A framework for benchmarking FA-based String
Recognizers’

Ernest Ketcha Ngassam
SAP Meraka UTD

University of South Africa
Pretoria, 0001

ABSTRACT

Previous work on implementations of FA-based string
recognizers suggested a range of implementation strategies
(and therefore, algorithms) aiming at improving their
performance for fast string recognition. However, an
efficient exploitation of suggested algorithms by domain-
specific FA-implementers requires prior knowledge of
the behaviour (performance-wise) of each algorithm in
order to make an informed choice. @~ We propose a
unified framework for frequently evaluating existing FA-
based string recognizers such that FA-implementers could
capture appropriate problem domains that guarantee
an optimal performance of available recognizers. The
suggested framework takes into consideration factors such
as the kind of automaton being processed, the string
and alphabet size as well as the overall behaviour of the
automaton at run-time. It also forms the basis for further
work on FA-based string recognition applications in
specific computational domains such as natural language
processing, computational biology, natural and computer
virus scanning, network intrusion detection, etc. It
is well-known that performance remains a significant
bottleneck to the high-performance solutions required in
such industrial applications.

Derrick G. Kourie
Department of Computer
and Science, University of

Pretoria
Pretoria, 0002
ernest.ngassam@sap.com dkourie@cs.up.ac.za

Bruce W. Watson
Department of Computer
Science, University of
Pretoria
Pretoria, 0002
bwatson@cs.up.ac.za

Keywords

Automata, String Recognizer, Automata Implementation,
Performance of String Recognizers

1. INTRODUCTION

The resolution of computational problems involving
pattern matching using Finite Automata (FAs) is not
new. Many authors in the field have reported on a variety
of solutions, both at conceptual (symbolic) as well as
practical (processing) levels. Research reported in sources
such as [2, 16, 17] report on a variety of transformations
on automata that produce more compact ones. Although
such techniques are useful for implementing real life
solutions in various domains, the research is mainly
reported at a conceptual level. Because much of the
implemented work is company-confidential (e.g: Xerox,
AT&T, Cisco), little implementation detail is available
in the research literature. Furthermore, FA-based string
processing appears to be a straightforward exercise in
the sense that the theoretical complexity of the required
algorithm is linear to the length of the string to be
tested. However, investigations have revealed that the
computational medium used for processing the recognizer
as well as the characteristics of the automaton (the
sparsity of its transition table and caching behaviour at
run-time) can be fundamental performance bottlenecks
[11, 5].

In [10], various ways were considered in which cache usage
could be optimised at run-time. This work featured the
following;:

e Up to 168 algorithms were suggested. However,
many of these were based on theoretical consider-
ations that aimed to maximise the advantages of
cache memory utilisation. The impact of other
aspects of the computing infrastructure that could
give rise to additional algorithms (such as the
operating system and the machine architecture)
were not considered.

e Only a limited number of algorithms were actually
implemented and benchmarked. While this was
based on artificially generated data the algorithms
frequently outperformed their conventional counter-
parts. Nevertheless, there is a need more precisely
to characterise the various domains where they can
be optimally exploited.

The foregoing points to the need for a framework to
efficiently test, cross-compare, classify and rank FA-
based recognizers, taking into account parameters such
as hardware capabilities, the problem domain, and input
characteristics.

The remaining part of this paper is structured as follows.
Section 2 below briefly introduces conventional string
recognizers and cache optimized strategies suggested for
performance enhancement. In Section 3, a generic
library is proposed that encapsulates all implementation
strategies suggested in previous work. It is shown in
this section that the efficient exploitation of the various
algorithms is subject to the availability of a consolidated
platform to study their usage. The building blocks of such
a platform is suggested in Section 4. The conclusion and
further directions to this work are presented in Section 5.

2. FA-BASED STRING RECOGNIZERS

An FA-based string recognizer/processor is an algorithm
that that takes as input a string and checks whether it
is part of the language modeled by the automaton or
not. Throughout this paper, we assume the automaton
(FA) to be deterministic, meaning that, given a transition
function 4, a state ¢; of the automaton, and any symbol s;
of the alphabet, the relation 6(g;, s;) exists, that is, each
symbol s; of the alphabet always triggers a transition to
a destination state.

Traditionally, the table-driven (refer to [4] for details)
approach is used for implementating a recognizer. The
algorithm maintains a two dimensional array in memory
(the transition function) and each symbol is scanned and
evaluated to ascertain whether it triggers a transition
to a next state. The process terminates either when
there are no more symbols to scan, or when the FA
has reached a rejecting state. The recognition process is
therefore very simple and the recognizer’s role is to return
a boolean that establishes whether the string is part of
the language modeled by the FA or not. It is easy to
establish that theoretical complexity of the recognizer is
linear to the length of the string. However in practice, the
memory load could constitute a performance bottleneck
if large numbers of cache misses occur. The sparsity
of the transition table may also affect the recognizer’s
performance.

As early as in the late 60’s Kent Thompson in [14]
suggested hardcoding the FA as an alternative to the
table-driven approach. Here, the transition table is
hardcoded into instructions that make up the recognizer
as a whole. Also, the string to be tested for acceptance
is embedded in the algorithm using directly executable
instructions. The performance of a hardcoded (HC)
recognizer is hampered by the number of instructions
required to implement an automaton made of many
instructions. Thus, as the automaton size grows, the
number of cache misses may also grow significantly,
especially if contiguous instructions are accessed relatively
infrequently. Investigations in [4] revealed that the
hardcoded algorithm outperforms the table-driven (TD)
version for automata in the range of hundreds of states.
This observation further suggested that there is a need
to investigate appropriate algorithms for processing large
automata.

A hybrid version for implementing string recognizers
referred to as mixed-mode (MM) was suggested in [9].
In this case, the transition set is split into two disjoints
subsets such that a portion of the transition table
is hardcoded into the recognizer, while the remaining
portion is implemented as a table to be loaded into
memory. During the recognition process a hardcoded state
is directly executed based on appropriate instructions,
and memory access is performed when a table-driven
state is encountered. In terms of performance, the MM
algorithm may still suffer from memory and instruction
load and there is a need to further investigate and establish
the appropriate method for splitting the transition set.
Furthermore, there is a lack of tangible domain specific
information establishing the appropriate computation
domain where such a hybrid algorithm performs at an
optimum.

In [10], a range of cache optimized strategies was
suggested. The subsections below briefly review the
respective strategies. These strategies serve as the
foundation for the suggested class-library discussed in
section 3.

2.1 The Dynamic State Allocation Strategy

Implementation of FA-based string processors that rely
on the dynamic state allocation principle requires that a
dynamically allocated space be created in memory which
is used during acceptance testing. At runtime, as each
state is encountered that falls for the first time within the
string path!, it is allocated a memory block into which the
state’s transition information (i.e. a row in the original
transition table) is copied. Subsequent references to such
a state’s transitions are then made via this new piece
of memory, rather than via the original transition table.
Furthermore, the memory blocks allocated to states on
the string path are contiguous, and arranged in the order
in which the states are encountered [5, 6].

The DSA strategy is a form of Just-In-Time (JIT)
processing, applied in the context of FA-based recognizers.
The states being accessed are dynamically allocated in
memory according to the string being processed. If the
string path involves repeated visits to a limited number of
states, and if the order in which states are visited remains
more or less the same, then it is expected that such an
approach will have certain advantages. Specifically, it is
hoped that because states to be visited are regrouped
in a compact fashion and organized contiguously, the
number of cache misses in memory will be relatively low.
In practice, the DSA strategy can be employed when
implementing core recognizers (i.e. TD, HC and MM).
The portion of the memory reserved for the allocation
of newly encountered states can be infinite (unbounded)
or predefined (bounded) based on some threshold. The
definition of such threshold should therefore be based on
capabilities of the hardware used for processing as well
as the behaviour of the automaton at run-time. Another
implementation strategy is described next.

2.2 The Allocated Virtual Caching Strategy

!String path is construed to mean the set of visited states
that are encountered during the processing of the input
string.

The implementation of FA-based string processing algo-
rithms using the allocated virtual caching strategy (hence-
forth called the AVC strategy) involves the dedication of
a portion of the memory that contains state information
to holding state transition information that is needed
for acceptance testing. Such a dedicated portion of
the memory is referred to as the allocated virtual cache.
During acceptance testing, states are reordered in the
cache as they are visited in order to enhance the spatial
and temporal locality of reference of the cache’s contents
in subsequent phases of testing the input string. Due to
its limited size, the virtual cache is unlikely to always
contain every single state required. As a result, when
reference is made to a state that is not present in the
cache, a replacement policy is followed to remove a state
from the cache [10]. The transition information of
the state swapped out of the cache has to be copied
to the memory block previously occupied by transition
information relating to the state to be placed into the
cache. There are various state replacement policies that
could be followed, for example: direct mapping ; a LRU
policy; or an associative mapping[12] policy. On the
other hand, because of the overheads involved, it might
be better not to carry out any replacement at all. In
this latter case, once the cache is full, acceptance testing
continues in the table without any replacement. Such
an approach will reduce overheads while hoping that the
states in the cache remain organized in a fashion that
has a high cache hit rate. The term wirtual cache is
used to reference the dedicated memory block in order
to differentiate it from the well-known hardware cache
memory.

The AVC strategy thus aims to exploit the benefits
of cache memory, in the hope of deriving algorithms
that are more efficient under certain conditions than the
traditional algorithms. The algorithms derived from using
the AVC strategy are to be considered when recognizers
are based on large automata and the string path tends to
visit states that are frequently present in the virtual cache.
If, in addition, the string path visits states contiguously
stored in the virtual cache, then that would lead to even
better performance.

In practice, although states initially present in the cache
may be part of the string path, there is no guarantee
that this is always the case. Therefore, the AVC strategy
requires that all the states that fall on the string path are
moved into the cache even if the cache is full. This move
operation is performed as the string is being processed.

The cache may be viewed as a stack. Initially, it is empty,
and its top (which will also be referred to as the cache line)
is a pointer to the memory occupied by state 0 transition
information. If, at any stage while the cache is not full, the
next state to be accessed is not at or below the position
where the cache line currently points, then the required
state information is located in memory and swopped out
with the data in the cache line. Thereafter, the cache line
pointer is increased. Eventually, the cache line pointer
reaches a position which indicates that the cache is full.
When the cache is full and the state being processed is
out of the cache, a replacement policy is used to swap the
state in cache. As for the DSA strategy, the TD, HC and
MM algorithms can be implemented based on the AVC

strategy or as a combination of both AVC and DSA. Such
combinations would certainly lead to more algorithms to
be studied in order to capture their domain of optimality.
We further discuss yet another strategy below.

2.3 The State pre-Ordering Strategy

During FA-based string processing, it may happen that
the string being tested frequently visits only a small part
of the whole transition graph. Also, the overall number
of states visited during acceptance testing may also be
well below the automaton’s number of states. In order to
handle such as case, it is necessary to have a mechanism
for reorganizing the transition graph so that frequently
accessed states are grouped together, thus optimizing the
performance of the recognizer. This enables frequently
visited states to be put next to each other so as to
reduce the total number of cache misses at run-time. The
State pre-Ordering (SpO) strategy addresses this issue by
making use of a pre-processing function to reorder the
position of the automaton’s states before any recognition
takes place. It assumes that the implementer has some
foreknowledge of an appropriate ordering in a given
context.

In practice, one may have to deal with FAs of considerable
size in which only a limited number of states are frequently
accessed most of the time. Furthermore, these frequently
visited states could be spread throughout the transition
table such that page swaps occur when accessing state’s
information. The SpO strategy would be recommended if
it is envisaged that the same pattern of state visitation is
likely to occur over and over again. In this case, the order
in which states are visited should somehow be assessed. To
this end, as a first step, a function could be incorporated
into whichever core algorithm is being used. The job of
this function would be to keep track of the order in which
states are visited. After running one or more acceptance
tests in the conventional fashion, this function could be
used to pre-order the state information in memory, to
be thus used for future acceptance testing. The SpO
strategy will incur overhead costs, depending on whether
the ordering of states takes place before acceptance testing
(preprocessing) or during acceptance testing (run-time).
Such overhead costs need to be offset against the gains
to be made by increasing the cache hit probability.
The strategy would be advantageous under circumstances
where, for example, pre-ordering occurs on a once-off basis
(or periodically, but relatively infrequently and according
to changing circumstances) while many acceptance testing
runs take place after each pre-ordering. Again as for
the previous strategies, we can rely either on the TD,
HC or MM algorithm to implement the SpO strategy.
SpO, DSA, and AVC can indeed be combined together
in order to produce more algorithms that will form part
of the class-library to be discussed in the next section.
Therefore, one may choose to implement for example a
TD algorithm based on any of the above strategies and
combinations thereof. Theoretically, a taxonomy tree can
be constructed based on the combination of the above
mentioned implementation strategies [7].

The end-result is presented in the form of a taxonomy
graph made of the following components:

e The root node represents the starting point of the

taxonomy graph. In the present case, it represents
a simple specification of the problem. That is, a
specification of the transition sets (TD and/or HC).
The root node is therefore, not an algorithm, but
rather a specification of the problem.

o An abstract node is a child node in the taxonomy
that cannot be instantiated. In order words its
algorithm cannot be derived. However an abstract
node is always the parent node of some concrete node
discussed below.

e A Concrete node is a concrete implementable
algorithm. Concrete nodes are not necessarily leaf
nodes in the taxonomy graph; they may be parents
to various concrete/abstract nodes in the graph.

o The relationship between a parent node and a child
node specifies the derivation rule applied on the
parent node in order to obtain the child node. In
the taxonomy, the refinement rules are the strategies
applied on parents in order to obtain children.

The taxonomy graph suggested here is not final in the
sense that many other implementation strategies may be
suggested in order to produce several new algorithms not
discussed here. Figure 1 depicts the taxonomy graph. The
root node labeled FA represents the problem specification,
more precisely that of the transition sets (HC and TD).
The root node is further refined into three different
children according to the nature of the transition sets
provided. When the FA is specified with the HC transition
set empty, the derived algorithm is that of the table-driven
(t). If provided with the TD transition set empty, the
derived algorithm is that of the the HC algorithm (h).
However, if both of the transition sets are non-empty, the
derived algorithm is that of the MM algorithm (m).

The three children of the root node represent the
traditional (core) algorithms discussed in Section 2.
Further refinement may be used in either of the nodes
at that level to produce various algorithms. Dashed
edges on various nodes in the graph reflect the possibility
to add more algorithms based on new implementation
strategies that could be discovered. In the graph,
nodes in dark represent concrete algorithms, whereas the
others are nondeterministic algorithms of which concrete
implementations are provided by either of the children.
The overall approach used to derived algorithms in the
graph can be summarized as follows: At a given node,
investigate possible refinement strategies to be used for
possible deriations. If one exists, then apply it to the
node and draw the derived children. Repeat the the same
process on all the nodes in the graph. For example, the
derivation of the TD algorithms is given below (the same
applies for HC and MM algorithms):

1. Algorithm t is derived from the root node. It is
obtained if and only if the associated table-driven
transition set is non-empty and the hardcoded
transition set is empty.

2. Algorithms t1, t2, ts are obtained from algorithm
t by applying the DSA, SpO, and AVC strategies
respectively. Two of the algorithms (t2 and t3)
are concrete whereas algorithm ¢; is abstract.
Therefore, further refinement is necessary in order

Hardcoded

Figure 1: A taxonomy of FA-based String
Processing Algorithms.

to obtain concrete algorithms derived from ¢;. In
the taxonomy graph, ¢2 is a terminal node since no
further refinement strategy has been found in order
to produce new algorithms from ¢».

3. Algorithms ty1, and t,1 are derived from 1. They
are concrete in the sense that they represent the
bounded and unbounded implementations of the
table-driven algorithm based on the DSA approach.
The two algorithms may further be refined to
produce new algorithms.

4. Algorithm t23 is obtained from t3 by applying the
SpO strategy. In the same way, algorithm ti23 is
derived from t3 by applying simultaneously DSA
and SpO strategies. The algorithm is not concrete
since the DSA strategy is nondeterministic. Further
refinement is needed to obtain concrete algorithms
from t123

5. Algorithm tpi123 and tyi23 are derived from the
abstract node ti23. They are concrete algorithms
that exploit the bounding nature of the DSA
strategy. tp123 uses simultaneously the bounded
DSA, SpO and AVC on table-driven FA-based
string recognizers, and t,123 uses simultaneously the

unbounded DSA, SpO and AVC on TD.

6. Algorithms tp12, and tp13 are derived from the node
tp1; they are respectively the combination of the
concrete bounded DSA and SpO strategies, as well
as the the bounded DSA and the AVC strategies.

7. Algorithms tyi2, and ty13 are described in the same
fashion as the previous bounded algorithms, with
the difference that they are based on the unbounded
DSA strategy.

Having provided for a taxonomy graph depicting all
algorithms derived from implementation strategies, the
main challenge remains the utility of each of the
algorithms obtained. Clearly, this exercise can only be
done if there is a consolidated platform for facilitating
cross-comparisons amongst algorithms. Before presenting
the platform, we briefly discuss in the next section a high
level architecture of a toolkit (class library) obtained from
the taxonomy.

3. A CLASS-LIBRARY FOR STRING REC-
OGNIZERS

The library is a self-contained package of implementable
algorithms that can be used by any external application
that requires string recognition to satisfy some or other
computational need. For example, a system for network
intrusion detection may be regarded as a potential client
of the library, since such an application typically needs to
test whether a given string pattern is part of the language
modeled by a well specified automaton. Moreover, the
library can be used for educational and research purposes
by supporting experimentation and benchmarking of the
various algorithms.

The following are well-known FA-based toolkits (class-
libraries):

e The Grail system [13]. Its primary aim is to
facilitate teaching and research of language theory.
It is used to perform various operations on finite
automata and regular expressions such as: automata
minimization, conversion from regular expressions to
finite automata (and vice-versa), etc.

e The Amore system [3]. It is an implementation
of the semigroup approach to formal language. It
provides various routines for manipulating regular
expressions, finite automata and semigroups. Its aim
is to explore efficient implementation of algorithms
for solving theoretical problems in formal language
research.

e The Automate system [1]. The toolkit is used for
symbolic computation of automata such as automata
construction, minimization and transformations. Its
primary intention was to be used for teaching and
research.

¢ The FIRE Engine[15]. This is an implementation
of all the algorithms that appear in the taxonomy of
regular expression algorithms [16], and was primarily
intended for teaching. A somewhat smaller version
referred to as FIRE lite is proposed in [16]. The aim
of FIRE lite was to provide a variety of algorithms
to the user who in turn can use them according to
their efficiency. Users interested in algorithms’ inner
structure may refer to FIRE lite not only for the
understanding of the system’s design, but also for
various research that may lead to new algorithms.

¢ The SPARE parts system [17] is a string pattern
recognition toolkit designed in C++. It is a library
of various implementations of pattern matching
algorithms obtained from the taxonomy of pattern
matchers.

PkgRecognizer

PPkg TableDriver PkgHardCoder PkgMixedModer

Figure 2: A high-level toolkit’s view based on
interacting packages.

The class-library’s architectural design described below
is not a complete ready-to-use package. Its efficient
exploitation would rely on the availability of a framework
for the purpose of identifying appropriate algorithms to
be used in a given domain based on the automaton’s
structure.

3.1 The Architectural Design

Here, we depict the library’s architecture in a top-down
fashion, first providing a high level view of the architecture
and then discussing each of the lower level components.
The library may be regarded as a set of interacting
packages which in turn are made of interacting classes
that encapsulate string processing algorithms. Based on
the previously described traditional algorithms (HC,TD
and MM), we can view at a higher level our library as a
system consisting of the following packages:

e The PkgRecognizer encapsulates the problem’s
transition set and the input string. The package
interacts with:

e the PkgTableDriver which encapsulates the various
table-driven algorithms that were obtained by using
the various implementation strategies to modify the
core table-driven algorithm;

e the PkgHardCoder which consists of the various
hardcoded algorithms that are derivatives of the
original hardcoded algorithm; and

e the PkgMixedModer, which encapsulates the deriva-
tives of the MM core algorithm characterised by
various combinations of the strategies.

Figure 2 depicts such a high-level view of the toolkit. It
shows a dependency relationship between the root package
and its children. This means that each class in each of
the sub-packages inherits from a base class in the root
package. However, there will be only one class (that we
shall refer to as Recognizer) in the root package, and
this will be considered as the root class in the whole
toolkit’s class-diagram. We explicitly make reference to
PkgRecognizer to emphasize that the various other classes
necessary for the complete specification of an FA-based

string recognizer are dependent on the root class. The
overall class-diagram may thus be regarded as a system
made up of a root class representing the specification of
the problem domain, from which all other classes down
the hierarchy inherit. The subsections below elaborate on
each package of the system, discussing the structure of
each of the classes within the package, their relationships
with other classes, as well as the description of their
attributes and operations.

3.2 The Package PkgRecognizer

Figure 3 depicts the class-diagram that make up

PkgRecognizer. The package consists of the fol-
lowing classes: Recognizer, State, Transition and
AlphabetObject.

State

value : int
finalness : boolean

<<create>> state() : void
isFinal() : boolean
isvalid() : boolean

AlphabetObject

value : Object
index : int . .

Transition

[sSate : State
tState : State
lalphaob;j : Alpt Object

[<<create>> AlphabetObject() : void
getindice() : int
setindice(arg1 : int) : void

<<create>> Transition() : void

Recognizer

transitionSet : OrderedSetOfTransitions
1String : VectorOfAlphabetObjects

<<create>> Recognizer() : void
accept() : Boolean

Figure 3: The class diagrams of PkgRecognizer.

In practice, a recognizer may be regarded as a system that
receives as input a string and a transition set, and then
performs acceptance testing on the input data, returning a
boolean. This definition identifies not only the recognizer
object, but also its attributes and operations. It follows
that, the first class in the package must be the class
Recognizer, that contains two attributes, inString and
transitionSet, as well as an operation accept(). The
attribute transitionSet of the class Recognizer is an
ordered set of transitions. Using a set to represent
the transitions guarantees that there are no duplicate
elements. Although not strictly necessary, we specify
the set as ordered for easy information retrieval based
on sequential or direct access. A transition is a triplet
of the form (sState, alphaObj,tState). The source state
(sState) and the target state (tState) are both objects of
type State. Unlike a target state which may be a rejecting
state, a source state is never a rejecting state. The class
State is made of two attributes valState of type integer,
and finalness of type boolean. A negative valState is
construed to mean that the state is a rejecting state.
For a positive valState (i.e. a valid state), finalness
attribute indicates whether the state is a final state or
not. Beside the constructor, the copy constructor, and the
destructor operations defined on the class, various other
operations such as: getVal() that returns the value of a
state, isF'inal() that checks whether a state is final or not,
and isValid() that checks the validity of a state may be
defined on the class.

The class Transition requires a constructor, a copy
constructor, as well as a destructor. Each instance
of Transition is used to build the transition set of a
Recognizer.

The following relationships hold between the classes
Recognizer, Transition, and State: A State is part of
a Transition which in turn s part of a Recognizer.
This kind of relationship is referred to as a composition
relationship.

In order to trigger a transition from a source state to a
target state, an alphabet object (conventionally referred
to as a symbol in practice) is required. The choice for
using an alphabet object rather than a simple character is
to simply accommodate those problems whose alphabets
are not simple symbols.

The attribute alphaObj in Transition is an instance of
a class AlphabetObject containing wvalue and indice as
attributes. The attribute indice references the order of the
alphabet element, and the attribute value represents the
actual alphabet element which is an object. An Alphabet
object is part of a transition; the scenario reflects the
composition relationship between the two classes.

A datatype AlphabetSet (not present in the diagram)
may be used to hold instances of AlphabetObject; the
set inherits all operations related to a Set class, and it
represents the alphabet of the finite automaton.

The class Recognizer requires an input string in order to
perform acceptance testing. In this context, the attribute
inString of the class may be regarded as sequence of
alphabet objects, or put differently, a vector of alphabet
objects. In practice, a vector datatype is less rigid than
a set in the sense that is accomodates duplication. Since
a string is part of a recognizer, and a string is made of
alphabet objects, we may simply say that an alphabet
object is part of a recognizer. The relationship between
the class Recognizer and the class Alphabet is thus a
composition relationship.

As shown in the diagram, an instance of a recognizer
contains several instances of a transition, and several
instances of an alphabet. In turn, an instance of a
transition is made of two instances of a state and one
instance of an alphabet. All classes in the diagram
contain their constructor, and additional operations may
be added as needed. The accept() operation in this class
is abstract (virtual in C++) so that the operation can
be explicitly defined in inheriting classes. Therefore, the
class Recognizer is just an abstract class and cannot
be instantiated. Various operations such as that of
counting the total number of states of the automaton, the
automaton’s alphabet size and the like may be explicitly
defined within the class Recognizer. Such operations may
be considered useful in ensuring that the construction of
objects down the hierarchy are well defined.

The description in the next subsection is limited to
the table-driven package; the other two packages are
structurally similar and are detailed in [10].

3.3 The Package PkgTableDriver

Figure 4 depicts the class diagram contained in the table-

TableDriver

tdNumStates : int

accept() : Boolean
assert(arg1 : int,arg2 : int) : Boolean
<<create>> TableDriver(arg1 : Recognizer,arg2 : int) : TableDriver

[I 1
uTDDSA TDAVC TDSPO

blocksize : Byte
startAddr : Byte

accept() : Boolean
1 ?

cacheThreshold : int |ArrayPos : Vector

accept() : Boolean accept() : Boolean

bTDDSA

UuTDDSAAVC UuTDDSASPO

lthreshold : int

accept() : Boolean

lcacheThreshold : int larrayPos : Vector

uTDDSASPOAVC

laccept() : Boolean laccept() : Boolean

arrayPos : Vector
fthresholdvc : int

TDAVCSPO

arrayPos : Vector

laccept() : Boolean

blockSize : Byte

: Byte

accept() : Boolean

bTDDSAAVC Lr

thresholdVc : int bTDDSASPOAVC
lcacheThreshold : int lthreshold : int

bTDDSASPO

arrayPos : Vector

accept() : Boolean
assert() : Boolean

accept() : Boolean

accept() : Boolean
assert() : Boolean

Figure 4: The table-driven class diagram.

driven package. The TableDriver class is the base class
in the package, and all other classes directly or indirectly
inherit from it. TableDriver, implements the core table-
driven algorithm in the operation accept(). The class
inherits all attributes of Recognizer necessary for its
instantiation. After constructing an instance of
TableDriver say TD the statement TD.accept() returns a
boolean to indicate whether the input string is part of the
language modeled by the FA or not. As shown in Figure 4,
classes are given in three levels of the hierarchy. Each level
of the hierarchy will now be discussed below.

3.3.1 The first level of the TD class-diagram

Three classes, namely uTDDSA, TDAVC, and TDSPO directly
inherit from the TableDriver class. The last two classes
were obtained by direct mapping from the taxonomy
tree’s nodes t3 and t2 respectively. The TDAVC class
specialises the TableDriver class, but supports input
string processing that is based on the allocated virtual
caching strategy. It inherits all attributes of table-
driven (as well as those of Recognizer indirectly) but
requires an additional attribute cacheThreshold to specify
an integer-valued threshold indicating the last state that
falls within the virtual cache, starting from state 0. Thus,
acceptance testing takes place between state 0 and state
cacheThreshold; and reference to any state out of that
portion requires state replacement. The AVC strategy
requires that the threshold be strictly less than the
total number of states of the automaton. An operation
isValid() is thus required in the class for checking the
validity of the fundamental condition of AVC ().

The class TDSPO implements the state pre-ordering
strategy. It directly inherits from its base class and also
inherits indirectly all attributes of the class Recognizer.
The class is specialized by the attribute arrayPos which
is a vector of the new positions of the states of the
automaton. While constructing an instance of the class,
a preprocessing operation is used to allocate the states
according to the specified positions in arrayPos. As for

the TDAVC class, an operation such as isValid() may be
required to ensure that the new positions of the states
have indeed been provided in arrayPos.

The class bTDDSA implements the bounded DSA strategy;
it requires the following specialized attributes: blockSize
that holds the size (in bytes) of the memory block to be
used for dynamic state allocation; startAddr that holds
the starting address (in bytes) in memory for dynamic
states allocation; and finally, threshold that holds the
maximum number of states to be dynamically allocated in
memory. This last attribute reflects the bounded nature
of the class indicating that state replacement may be
required when the threshold has been reached.

For the class uTDDSA, the fact that it is unbounded means
that there is no limit to the number of states to be
dynamically allocated in memory. Therefore, only the first
two attributes of the bTDDSA class would be required in
addition to those of the TableDriver and the Recognizer
classes.

The class bTDDSA may thus be regarded as a specialized
class of the class uTDDSA, which in turn may be regarded
are a derived class of TableDriver in the absence of the
abstract class TDDSA.

For the construction of an instance of uTDDSA, an operation
isValid() is required in order to ensure that the attribute
blockSize matches with the total number of states of the
FA. A simple way to evaluate the match would be by
multiplying the size of a state (in bytes) by the total
number of the automaton’s states and comparing the
result with blockSize. Furthermore, its consistency must
be checked on whether the address held by startAddr is a
valid memory address or not.

3.3.2 The second level of the TD class-diagram

Four classes are derived from classes in the first level
of the table-driven hierarchy; namely the bTDDSA, the
uTDDSAAVC, the uTDDSASPO, the uTDDSASPOAVC, and the
TDAVCSPO.

Our design choice has made it possible to consider the
class bTDDSA (which relies on the table-driven based on the
bounded DSA strategy) as a specialized class of uTDDSA.
The class corresponds to the node tp1 of the taxonomy
graph. It inherits all attributes and operations of uTDDSA
and requires its own implementation of the operation
accept(), as well as an attribute threshold that enforces
its specialization towards its base class. The attribute
holds the maximum number of states to be dynamically
allocated. It follows that an operation isValid() is
required such that, when instantiating an object of the
class, a validity check is made to ensure that the value
that has been assigned to threshold is strictly less than
the total number of the FA states, in line with the basic
condition underlying the bounded DSA strategy [10].

The class uTDDSAAVC corresponds to the node tyi3 in
the taxonomy tree. It corresponds in practice to the
implementation of the table-driven based on both the
unbounded DSA and the AVC strategy simultaneously.
The class may be considered as a specialization of both
uTDDSA and TDAVC, which suggests that it is a candidate for
multiple inheritance. Alternatively, it can be considered

as a specialization either of uTDDSA or of TDAVC. In the
diagram, we have chosen to make it inherit directly
from uTDDSA. The attribute cachThreshold indicates its
specialization in respect of its base class. As for the other
classes, an operation such as assert() is required to check
whether the value assigned for construction of an object
of that type is valid according to the basic condition that
makes up the implementation strategy on which the class
relies.

The class uTDDSASPO corresponds to the node t,12 in the
taxonomy tree. Again, as for the uTDDSAAVC class, the
uTDDSASPO class may be derived from either uTDDSA or
TDSPO. We choose to make it a specialized class of uTDDSA.
The class requires an attribute arrayPos whose validity
would be checked at construction time using the operation
isValid().

The class uTDDSASPOAVC corresponds to the node ty123
of the taxonomy graph. It holds the implementation of
the combination of the unbounded DSA strategy and the
other two strategies. We may allow this class to multiply
inherit from uTDDSA, TDSPO, and TDAVC. However, we have
chosen to make it a subclass of TDAVC only, so as to
stick to our single inheritance convention. To achieve
this, the following attributes are required: arrayPos that
holds the new positions of the states for state reordering
purpose; threshold Ve that holds the total number of states
to be processed in the virtual cache; cacheThreshold that
holds the size of the virtual cache; blockSize that holds
the size of the memory to be dynamically allocated; and
startAddr that holds the address where the first state will
be dynamically allocated in memory. An operation such
as isValid() is required while constructing an object of
the class since it is used to ensure that the values assigned
to the attributes respect the conditions under which the
algorithm may be used. That is: 0 < cacheT hreshold <
ThresholdVe < tdNumStates, and arrayPos # 0. Of
course, the remaining number of states to be processed
based on the DSA strategy should match with the values
assigned to the attributes blockSize and startAddr.

The class TDAVCSPO that corresponds to the node to3 in the
taxonomy tree may inherit from both TDSPO and TDAVC.
We chose to have it as a specialized class of TDAVC. In
order to do so, the attribute arrayPos is required in the
specialized class to hold the new positions of the state for
preprocessing purpose. The isValid() operation is used
at construction time to ensure that the array is indeed
provided.

3.3.3 The last level of the TD class-diagram

At this level, only three classes are available. They are
respectively bTDDSASPO, bTDDSAAVC, and bTDDSASPOAVC.

The class bTDDSASPO corresponds to the node 12 of the
taxonomy tree. In our diagram, it is considered as a
subclass of bTDDSA. Alternatively, we could have chosen
to make it a subclass of TDSPO, or as deriving from both
classes. The class is made of the attribute arrayPos
that holds the new position of the states required during
preprocessing for reordering the states. The directly
executable table-driven algorithm based on both bounded
DSA and SPO strategy may be generated at construction
time.

|Alphabet0bject | | State ‘

Transition

{

Recognizer

[1 1
‘TableDriver ‘ ‘ HardCoder | MixedModer Lq—

I I 1
UuHCDSA || HCAVC | | HCSPO ‘
/\

uTDDSA ‘ ‘ TDAVC H TDSPO
/\

bMMDSAh
MMDSAhbtuh

Figure 5: An extract FA-based String Recognizers
class-diagram.

The class bTDDSAAVC corresponds to the node tp13 of the
taxonomy graph. It is a subclass of bTDDSA, and requires
the following attributes: thresholdVec is which an integer
that holds the total number of cacheable states; and
cacheThreshold that holds the size of the virtual cache.
The bounded nature of the class requires that replacement
could also be performed during dynamic allocation of
states.

The last class in the diagram is bTDDSASPOAVC which
corresponds to the node ti23 of the taxonomy tree. It
is a subclass of uTDDSASPOAVC. The class has a method
that implements the bounded version of its base class. Its
specialization in relation to its base class is materialized by
the attribute threshold that holds the maximum number
of states to be dynamically allocated for states that have
been chosen to be processed using the bounded DSA
strategy. This enables to perform state replacement in
the dynamically allocated memory when the threshold has
been reached. The construction of an instance of the class
is therefore subject to the assignment of a valid value to
the attribute threshold. That is, a value less than the total
number of the automaton state, and also the total number
of states to be processed through dynamic state allocation.

Figure 5 depicts the overall architectural view of the
toolkit derived from the taxonomy tree suggested at the
end of the previous section.

The class-library as is, could not enjoy an efficient
exploitation by unexperienced users. It is in fact
practically impossible for a user to have sound knowledge
of the behaviour of each and every single algorithm in the
library. Clearly, there is a need to develop a consolidated
platform whereby each algorithm could be tested and
evaluated in order to capture the appropriate domain
where they can be exploited at optimum. We introduce in
the next section the framework for the efficient evaluation
of algorithms available in the library.

y
o
2
u FA String Domain Benchmarking Results
o Specification Specification Selector Mode Renderer
3

FA String Hardware

Analyzer Analyzer Analyzer

Deployment
Engine
ol
1]
a
: t
g R izer Gi ion & E ion Engi
H @ ecognizer Generation & Execution Engine A
E Manager |~ t *1 Selector
2
Recognizer Recognizer Performance|
Generator Executor Recorder

Figure 6: The framework for benchmarking
recognizers

4. THE SUGGESTED FRAMEWORK

In this section, we provide at a high level our suggested
framework which consists of a range of components that
facilitate the selection and classification of all algorithms
in the above library. As depicted by Figure 6, the
framework consists of two fundamental layers: the front-
end layer and the back-end layer. Each of the foregoing
layers and their building blocks are described along the
following lines.

4.1 The Front-end Layer

This layer is where implementers provide information on
the kind of automaton required. It also serves as a
placeholder for rendering the results (performance-wise)
of analyzed algorithms in order to enable the user to
make an informed choice on the algorithm of interest.
We have omitted in this layer to explicitly mention the
UI merely because during the implementation of the
overall framework, the programmer can choose to make
it command line in which case several steps should be
followed before invoking the back-end for analysis. Of
course the front-end functionality could be encapsulated in
a GUI as it is advantageous to unexperienced users. Each
of the building blocks of the front end layer are described
below.

4.1.1 FA Specification

This component facilitates the specification of the au-
tomaton to be used. Users may optionally provide the
complete FA (i.e. its transition table, starting state,
alphabet size symbols, the set of states and final states,

and the transition set in the form (g;, sg, q;) where ¢; is
the current state, si a symbol of the alphabet and ¢; the
destination state). Once all characteristics of the FA have
been provided, an exception handler is invoked to ensure
that the specified FA is deterministic.

Alternatively, the user may request that an FA be
generated. In this case, the system should be able to
randomly generate the FA based on input information
such as the number of states, the size of the alphabet,
the number of final states and the density (sparsity) [§]
of the automaton’s transition table. Of course one could
also give the ability to the system to randomly generate
all/any of the foregoing parameters.

4.1.2 String Specification

This building block enables the user to provide the set
of strings to be used for benchmarking. The string set
can be generated randomly by the system or the user
can also provide a set of string to be used for testing by
the automaton. An exception handler checks whether the
specified string symbols are restricted to the automaton’s
alphabet. For random generation, the user should specify
the length of the strings to be generated, as well as the
number of strings required.

4.1.3 Domain Selector

This building block enables the user to make a selection
on the computational domain to be studied. Most popular
domains include network intrusion detection, tandem
repeat finders, computational biology, natural language
processing, natural and computer virus scanning. How-
ever, the system should be able to accommodate any
additional domain as per user requirements. This suggests
that a table maintaining the list of domains should be
available in the system during implementation.

4.14 Benchmarking mode

As previously discussed, the standard algorithm for FA
implementation is known to be the TD algorithm. If
the mode is set to standard, the system should then
evaluate the performance of algorithms in the library
against the TD. In some cases one may need to use
any other algorithm as the standard. The benchmarking
mode building block accommodates such choice where
the user selects its own algorithm as standard for cross-
comparison. Another mode option is the default option
where no standard is provided therefore, the system only
perform cross-comparison amongst all algorithms in the
library.

4.1.5 Result Renderer

The role of the Result Renderer is to output results
of the analyzed FA in various formats (plotting graphs,
pie-charts, histograms, etc.). It provides classifying and
ranking algorithms according to their performance. It
also maintains a direct connection with the system’s
knowledge base (discussed below), ensuring historical data

is maintained. The Result Renderer also keeps track of the
domain of concern since this is available in the knowledge
base. This allows domain-related benchmarking to be
collected and analysed.

Note that the front end layer is not just a sort of UI
layer. It contains (not shown in the figure) a range of
engines that serve to ensure that consistency is maintained
when providing input. It is only when specified data is
consistent that it can be deployed in the back-end for
analysis.

4.2 The Back-end Layer

The back-end layer consists of two major components:
The Input Analyzer and Deployment Engine (IADE),
and the Recognizer Generation and Execution Engine
(RGEE). Both engines are described below.

4.2.1 The Input Analyzer and Deployment Engine

Data sent to the back-end layer is guaranteed to be of
good quality, as per our previous discussion. However,
more analysis needs to be performed for the purpose of
the classification of the results produced after executing
the Recognizer based on a given automaton. The IADE
plays this role in three major aspects.

These are briefly described below:

e FA and String Analyzers These enable the study
of both the FA and the string provided as input.
They inform on whether the given input is large
or not, whether the FA provided is sparse or not,
or whether the algorithm to be analyzed relies
on small strings/FA or not. These verdicts are
based on thresholds set in the system, either at
implementation time, or by the user during input
specifications at the front end.

e Hardware Analyzer It collects information about
the hardware on which the FA will be processed.
Since the current library was constructed having
in mind the memory size of the computational
medium, the hardware analyzer collects memory
related information such as the overall memory size
of the hardware, the cache levels (L1, L2, L3,...)
in the hardware as well as their respective sizes.
This will inform the implementer of the possibilities
for experimentation with algorithms such as AVC,
where the amount of memory to be used is pre-
specified.

e Deployment FEngine All information gathered
from the front end as well as from the above
described analyzer are now sent to the RGEE in a
structured way for the actual performance analysis.
The deployment engine’s role is then to deploy the
specified information to the RGEE in an appropriate
format.

This information will then be used for process-
ing/generating relevant algorithms in the library
and to record their performance. (Of course data
resulting from the hardware analyzer is mostly used

for informing the user on the capabilities of the
computational medium under consideration.)

4.2.2 The Recognizer Generation and Execution
Engine

Once the specified FA and all its basic elements are
sent to this engine, the main job is now to iteratively
launch each algorithm and record its performance. The
recorded results are then updated in the KB before being
despatched to the front-end (Results Renderer). We
briefly describe the main components of this engine below:

o Knowledge-base and KB Manager The idea of a
Knowledge Base (KB) in the present context was
suggested in [9]. The KB can be regarded as a
repository of performance-related information about
algorithms in the toolkit. Furthermore, it may also
have information about the computational domain,
the characteristics of the FA and string size as well
as the hardware used to record such a performance.
The KB should then maintain a complex data
structure subdivided in terms of computational
domain, platform, and input characteristics. In
addition, performance data of recognizers based on
the foregoing characteristics should be maintained
in the knowledge based.

This approach enables the system to avoid duplicat-
ing performance analysis in the sense, that, a user
providing information that already exist in the KB
will received results without going through all the
components in the system. In this case, the IADE
will not perform any work and information will only
be extracted from the KB for rendering purpose.
Work is currently being done on the characterization
of the KB and will be reported in due course.

The KB manager serves as intermediary between
the front end and the KB. It also interacts with
the FA selector component in order to keep track
of recognizers already processed at run-time. Upon
receiving a specification from the front-end, the KB
manager checks whether the specified FA has not yet
been analyzed under the specified condition. If that
is indeed the case, then the corresponding results
are extracted from the KB and sent back to the
Result Renderer. If not, the FA selector component
is invoked and appropriate recognizers in the library
are selected for performance recording and analysis.

e FA Selector and FA-library The role of the FA-
selector is straightforward—to extract from the FA-
library an appropriate recognizer upon a request
from the KB manager. As previously mentioned,
algorithm selection is only needed if the performance
data of such an algorithm is not available in the KB
under the specified conditions. The selector extracts
from the FA-library a given algorithm and sends it
to the execution engine for further processing. We
have previously discussed the overall architecture of
our class library.

e Generator, Executor and Performance Recorder
Algorithms whose performance is not yet available
in the KB, need to be generated, executed and
processed for performance recording. This part of

the back end is devoted to such activity. The
generation of an algorithm entails the creation
of directly executable instructions that process
the recognizer. Examples of such a process
was discussed in [6] where the DSA algorithm
was extensively studied. = When the system is
implemented and deployed for the first time, many
of the algorithms in the library will have to undergo
the process described in this part of the back-end in
order to have their information/data available in the
KB. Again, in order to avoid keeping the engine very
busy, only those algorithms whose performance have
not yet been collected in a given domain and based
on a given characteristic will require the invocation
of this part of the system

The overall framework as described above encapsulates all
the necessary tools required for its actual implementation.
The implementation of such a system is still under
construction and will be published in due course.

S. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a framework for bench-
marking FA-based string recognizers for performance
enhancement. The suggested framework relied on the
availability of a range of algorithms in the literature
that need to be studied in order to establish their
strengths and weaknesses. The suggested framework is
foreseen to be considered as a platform for performance
evaluation of FA-based string processing algorithms. To
date, algorithm implementers have generally relied on
the so-called conventional approach for implementing FA.
The availability of a working framework will certainly
contribute to exploring other approaches to implementing
FAs and domain specific optimal algorithms could be
discovered and used in the implementation of optimal
solutions. As future work, we need to fully characterize
the KB and produce a working system for benchmarking
FA based string processor for performance enhancement.

6. REFERENCES

[1] J. M. Champarnaud and G. Hansel. Automate: A
computing package for automata and finite
semigroups. In G. Rozenberg and A. Salomaa,
editors, Journal of Symbolic Computation,
volume 12, pages 197-220, 1991.

[2] M. Crochemore and C. Hancart. Automata for
matching patterns. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages,
volume 2, pages 399-462. Springer-Verlag, 1997.

[3] V. Jansen, A. Pothoff, W. Thomas, and
U. Wertmuth. A Short Guide to the Amore System,
volume 90. Aachener Informatik-Berichte, 1990.

[4] E. N. Ketcha. Hardcoding finite automata. Master’s
thesis, Department of computer Science, Pretoria
0002, South Africa, November 2003.

[5] E. N. Ketcha, D. G. Kourie, and B. W. Watson.
Reordering finite automatata states for fast string
recognition. In Proceeding of the Prague Stringology

(7]

(11]

(12]

Conference, Prague, Czech Republic, August 2005.
Czech Technical University.

E. N. Ketcha, D. G. Kourie, and B. W. Watson.
Dynamic allocation of finite automatata states for
fast string recognition. International Journal of
Foundation of Computer science, 2006.

E. N. Ketcha, D. G. Kourie, and B. W. Watson. A
taxonomy of dfa-based string processors. In
Proceeding of the SAICSIT Conference, pages
111-121, Gordon’s Bay, South Africa, October 2006.
ACM.

E. N. Ketcha, B. W. Watson, and D. G. Kourie.
Preliminary experiments in hardcoding finite
automata. In Proceeding of the 10th Conference on
Implementation and Application of Finite
Automata, pages 299-300, Santa Barbara, CA, USA,
July 2003. Springler.

E. N. Ketcha, B. W. Watson, and D. G. Kourie. A
framework for the dynamic implementation of finite
automata for performance enhancement. In
Proceeding of the Prague Stringology Conference,
Prague, Czech Republic, August 2004. Czech
Technical University.

E. K. Ngassam. Towards Cache Optimization in
Finite Automata Implementations. PhD thesis,
Department of Computer Science, Pretoria, South
Africa, November 2006.

E. K. Ngassam, D. G. Kourie, and B. Watson.
Performance of hardcoded finite automata. Software
Practice and Ezperience, 36(5):525-538, 2006.

D. A. Patterson and J. L. Hennessy. Computer
Organization and Design. Morgan Kaufmann, third
edition, 2005.

D. R. Raymond and D. P. Wood. The grail papers:
Version 2.0. Technical Report University of
Waterloo, Canada, January 1993.

K. Thompson. Regular expression search algorithm.
Communications of the ACM, 11(6):323-350, 1968.
B. W. Watson. The design and implementation of
fire engine: A c++ toolkit for finite automata and
regular expressions. Technical Report University,
Technical University of Eindhoven, 1994.

B. W. Watson. Taxonomies and toolkits of regular
Languages Algorithms. PhD thesis, Faculty of
Mathematics and Computer Science, Eindhoven, the
Nederlands, September 1995.

B. W. Watson and L. Cleophas. Spare parts: A c+-+
toolkit for string pattern recognition. Technical
Report University, Technical University of
Eindhoven, 34(7):697-710, 2004.

