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Abstract—A new method for object detection using region-
based characteristics is proposed. The method uses correlation
between features over a region as a descriptor for the region. It
is shown that this region descriptor can be successfully applied to
object detection and tracking problems. An attractive property
of the method is that region characterisation, region matching
and localisation can be done sufficiently fast to use the method
in a real-time system.

I. INTRODUCTION

Visual target tracking refers to the ability of a system to
detect and track a target object (or objects) over a series of
digital images. Visual target tracking can be accomplished by
feature-based or region-based approaches.

In feature-based approaches, interest points are calculated
in a digital image, and a local region descriptor is calculated
at each interest point. Once a set of descriptors is calculated
for a particular object, the object can be tracked over various
images by comparing and matching descriptors calculated
over the images. Methods such as the Scale-invariant Fea-
ture Transform (SIFT) [1] and Speeded Up Robust Features
(SURF) [2] are popular and are successfully applied to the
problem. Although these methods are successful, they suffer
from being computationally expensive, impacting negatively
on their suitability for implementation in real-time systems.
They are also affected by motion blur, which make it difficult
to reliably extract interest points for further computation.

In region-based approaches, an image is segmented into
different regions, typically corresponding to different surfaces
of an object. A feature is calculated based on the region-based
characteristics of surfaces associated with the target object.
These features are then matched across different images,
to determine the regions corresponding to the target object.
Region-based approaches will be explored further in this
article as an alternative or complementary approach to feature-
based approaches.

Any region-based tracking method generally relies on the
specification of three components:
• Region characterisation. This is the way in which a given

region is abstracted mathematically.
• Region matching. The similarity or dissimilarity between

two region characterisations needs to be quantified in or-
der to determine the best-matching region and/or whether
a positive detection could be made.

• Localisation. Even if a region could be characterised and
matched to other regions, a way is sought to select the
best-matching region from the large number of region
configurations in an arbitrary image in a computationally
feasible way.

A. Background

The essence of any region-based detection algorithm is the
way in which the region is characterised. A mathematical
description or model is sought that describes the visual char-
acteristics of the region to the extent that it can be used for
higher-level purposes such as tracking or recognition.

A natural starting point is to use the basic region statis-
tics such as colour, intensity or gradient information ([3],
pp. 90-99). These approaches work well in cases where the
target object or region can be engineered to exhibit cer-
tain characteristics. These approaches are commonly found
in manufacturing-type environments where the objects being
manufactured typically have certain visual characteristics and
where the environmental variables such as lighting and camera
position can be controlled as well. In the work conducted here,
a method is sought that can be applied in arbitrary situations.
In such situations, there may be considerable variation in the
visual characteristics of the object that should be tracked and
in the environmental conditions.

In a general situation, the object that should be tracked
might have variations in the colour, intensity, gradient or other
low-level features. To characterise these variations, histogram
methods are often used [4]. In histogram-based approaches, the
range of every feature variable is divided into several bins. The
feature vector associated with every pixel is associated with
a set of indices into the bins. An object is characterised by
calculating the number of times a particular bin-combination
is obtained. These count values are often normalised, in
which case the histogram is a nonparametric estimation of
the joint distribution of the features. Methods such as integral
histograms [5] have been devised to speed up computation
of histograms over regions. As noted in [6], one problem
with histogram-based methods is that they are computationally
exponential in the number of features.

Another way in which regions are often characterised is
by expressing them through their texture properties. The most
common approach for calculating region texture is through the



use of filter banks ([7], pp. 191-196). An image is convolved
with a set of filters, often sensitive to local structures such
as spots or bars at different scales. The set of filter responses
associated with every pixel is then used as a feature vector
associated with that pixel. Various filter banks have been
designed, such as the Leung-Malik filters [8], Schmid filters
[9] and Maximum-Response filters [10]. The same approaches
used for other low-level features can then be applied to the
texture features. A common way to proceed is to build a
universal dictionary of different types of texture responses by
clustering together similar texture responses [11]. A region is
then characterised by calculating a histogram over the visual
dictionary.

Tuzel et al [6] presents a method to characterise a region
based on region covariance. In the method, a set of features is
calculated for each pixel. The covariance of the features over a
region is used as a descriptor for the region. The authors found
that the method outperforms methods based on the calculation
of histograms of features. The method presented in this paper
builds on Tuzel’s approach.

II. CORRELATION-BASED DETECTION

The new method based on correlation-based detection is
introduced in this section.

A. Region Characterisation

To characterise a region, a d-dimensional feature vector
is calculated for every pixel in the region. Following [6],
a 9-dimensional feature vector composed of the x and
y coordinates of the pixel, the three colour components
(red, green and blue) and the first and second order
derivatives of the intensity of the pixel in both the x and
y dimensions is calculated. Let f(x, y) be the feature
vector associated with pixel position (x, y). Then f(x, y) =

[x, y, r(x, y), g(x, y), b(x, y), di(x,y)dx , di(x,y)dy , d
2i(x,y)
dx2 , d

2i(x,y)
dx2 ],

where r, g, b and i denote the red, green, blue and intensity
values of the pixel. More specifically, the first order derivatives
are calculated by convolving the image intensities with a
filter with kernel [-1 0 1] in both the x and y dimensions.
The second order derivatives are calculated by convolving the
image intensities with a filter with kernel [-1 2 -1] in both
the x and y dimensions. Although this specific feature vector
is used in the experiments, the technique can be applied to
any arbitrary d-dimensional feature vector.

Once the feature vectors are calculated for every pixel in
the region, the region is characterised by calculating the d×d
correlation matrix PR over the feature vectors corresponding
to the region R. The (i, j)th entry of PR is given by the
Pearson product-moment correlation coefficient, calculated as

ρi,j =

1
N

∑
(x,y)∈R(fi(x, y)− µi)(fj(x, y)− µj)

σiσj
, (1)

where
µi =

1

N

∑
(x,y)∈R

fi(x, y) (2)

is the mean of feature i over the region,

σi =

√√√√ 1

N

∑
(x,y)∈R

(fi(x, y)− µi)2 (3)

is the standard deviation of feature i over the region and N is
the number of pixels in the region.

Since the correlation matrix is symmetric (ρi,j = ρj,i) and
the diagonal entries equal to one (ρi,i = 1), only the non-
diagonal upper-triangular entries of the matrix are necessary
to characterise the region. Thus, only d2−d

2 values need to be
calculated for the region descriptor. In the case that d = 9,
only 36 values are calculated.

It is useful to compare the above approach with that of
Tuzel et al [6]. In Tuzel’s method, the covariance matrix CR

calculated over the features in a region is used as the region
descriptor. The covariance values are related to the correlation
values through

ρi,j =
ci,j
σiσj

=
ci,j√
ci,icj,j

. (4)

The covariance values are unbounded and could have ar-
bitrarily large or small values depending on the range of
the features used. The correlation values are restricted to the
interval [-1, 1]. The correlation values can be viewed as a
normalisation of the covariance values through the product
of the standard deviations. This normalisation makes direct
comparison between correlation values possible, which may
not be the case for the covariance values (consider for example
the case where the coordinates of the pixel are used as
features and where regions in different parts of the image are
considered). It is also noted that Tuzel’s method requires d2+d

2
values to characterise a region. The proposed method based
on correlation requires d values less.

Similarly to Tuzel’s method, the correlation matrix do not
retain information pertaining to the ordering and number of
pixels, which implies a certain scale and rotation invariance
(depending on the design of the feature vector).

B. Region Matching

Given that a region can be characterised using correlation
matrices, a method is sought by which two such character-
isations can be compared. The simmilarity or dissimilarity
between two regions is expressed by the use of a distance
function. The distance function is used to determine the best-
matching region to a target region and also to determine
whether a positive detection can be made.

Since the correlation values are normalised, corresponding
correlation values in two matrices can be directly compared.
Given two correlation matrices PR1 and PR2 over regions R1

and R2 respectively, the Euclidean distance given by

dist(PR1
, PR2

) =

√√√√ d∑
i=1

d∑
j=i+1

(ρ1,i,j − ρ2,i,j)2 (5)



is a reasonable choice. Note that only the non-diagonal upper-
triangular values are compared, since the matrices are sym-
metric and the differences between diagonal entries would be
zero.

The distance function could be further modified by intro-
ducing a weight wi,j associated with the (i, j)th entries in
the correlation matrices. These weights could be optimised
to express which of the product-moment terms are more
important relative to others. In the experiments conducted here,
no such weights were used.

In Tuzel’s method [6] the corresponding covariance values
cannot be directly compared. The method requires calculation
of the generalised eigenvalues between the two covariance
matrices being compared. A distance measure proposed in [12]
is then used to compare the dissimilarity of the covariance
matrices. The distance measure is given by

dist(CR1
, CR2

) =

√√√√ d∑
i=1

ln2λi(CR1
, CR2

), (6)

where the λi(CR1
, CR2

)i=1..d are the generalised eigenvalues
of CR1

and CR2
. The computational complexity lies in cal-

culating the generalised eigenvalues λi. Algorithms such as
the QZ algorithm [13] can be used to solve the generalised
eigenvalue problem in O(d3) arithmetic computations using
numerical methods. The iterative nature of the QZ (and
similar) algorithms is however a practical drawback and is
further compounded by the fact that a number of region
comparisons need to be performed per image. The use of
the correlation rather than covariance values makes it possible
to avoid the computationally expensive generalised eigenvalue
calculations.

C. Localisation

Although a region can be characterised and region char-
acterisations meaningfully compared, there still remains the
problem of determining which regions to compare to the target
region. An object could have any shape and thus have any
arbitrarily-shaped region projection in an image. Ideally all
region configurations should be evaluated. The computational
complexity in selecting and evaluating all arbitrarily-shaped
regions in an image make such an approach infeasible.

The standard approach is to restrict regions to be evaluated
to rectangular regions. A “moving window” is then applied
accross the image at different scales and a brute-force search
is performed. The standard approach is adopted here; how-
ever, a significant computational speed increase is achieved
through the application of integral images [14], which make it
possible to compute the correlation in any rectangular region
in constant time.

Given a rectangular arrangement of values (such as an
image), an integral image is simply the sum of the values in the
rectangle bounded by the upper left corner and the coordinate
of interest. More precisely, given values I(x, y), the integral

image II(x, y) at position (x′, y′) is given by

II(x′, y′) =
∑

x<x′,y<y′

I(x, y). (7)

An integral image can be computed in a single pass through
the matrix of values, as shown in [14]. Given a rectangle
with upper left coordinate (x1, y1) and lower right coordinate
(x2, y2), the sum of the values in the rectangle can be
computed in constant time by using the integral image (the
operator L is introduced here as a shorthand notation for the
sum over the rectangle):

x2∑
x=x1

y2∑
y=y1

I(x, y) = L(II, x1, y1, x2, y2)

= II(x2, y2) + II(x1, y1)− II(x2, y1)− II(x1, y2). (8)

To speed up the brute force search through an image, d
feature integral images and d2+d

2 product-of-feature integral
images are pre-computed for the image. Given that features
f(x, y) have been calculated for the image, the feature integral
images are calculated as

IFi(x
′, y′) =

∑
x<x′,y<y′

fi(x, y), (9)

for i ∈ [1, d]. The product-of-feature integral images are
calculated as

IPi,j(x
′, y′) =

∑
x<x′,y<y′

fi(x, y)× fj(x, y), (10)

for i ∈ [1, d] and j ∈ [i, d].
Calculation of the correlation matrix over a rectangular

region with upper left coordinate (x1, y1) and lower right
coordinate (x2, y2) proceeds as follows. First, the sum of the
individual feature values over the region is calculated:

Fi = L(IF, x1, y1, x2, y2),∀i ∈ [1, d]. (11)

Thereafter, the sum of the product-of-feature values over the
region is calculated:

Pi,j = L(IP, x1, y1, x2, y2),∀i ∈ [1, d], j ∈ [i, d]. (12)

The covariance terms in the region is calculated as

ci,j =
1

NR
(Pi,j −

1

NR
FiFj),∀i ∈ [1, d], j ∈ [i, d]. (13)

where NR = (x2−x1+1)(y2−y1+1) is the number of pixels
in the region. Finally, the correlation terms are calculated
through (4).

III. TRACKING SYSTEM

To test the correlation-based detection method introduced in
this paper, it was implemented as part of a tracking system as
part of the CSIR MULE robot project developed at MIAS. A
brief overview of the tracking system is given in this section.
The design of the tracking system is shown in Figure 1.

First, the image dimensions are reduced from W×H pixels
to w×h pixels through bilinear interpolation. The resampling



Fig. 1: Region-based visual target tracking system block
diagram

is done to limit the computational requirements for further
processing, the idea being that the parametres w and h could
be adjusted up or down to achieve real-time performance based
on the computational power that is available on a specific
platform.

To further reduce the computational requirements, process-
ing is restricted to the region of interest (ROI). The region
of interest is provided as an input parameter to the system.
The region of interest is specified as a rectangular region. The
coordinates of the ROI in the resampled image are calculated
and all subsequent processing restricted to the ROI in the
resampled image.

The intensity values of pixels in the ROI are calculated to
facilitate computation of the first and second order derivatives.
Thereafter the feature vectors are extracted over the pixels in
the ROI. Feature and product-of-features integral images are
calculated based on the extracted features. Note that to further
increase computational speed, the features and integral images
can be calculated and stored as integer values.

A brute-force search over the region of interest is now
applied using the computed integral images. A moving window
is applied over the ROI at various scales. The aspect ratio of
the window is kept the same as the aspect ratio of the target
region. For each window, the region covariance and region
correlation are calculated. The distance to the target region is
calculated. The region with the lowest distance score is kept

as a potential candidate for the target object. Since only a
minimum distance is sought, the square root in the distance
metric never need to be explicitly evaluated.

Finally, if the minimum distance value is within some
threshold, a positive detection was made; otherwise, the system
indicates that no detection was made. If a positive detection
was made, an output ROI is calculated. In the absence of a
model of the dynamic behaviour of the target object, the output
ROI is centred on and has twice the width and height of the
search window with the best score. The width and height is
adapted to fit into the boundaries of the window, in the case
the left, right, top or bottom of the ROI would overflow the
boundaries of the image. If no detection is made, the output
ROI is set equal to boundaries of the image.

IV. RESULTS AND DISCUSSION

There is often difficulty in quantifying the results obtained
by tracking algorithms when applied to video sequences.
Firstly, such video sequences are not readily available. Sec-
ondly, the success of a particular tracking algorithm is often
dependent on the application for which it is designed, which
could bring into question the worth of the measure when ap-
plied to a video sequence pertaining to a different application.
Thirdly, the actual quantification depends to a large extent
on the specific video sequence. In many cases, the quantified
success of the algorithm (such as positive detection rates)
could be artificially improved by including more video footage
for which the algorithm performs well.

For the above reasons, the results obtained by the algorithm
will be discussed from a qualitative perspective based on two
typical tracking scenaries encountered in the CSIR MULE
project.

Fig. 2 shows selected frames from a video sequence where
the objective was to track the insignia on the back of a shirt.
In this experiment, the output ROI of one frame is used as the
input ROI for a subsequent frame. Fig. 2a shows the target
image that need to be tracked. The detection is successful
(Fig. 2b), even under severe scale changes (Fig. 2c), partial
occlusions (Fig. 2g), slight rotation (Fig. 2h) and aspect ratio
modification (Fig. 2i). The output ROI from Fig. 2d is used
as the input ROI for Fig. 2e; however, the target has moved
out of the ROI and the system indicates that no detection is
made. The ROI is reset to the entire frame and the system is
able to resume detection in Fig. 2f. Fig. 2j shows an example
of a false negative for a challenging image. Fig. 2k shows an
example of a true negative detection and Fig. 2l an example
of a false positive detection.

Fig.3 shows selected frames from a video sequence where to
objective was to track a cereal box. The cereal box was moved
about erratically, to introduce motion blur. ROI feedback was
not used for this experiment. Fig. 3a shows the target image
that need to be tracked. The detection is successful (Fig. 3b),
even with motion blur (Fig. 3c and Fig. 3e), partial occlusions
(Fig. 3d), slight rotations (Fig. 3f) and out-of-plane rotations
(Fig. 3g and Fig. 3j). There are however some instances where
the algorithm fails, such as the out-of-plane rotation in Fig. 3h,



(a) Target image (b) Frame 56 (c) Frame 82 (d) Frame 112

(e) Frame 113 (f) Frame 114 (g) Frame 126 (h) Frame 162

(i) Frame 181 (j) Frame 182 (k) Frame 458 (l) Frame 474

Fig. 2: Results of the tracking algorithm on the shirt video sequence. Legend: Yellow - input ROI, Magenta - output ROI, Red
- best-matching region, Green/Red Box - detection/non-detection with associated score. (a) Target image, (b) True positive
detection, (c) True positive detection under large scale change, (d) True positive detection (note output ROI), (e) False negative
failure since the target has moved out of the ROI predicted in (d), (f) The failure in (e) reset the ROI and detection succeeded
again, (g) True positive detection under partial occlusion, (h) True positive detection under slight rotation, (i) True positive
detection under aspect ratio modification, (j) False negative failure due to severe aspect ratio modification, (k) True negative
detection, (l) False positive detection.

partial occlusion in Fig. 3i and the false positive detection in
Fig. 3k. Fig. 3l shows an example of a true negative detection.

The method is robust against scale changes. It is robust
against small changes in rotation, but fails under larger rotation
due to changes in the correlation coefficients. Failures under
out-of-plane-rotations can be explained as the result of the
system trying to maintain the original aspect ratio of the
enrolled target image, which becomes severely distorted. The
occurance of false positives can be reduced by dynamically
adjusting the detection threshold.

Experiments were conducted on a Duel Core Pentium D
3.00GHz (using a single core) with 2GB RAM, running
Ubuntu 10.04. The images in the shirt video sequence were
of dimensions 1024×768 pixels and in the cereal box video
sequence 900×680 pixels. Images were scaled to 320×240
pixels by the system using binlinear interpolation. For local-
isation, 12 different scales from 10 pixels to 120 pixels in
increments of 10 pixels were searched with a step size of 5

pixels at each scale. The average detection time (including
bilinear interpolation) to process an image when restricted to
the ROI was 25ms (40fps). In the case that the entire image
was processed, the average detection time was 259ms (3.8fps).
The system can be further improved by incorporating a model
of the target behaviour, in order to further restrict the scales
at which the search is conducted.

V. CONCLUSION

A new method for region-based detection and tracking
of objects was presented. The method is based on using
the correlation between features over the region as a region
descriptor. The method is fast enough to be implemented as
part of a real-time system, yet delivers satisfactory detection
results.
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(a) Target image (b) Frame 35 (c) Frame 40 (d) Frame 42

(e) Frame 50 (f) Frame 53 (g) Frame 65 (h) Frame 68

(i) Frame 108 (j) Frame 169 (k) Frame 227 (l) Frame 300

Fig. 3: Results of the tracking algorithm on the cereal box video sequence. Legend: Yellow - input ROI, Magenta - output ROI,
Red - best-matching region, Green/Red Box - detection/non-detection with associated score. (a) Target image, (b) True positive
detection, (c) True positive detection under motion blur, (d) True positive detection under partial occlusion, (e) True positive
detection under severe motion blur, (f) True positive detection under slight rotation, (g) True positive detection under out-of-
plane rotation, (h) False negative detection, (i) False negative detection under partial occlusion, (j) True positive detection, (k)
False positive detection, (l) True negative detection.
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