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Abstract

We present an initial investigation into the acoustic realisation
of tone in continuous utterances in Sepedi (a language in the
Southern Bantu family). An analytic model for the generation
of appropriate pitch contours given an utterance with linguis-
tic tone specification is presented and evaluated. By comparing
the model output to speech data from a small tone-marked cor-
pus we conclude that the initial implementation presented here
is capable of generating pitch contours exhibiting some realis-
tic properties and identify a number of aspects that require fur-
ther attention. Lastly, we present some initial perceptual results
when integrating the proposed model into a Hidden Markov
Model-based speech synthesis system.

Index Terms: speech synthesis, tone languages, Sepedi

1. Introduction

Southern Bantu languages are tone languages in which word-
level pitch variations generally convey both lexical and gram-
matical meaning. In contrast to tone languages like Chinese,
they are agglutinative languages, i.e. several morphemes are
joined together in a word. Although most Southern Bantu lan-
guages only have two level tones, namely high tone (H) and
low tone (L), modelling of their prosody is complicated by the
agglutinative morphology, the significant influence of grammar
and the occurrence of tone sandhi within and across words.
Given the role of word-level prosody in processes such as se-
mantic interpretation and the production of natural speech, it is
important that a detailed and systematic account of the prosody
be given. Such an account is complicated by the fact that tonal
information is not indicated in the orthography of many Bantu
languages (including Sepedi, which is the focus of the current
study).

We have recently presented an overview of intonation in the
Southern Bantu languages [1], from which we concluded that a
detailed understanding of the tone system of these languages is
especially important for the creation of natural-sounding text-
to-speech (TTS) systems. Our earlier work focused on two
areas, namely (a) deriving tone assignments from text [2] and
(b) understanding the relationship between physical parameters
(such as pitch frequency) and the tone levels [3]. Here, we build
on the findings of those investigations to develop an initial pitch
model for TTS in Sepedi. We develop an algorithm that is used
to generate fundamental-frequency contours for speech synthe-
sis using Hidden Markov Models (HMMs).

Below, we briefly review a number of pertinent facts on tone
in the Sotho-Tswana languages (of which Sepedi is a represen-
tative — Section 2), and summarise the approach to prosodic
modelling employed in current state-of-the-art approaches to
HMM-based TTS (Section 3). Section 4 presents the experi-
mental methodology and corpus employed in our investigation.
Our results are contained in Section 5, and Section 6 contains
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a discussion of our main conclusions and future work that is
required to complete the current investigation.

2. Tone in the Sotho-Tswana languages

Most Southern Bantu languages are tone languages whose sur-
face tones can be captured by two level tones, namely high (H)
and low (L) [4]. The high tone is the active tone in Sotho-
Tswana languages such as Sepedi, as it participates in tone
spread and is subject to positional restrictions. As is the case
for most Bantu languages, the Sotho-Tswana languages show
an asymmetry in the tonal characteristics of its noun and verb
system with nouns being more tonal than verbs: whereas nouns
can contrast tone on every syllable, verbs only contrast tone on
their stem-initial syllable.

By definition, the primary distinctive feature of a level tone
is the value of the pitch frequency within the nucleus of a given
syllable, with H generally having a higher pitch frequency than
L. This general observation was confirmed in our earlier investi-
gations [5], which focused on the temporal alignment of a single
high tone within the verbal domain. (As is common practice, we
measure the fundamental frequency (F0) as a physical indicator
of the pitch frequency.)

The relationships between these pitch values in a complete
utterance, as well as the details of the temporal trajectories of
FO within and between syllables, were investigated in [3]. In the
current paper, we describe the creation of an analytic model that
builds on that work, in order to supply appropriate pitch values
to an HMM-based TTS system.

3. Prosodic models in HMM-based speech
synthesis

In current HMM-based TTS systems, parameters required to
generate prosodic features such as FO contours and syllable du-
rations are modelled statistically around phone-sized segments
of speech. More specifically, FO contours are modelled along
with spectral information in an integrated fashion as part of
the HMM framework [6] by employing multi-space probabil-
ity distribution HMMs (MSD-HMMs). This supports models
of parameters with varying dimensionality (enabling the mod-
elling of continuous and discrete features) [7], while segment
durations are modelled by employing Gaussian distributions de-
scribing the HMM state durations (and in some cases also mod-
elling durations of complete phones [8]).

Using these mechanisms to model static and dynamic as-
pects of the pitch (FO, §FO and §%F0)from training data based
on criteria such as maximum likelihood (ML) or minimum gen-
eration error (MGE) [8] in conjunction with a parameter gen-
eration algorithm which accounts for dynamic features [9], one
can generate relatively detailed and accurate contours associ-
ated with individual phones.
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In practical systems such as that described in [10] (where an
English synthesiser is constructed), “full-context” phone mod-
els are constructed by considering phonetic, syllabic, phrase-
and sentence-level context as well as including various linguis-
tic and prosodic features such as part-of-speech, stress and ToBI
labels [11] and performing tree-based clustering in order to tie
models where appropriate. This yields an integrated overall FO
intonation model which suitably models English prosody.

Although the mentioned techniques are very powerful and
usually result in highly accurate models given appropriate train-
ing data, there are a number of things to consider when trying to
develop systems with appropriate intonation for tone-languages
in resource-scarce environments:

e Designing and developing speech corpora to ensure syn-
thesised speech with linguistically correct prosody by re-
lying on modelling based on phone models in context is
non-trivial and requires expertise and effort which is not
often found in resource-scarce environments.

e By developing an analytic model based on well under-
stood linguistic phenomena, the potential is there to eas-
ily adapt such a model to different dialects/languages
(e.g. other Sotho-Tswana languages in our case) with-
out having to rely on additional data collection efforts at
each stage.

4. Methods and corpus

Firstly we present an algorithm for generating an FO contour
suitable for creating a voiced excitation signal for synthesis with
the HTS vocoder, followed by a description of our test corpus
and methods of evaluation.

4.1. Generating an F0 contour from linguistic specification

The main conclusions reached in [3] regarding the link between
tone levels and FO in the context of complete sentences can be
summarized as follows:

e The changes in mean FO between syllables (and espe-
cially in the syllable nucleus) are the strongest indicator
of tone, and

e The influence of tone or FO of surrounding syllables and
the segmental make-up of syllables on the perceived tone
level could not be clearly established,

We therefore start with a process of defining relative mean FO
values per syllable in a specific utterance given the initial FO
value (f0,1), final FO value (f0,,) and sequence of tone levels
(t1, t2, ... where t; € {H, L}) corresponding to each sylla-
ble, by defining a table mapping tone transitions (At(dt) where
o0t € {HH,HL,LL,LH, FF}) to relative changes in mean
FO between syllables. The symbol F'F' represents a special case
in Sepedi based on the observation that the penultimate sylla-
ble in a sentence always exhibits a marked fall in FO (usually
also with an increase in syllable duration) [1]. This is used to
determine the absolute value of FO for each syllable ¢ given the
initial and final FO values as follows:

(Sti = tiflti where 7 75 n—1
ot; = FF wheres =n — 1
f01 where 7 = 1
L . . fOn—f01 .
f0; = F0i—1 + At(dt;) S ATen) wherel <i<n
fOn where i = n

Given these mean FO levels for each syllable, a smooth FO
contour is constructed by creating a step-like sample sequence
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given the syllable (and segment) durations, low-pass filtering
this sequence in order to obtain a relatively smooth contour and
deleting samples for segments that are defined as unvoiced (an
example is shown in Figure 1).

250

Pitch (Hz)
N
S
1Sy

173
=)

100y

Lo P HE
54 5 50 200
Time (samples)

250 300

Figure 1: An example contour generated with the input
parameters:  fO1 250Hz, fO, 100Hz, t
[L,L,H,L,H,H,L,L], At() (LL — —-1.6,LH +—
+1.6,HL — —2.8, HH — +0.4, FF — —3.0), where rel-
ative changes are in Hz/Hz. Thus in this example there are 8
syllables with various lengths and unvoiced segments deleted.

As can be seen, global effects such as the overall declination
in pitch is accounted for by choosing appropriate values for the
relative changes between syllables.

4.2. Speech corpus

For our current investigation, we use a single speaker speech
corpus that was recorded for the development of a unit-selection
TTS system. The speaker is a 30-year old male employing a
standard dialect of Sepedi and in accordance with the require-
ments for TTS development with a limited corpus, the speaker
was requested to speak naturally, but with a relatively flat into-
nation.

Of these utterances, 15 were selected for analysis (based
on factors such as the absence of loan words and proper nouns,
and limitations on the mood of the verb to limit the influence
of dialectal variations). All syllables were subsequently la-
belled for tone by three labellers independently of each other,
relying on perception and analysis of the FO contour using the
Praat software package [12] (refer to [3] for a discussion on
the labelling process). These labelled utterances were used for
comparison as described in Section 4.3, while the remaining ut-
terances were employed in the construction of an HMM-based
TTS system (described in Section 4.4). All utterances were au-
tomatically aligned as described in [13], resulting in the proper-
ties described in Table 1.

| Set | Utterances | Duration [ Sylls. | Phones |
Complete 322 | 26 mins. | 6223 13726
TTS 307 | 25 mins. | 5959 13145
Tone-marked 15 1 min. 264 581

Table 1: Corpus properties.



4.3. FO0 contour comparison

We evaluate the output of our model by calculating the mean
square error (MSE) per syllable between the pitch contours ex-
tracted from the subset of the corpus described above using
Praat and the generated pitch contours. Values are compared
with baseline references including linearly declining and flat
contours and contours generated with the HMM-based system
described in the following section. To test our model with ap-
propriate parameters, the tone-marked utterances are divided
into three sets of five utterances each. The comparison then con-
sists of three separate experiments where two sets of utterances
are used to estimate the parameters and the third is used for
evaluation (three-fold cross validation). Model parameters (in-
cluding the relative pitch changes and start and end frequencies,
where we modelled starting frequencies for utterances starting
with L and H tone separately) are estimated using a sequential
least squares optimisation algorithm [14] implemented in the
SciPy software package [15] and segment and syllable durations
are obtained from the phonetically aligned speech samples. Al-
though the values of parameters mentioned are estimated from
the data, we keep the signs constant (consistent with the exam-
ple; Figure 1), thereby fixing the direction of mean FO change
for each step defined (e.g. FF having a fixed negative sign will
always represent a fall in mean F0). In the case of the baseline
contours we simply used the average start and end frequencies
and average frequency from the training utterances for the lin-
early declining and flat contours respectively. Statistics from the
same training utterances are used here as these contours repre-
sent competing baseline models. During comparison, slight dif-
ferences between start and end times of contours within a sylla-
ble are handled by only comparing contours where they overlap,
i.e. at points in time where both contours have defined values
(voiced regions).

4.4. TTS system

Using the above-mentioned corpus, an HMM-based synthesis
system was constructed. Training of HMM models was done
via the standard demonstration script available as part of the
HMM-based Speech Synthesis System (HTS) [16] with the ad-
dition of incorporating global variance as described in [17].

For the model tying decision tree, questions relating to
phone and word contexts were constructed, while further ques-
tions were generated based on phonetic categories defined in the
phone set (e.g. categories such as plosives, nasals and vowels
and voicing etc.).

5. Results

5.1. Contour comparison

In Table 2, statistics of the RMSEs calculated on all of the test
sets for each of the models (as described in Section 4.3) are pre-
sented. In the first row the values are calculated over the entire
voiced portion of each syllable and in the second row we con-
sider only the nucleus of each syllable as these are considered
to be more relevant in the perception of tone.

It is evident that the speech used here employs a rather flat
intonation: the RMSE values for the flat and linearly declin-
ing contours are closely comparable. The tone-based model
fares slightly better than these baselines, but is slightly fur-
ther from the reference contours than the HMM-generated con-
tours trained from the remaining utterances of the same speaker
(which, of course, have many more adjustable parameters).
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tone-based linear flat HTS
pl of p] of p] o] p] o

598 | 2.82 | 643 | 2.89 | 631 | 3.17 | 523 | 2.45

569 | 3.15 | 6.19 | 323 | 6.22 | 3.65 | 5.11 | 3.02

Table 2: Mean RMSE values (Hz) calculated over complete syl-
lables and syllable nuclei respectively.

Although the size of the tone-marked corpus does not lend
itself to a comprehensive statistical analysis of the comparison
results, we have identified a number of characteristics consis-
tently exhibited in the natural FO contours not accounted for in
the tone-based model which compromises the precision of this
model. Figures 2 to 4 illustrate some of these factors, including:

e FO contours at the start of an utterance often climb to a
higher value relatively late despite being perceived as H
(Figure 2).

e New phrases often result in a jump in the FO contour to
a higher value after which the pattern of relative changes
continue (Figure 3, around time sample 900).

e Some sequences of tones are not modelled well by only
considering local changes (e.g. a string of H tones real-
ising as a slight decline in FO, Figure 4).
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Figure 2: Example comparison where a large error is seen on
the first syllable.

As one can see there is also a fair amount of intra-syllable
detail present in the natural contours that is not modelled, al-
though it is unclear how much of this detail is perceptually im-
portant.

5.2. Perceptual evaluation

To get an initial indication of the perceptual significance of the
FO contours generated here, a small perceptual evaluation was
performed where 2 Sepedi speakers rated synthesized samples
generated with the system described in Section 4.4. Each of the
utterances in the tone-marked set was synthesised with excita-
tion signals derived from the standard HMM-based models, the
tone-based model and the linearly declining contours discussed
above. Listeners were asked to rate each sample using integers
ranging from 1 (poor) to 5 (excellent) on the overall quality of
the sample.
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Figure 3: Example comparison where the error in the latter part
of the utterance is high because of the occurrence of a phrase
break.
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Figure 4: Example comparison where the occurrence of a string
of five H tones from around sample 100 to sample 300 result in
an inaccurate tone-based contour.

Table 3 summarises the scores assigned to each of the sys-
tems by each respondent. The scores obtained on this small test
set do not allow us to properly investigate the perceptual impli-
cations of our model. However, the relatively small differences
seen here suggest that some fine differences measurable during
the FO contour comparisons might not be very significant per-
ceptually.

system | listener 1 | listener 2 | overall
linear 2.27 2.87 2.57
tone-based 2.60 2.53 2.57
HTS 2.47 2.87 2.67

Table 3: Mean opinion scores.

6. Conclusions and future work

Our initial implementation of an analytic intonation model for
Sepedi has demonstrated the ability to successfully model as-
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pects of the FO contour of natural speech given a linguistic tone
description (Section 5.1). However, a number of shortcomings
requiring further attention have also been identified:

e The implementation of a tone reset mechanism is nec-
essary where a phrase boundary causes the FO contour
to rise, this might be even more important when speech
with more naturally varying intonation is modelled.

e Intra-syllable variation in the FO contour such as the ef-
fect of the segmental make-up of a syllable needs to be
investigated, both in terms of perceptual relevance and
contour accuracy.

e The addition of further contextual information needs to
be considered especially for some cases such as repeated
H tones.

e Exceptional variation of the FO contour at the start and
end of utterances or phrases need to be investigated.

Future work should focus on investigating and incorporat-
ing the above points into the model, further work into using in-
formation available via HMM-based modelling of the FO con-
tour as well as a more extensive evaluation of the intonation
model using a larger corpus of more natural speech data.
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