Experimental phantom verification studies for simulations of light interactions with skin: Solid Phantoms

Aletta E Karsten, A Singh

Presented by: J E Smit

National Laser Center

CSIR

South Africa

akarsten@csir.co.za

Where are we from?

Outline

Motivation for the work Simulation

Phantom preparation and Imaging

measurements Comparison

Computer model Conclusions

Motivation for work

- Laser or light treatment modalities are increasing
- Human skin absorbs and scatterlight skin tone important
- Melanin content in epidermis differ
- •Can the computer model be used to predict light levels at a specific depth into skin?
- Need to verify the model
- Measurements on patients are impractical
- Use phantoms to verify model

Verification comparison

- Layered structure of skin can be modelled
 - Solid or liquid phantoms can be used for verification
 - Solid phantoms prepared from resin, absorbing and scattering particles – advantage: multi layers possible and phantoms stable and durable for repeatability studies
 - Liquid samples made from Intralipid® and black ink optical properties
 of Intralipid® is well documented in literature
- Manufacture phantoms use phantom parameters in computer model
- Measure transmitted light through phantom and model

Phantom preparation and measurements

Sample preparation

Solid phantoms prepared by mixing

- TiO particles (particle size< 25 nm, density 3.9 g/mL) scattering particles
- Carbon Black absorbing particles different skin tones
- Optically clear resin (Akasel)
 M Firbank, Phys. Med. Bid. 38 (1993) 847-853
- Sample holder diameter = 30 mm
- Samples cured for 24 hours
- Cut in slices
- Optical properties, total transmission and reflection measured with Integrating Sphere (IS)

Integrating Sphere measurements

Measurements of the total transmittance and reflectance of a thin slab-shaped multiple scattering sample can yield the absorption- and the reduced scattering coefficient of the sample

$$R = R_{BS}(I_R/I_{ref})$$
$$T = I_T/I_{ref}$$

Beer-Lambert Law $I = I_0 \exp(\mu_t d)$

Computer Model

Computer model (I)

Modelling done in ASAP software

- Non-sequential ray tracing
- Monte Carlo simulations
- Rays can automatically split into reflected, refracted, diffracted, polarized, and scattered components as they propagate through the system

Computer model (II)

Input parameters

- Geometry of model disc with 1 or 2 layers, disc diam = 30 mm
- Light source specification 633 nm, beam diameter 1 mm
- Specify the optical properties (specify u_a, u_s, g and n) of each layer
- Assume the optical properties are uniform with in each layer
- Trace ~ 3.1 mil rays through sample
- •Set up a transmission detector (absorbing disc) and a reflecting detector behind light source (absorbing semi sphere)
- Evaluation slices in model ~ 0.1 mm thick
- •Voxels ~ 0.1X0.1X0.1 mm³

Optical parameters

- •Optical properties of phantoms measured at 632.8 nm (HeNe) with integrating sphere.
- •3 different samples (diameter for all 30 mm)
 - Sample A and B different TiO and carbon black concentrations
 - 2 Layered phantom Sample C combination of A (d=1.7 mm) and B (d=2.2mm)
- Parameters used in model

Sample	u _a (mm ⁻¹)	u _s (mm ⁻¹)	d (mm)	n	g
Α	0.268	10.38	1.66	1.4	0.79
В	0.138	4.85	2.4	1.4	0.79
С	Use A and B values	Use A and B values	3.9	1.4	0.79

Simulation results

Propagation of beam through sample B

Comparing transmission, absorption and reflectance measurements (on the IS system) to simulation results

Sample	% Abs (Sim)	% Trans (IS)	% Trans (Sim)	% Refl (IS)	% Refl (Sim)
Α	65	10	8.8	27	25
В	59	19	17	27	24
C	70	4	2.7	20	26

Imaging

CCD images of phantoms

Experimental setup. P (Polarizer), S (Sample), L (Lens f= 100mm, D=50.8mm), CCD (Camera), PC (Computer), u (Object distance = 500 mm), v (Image distance = 125 mm) M= 0.25 HeNe Laser 9 mW

CCD images - Camera size: 7.1mm x 5.4 mm

Simulation images at back of sample mages – size 5mm x 5 mm

Conclusions

Conclusions

- •Relatively good agreement between measured and modelled values when comparing transmitted and reflected values
- •Image comparisons show good trend, but absolute values differ maybe due to interpretation of CDD images and light settings used
 - This needs to be investigated further
- •Computer model shows potential and with further refinement can be used to predict light intensities at specific distances into skin

Thank you

