
section 4 show that falsified depth maps from thé& Tamera
could be restored.

Our findings indicate that the range of the camiwa
experimentally obtained as being nine metres. Moxteeme
values of impulse noise pixels are detected outiderange
while uniform noise of valid pixel values affectiset depth
maps of objects formed within the ToF range. A dase in
the window size of filtering to a pixel level minises both the
falsified depths of corrupted data frames and tbenidant
effect of the noise pixels, to an acceptable lelrelan ideal
ToF situation, the expected result would be to hdve
background of the visual error maps dark and thegimund
(moving body) lighter in colour. One can see thatstrof the
errors introduced by the moving body in Figs. by 4(b),
are refined when the reconstructed error plot tesal Figs.
3(d) and 4(d) are compared with the error plot teefo
refinement in Figs. 3(c) and 4(c). The originaloesr of the
ToF in Figs. 3(a) and 4(a) are yet to be addrepseperly as
they seem to appear as white clusters outside dierdnge in
Figs. 3(d) and 4(d). However, our approach exhiteis@ble
depth maps for promising field work in terms of doo
guantitative performance results, which includesimequared
error (MSE), root mean squared error (RMSE), andkpe
signal-to-noise ratio (PSNR) in Figs. 5, 6, an@&3pectively.

This research has been experimented on a strearoFof
data captured in daylight. In future work, the e¥sh can be

the absence of

explored further in different forms, including tf@lowing: (i)
conduct experiments on a stream of ToF night fran(igs
compare this method with other noise removal methdid)
improve refinement on the original ToF errors; @&yry out a
field test on robots.
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