An optical system to study temperature influenced chemical and mechanical changes to the PCD structure

Bathusile Masina and Andrew Forbes

SAIP 2010: Applied and Industrial Physics 1 October 2010

It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling process

It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling process

We can raise the temperature of the diamond sample by laser heating it

Laser heating of diamond by optical absorption

We can engineer two boundary conditions in our experiment

In insulator case, we expect the peak temperature on the sample to increase as the laser power increases

We expect a rapid rise in temperature until steady state

Model prediction

www.csir.co.za

We expect a rapid rise in temperature until steady state

At steady state we predict a uniform temperature profile across the sample

Model prediction

At steady state we predict a uniform temperature profile across the sample

Experimental data

600 1.00 550 0.98 500 Normalized Temperature Temperature (Kelvin) 0.96 11 Watts 450 8 Watts 0.94 5 Watts 400 1 Watts 0.92 0.90 350 0.88 300 0.86 30 -0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006 0.008 0.010 0 10 20 40 50 60 r (m) **Pixels**

Model prediction

In water-cooled case, we expect the temperature on the sample to increase as the laser power increases

We expect a rapid rise in temperature until steady state

At steady state we predict a gradient temperature profile across the sample

At steady state we predict a gradient temperature profile across the sample

Conclude remarks on the industrial diamond samples

Conclude remarks on the temperature measurements

Uniform temperature profile Gradient temperature profile

Thank You

