Wave aberrations in a spinning pipe gas lens

<u>C. Mafusire^{1,2}, A. Forbes^{1,2}, M. M. Michaelis² and G. Snedden³</u>

¹ CSIR National Laser Centre

² School of Physics, University of KwaZulu-Natal

³ CSIR Defence Peace Safety and Security

Presented at the The 7th International Workshop on Adaptive Optics for Industry and Medicine White Lake Resort Shatura, Russia 8-11 June 2009

Aberrations and M²

Shack–Hartmann wavefront sensor

- Model CLAS 2D
- Properties
 - 248 nm 1100 nm
 - CW or pulsed
 - 69 x 69 microlenses
 - 7.4 mm x 7.4 mm array
- Outputs
 - M^2 , ω_0 , z_0 , θ_0
 - Zernike coefficients
 - Phase map
 - Intensity map
 - Fringe/vector

- An non-isolated steel pipe with heated walls and then rotated along its axis
- Viscosity of air increases with temperature which determines the boundary layer thickness
- 4 types of flow
 - 2D crescent flow (natural convection)
 - 2D oscillatory flow (forced convection)
 - 2D multicellular flow (forced convection)
 - 3D spiral flow (forced convection)
- 3D spiral flow is responsible for the air exchanges which are responsible for the graded density distribution

CFD Models – velocity vectors

STAR pro-STAR 3.2	
5-APR-06 VEL. COMP V W M/S TIME = 0.100000E-02 LOCAL MX= 0.1798	-04
0.1798 0.1670 0.1541 0.1413 0.1285 0.1156	5.
0.1028 0.8993E-01 0.7709E-01 0.6425E-01 0.3856E-01 0.2572E-01	
0.1288E-01 0.3315E-04	
Y zx	

www.csir.co.za

Experimental set-up

Phase

Heated but stationaryy-tilt dominant

Steady state rotationdefocus dominant

Phase minus defocus + tilt

Tilt

Lensing

www.csir.co.za

Aberrations and M²

Model and experiment

C. Mafusire et al. Optics Express 16(13), pp. 9850–9856 (2008).

Page 13

Future work

- Higher order aberrations leads to loss of beam quality which means we can improve M² by eliminating aberrations
- Measurement of changes to M² caused by selected amounts of specific aberrations
- Presently-available option Phase only SLM with no real time
- Ideal solution adaptive optics methods

Thank You

